Does Private Investment Promote Multidimensional Poverty Reduction in a Sustainable Way? A Spillover Analysis
Abstract
1. Introduction
2. Literature Review
2.1. Theoretical Framework on the Impact of Private Investment on Multidimensional Poverty
- Economic Development Theory
- Human Capital Theory
- Social Responsibility Theory
2.2. Transmission Channels of Private Investment
2.3. Channels of the Spillover Effects of Private Investment on Multidimensional Poverty
- Job Creation
- Improving Access to Basic Services
- Promoting the Development of Disadvantaged Regions and Reducing Regional Inequality
- Technology Diffusion and Innovation Advancement
- Strengthening Linkages, Markets, and Product Consumption
- Innovation in Production Models and Entrepreneurship
2.4. Impact of Private Investment on the Dimensions of Multidimensional Poverty
- Employment and Income
- Access to Information
- Housing
- Clean Water and Sanitation
- Healthcare
- Education
3. Methodology and Data
3.1. Research Objective, Research Questions, Hypotheses
3.2. Data
3.3. Methodology
- Cross-Sectional Dependence (CSD) Test
- Slope Heterogeneity Test
- Panel Unit Root Test
- Panel Cointegration Test
- The Spatial Econometrics Model
- Common Correlated Effects Pooled Estimator (CCEP)
- Dynamic Common Correlated Effects Pooled Estimator (DCCEP)
4. Empirical Results and Discussion
4.1. Private Investment in Vietnam
4.2. Multidimensional Poverty in Vietnam
4.3. Results of the Spillover Effects of Private Investment on Multidimensional Poverty
- Results of Cross-sectional Dependence Test
- Results of panel unit roots
- Results of slope heterogeneity tests
- Results of Panel Cointegration Test
- Calculation of Spatial Correlation Coefficient (Moran’s I Index)
- Estimation Results by Spatial Regression Methods
- Estimation Results of the PMG and CCEP Models
- Robustness check
4.4. Discussion
5. Conclusion and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A

References
- Kakwani, N.; Son, H.H. Multidimensional Poverty: A New Perspective on Measurement. J. Dev. Stud. 2025, 1–15. [Google Scholar] [CrossRef]
- Alkire, S.; Santos, M.E. A Multidimensional Approach: Poverty Measurement & Beyond. Soc. Indic. Res. 2013, 112, 239–257. [Google Scholar] [CrossRef]
- Adetoro, A.A.; Ngidi, M.S.C.; Danso-Abbeam, G. Towards the global zero poverty agenda: Examining the multidimensional poverty situation in South Africa. SN Soc. Sci. 2023, 3, 148. [Google Scholar] [CrossRef]
- Bui, T.K.T.; Erreygers, G. Multidimensional Inequality in Vietnam, 2002–2012. Economies 2020, 8, 29. [Google Scholar] [CrossRef]
- General Statistical Office. The Provincial Statistical Yearbook, 2010–2024. Available online: https://www.nso.gov.vn/en/statistic-book/ (accessed on 8 August 2025).
- Fahad, S.; Nguyen-Thi-Lan, H.; Nguyen-Manh, D.; Tran-Duc, H.; To-The, N. Analyzing the status of multidimensional poverty of rural households by using sustainable livelihood framework: Policy implications for economic growth. Environ. Sci. Pollut. Res. 2022, 30, 16106–16119. [Google Scholar] [CrossRef]
- Tran, T.Q.; Nguyen, H.T.T.; Hoang, Q.N.; Van Nguyen, D. The influence of contextual and household factors on multidimensional poverty in rural Vietnam: A multilevel regression analysis. Int. Rev. Econ. Financ. 2022, 78, 390–403. [Google Scholar] [CrossRef]
- Thai Nguyen University of Economics and Business Administration (TUEBA); An, D.T. Unlocking the Secrets: Private Investments and the Remarkable Evolution of Vietnam’s Economy. High. Sch. Econ. Econ. J. 2024, 28, 159–183. [Google Scholar] [CrossRef]
- An, D.T. Private Investment and Economic Development: Ensuring Sustainability in the Future. J. Hum. Earth Futur. 2023, 4, 424–442. [Google Scholar] [CrossRef]
- Van Le, D.; Tran, T.Q.; Doan, T. The private sector and multidimensional poverty reduction in Vietnam: A cross-province panel data analysis. Int. J. Soc. Welf. 2022, 31, 291–309. [Google Scholar] [CrossRef]
- Lewis, W.A. Economic Development with Unlimited Supplies of Labour. Manch. Sch. 1954, 22, 139–191. [Google Scholar] [CrossRef]
- Aldatmaz, S.; Brown, G.W. Private equity in the global economy: Evidence on industry spillovers. J. Corp. Financ. 2020, 60, 101524. [Google Scholar] [CrossRef]
- Dubovik, M.; Dmitriev, S.; Obidovskaya, N. A Structural Analysis of Eurasian Economic Union States’ Gross Domestic Product: A Conservation of a Middle-Income Trap. Public Organ. Rev. 2024, 25, 271–294. [Google Scholar] [CrossRef]
- Chiranjivi, G.; Sensarma, R. The effects of economic and financial shocks on private investment: A wavelet study of return and volatility spillovers. Int. Rev. Financ. Anal. 2023, 90, 102936. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Le, H.T.T.; Nguyen, N.T.; Pham, T.T.M.; Hoang, H.T. The effect of financial inclusion on multidimensional poverty: The case of Vietnam. Cogent Econ. Financ. 2022, 10, 2132643. [Google Scholar] [CrossRef]
- Becker, G.S. Investment in Human Capital: A Theoretical Analysis. J. Political Econ. 1962, 70, 9–49. [Google Scholar] [CrossRef]
- Pham, A.T.Q.; Mukhopadhaya, P. Multidimensionl Poverty and The Role of Social Capital in Poverty Alleviation Among Ethnic Groups in Rural Vietnam: A Multilevel Analysis. Soc. Indic. Res. 2021, 159, 281–317. [Google Scholar] [CrossRef]
- Aderemi, T.A.; Opele, A.M.; Olanipekun, W.D.; Al-Faryan, M.A.S. A panel analysis of FDI inflows and poverty reduction in BRICS countries: An implication for the sustainable development goal one. Transnatl. Corp. Rev. 2023, 15, 35–41. [Google Scholar] [CrossRef]
- Mateko, F.M.; David, O.O.; Dzingirai, C. Asymmetric nexus between telecommunications infrastructure, institutions and poverty in Afghanistan. J. Infrastruct. Policy Dev. 2024, 8, 7599. [Google Scholar] [CrossRef]
- Carroll, A.B. The pyramid of corporate social responsibility: Toward the moral management of organizational stakeholders. Bus. Horiz. 1991, 34, 39–48. [Google Scholar] [CrossRef]
- Ramadhani, A.A.; Ridwan, E. Government Spending and Indonesia’s Multidimensional Poverty 2018-2020. Dinasti Int. J. Econ. Financ. Account. 2024, 5, 2067–2079. [Google Scholar] [CrossRef]
- Grabner-Kräuter, S.; Tafolli, F.; Breitenecker, R.J. Consequences of Public Sector Employees’ CSR Perceptions in a Developing Country: Organizational Benefits and Beyond. Public Perform. Manag. Rev. 2023, 46, 472–511. [Google Scholar] [CrossRef]
- García-Lamarca, M.; Anguelovski, I.; Cole, H.V.; Connolly, J.J.; Pérez-Del-Pulgar, C.; Shokry, G.; Triguero-Mas, M. Urban green grabbing: Residential real estate developers discourse and practice in gentrifying Global North neighborhoods. Geoforum 2022, 128, 1–10. [Google Scholar] [CrossRef]
- Hipsher, S.A. The Private Sector’s Role in Poverty Reduction in Asia; Elsevier: London, UK, 2013; pp. 1–19. Available online: https://books.google.com.vn/books?hl=ru&lr=&id=jtpkAgAAQBAJ&oi=fnd&pg=PP1&dq=The+private+sector%E2%80%99s+role+in+poverty+reduction+in+Asia&ots=ni0k4NnsQz&sig=rmRwO9U7_TyULct4TapwTk2OQ9E&redir_esc=y#v=onepage&q=The%20private%20sector%E2%80%99s%20role%20in%20poverty%20reduction%20in%20Asia&f=false (accessed on 25 January 2025).
- Ma, L.; Hu, Y.; Zhu, L.; Ke, Y. Are public—Private partnerships still an answer for social infrastructure? A systematic literature review. Front. Eng. Manag. 2023, 10, 467–482. [Google Scholar] [CrossRef]
- Antràs, P.; Yeaple, S.R. Multinational firms and the structure of international trade. Handb. Int. Econ. 2014, 4, 55–130. [Google Scholar] [CrossRef]
- Sugiharti, L.; Yasin, M.Z.; Purwono, R.; Esquivias, M.A.; Pane, D. The FDI Spillover Effect on the Efficiency and Productivity of Manufacturing Firms: Its Implication on Open Innovation. J. Open Innov. Technol. Mark. Complex. 2022, 8, 99. [Google Scholar] [CrossRef]
- Orlic, E.; Hashi, I.; Hisarciklilar, M. Cross sectoral FDI spillovers and their impact on manufacturing productivity. Int. Bus. Rev. 2018, 27, 777–796. [Google Scholar] [CrossRef]
- Porter, M.E. Location, Competition, and Economic Development: Local Clusters in a Global Economy. Econ. Dev. Q. 2000, 14, 15–34. [Google Scholar] [CrossRef]
- Patel, P.C.; Conklin, B. Perceived Labor Productivity in Small Firms—The Effects of High–Performance Work Systems and Group Culture through Employee Retention. Entrep. Theory Pract. 2012, 36, 205–235. [Google Scholar] [CrossRef]
- Mathers, A.M.; Shank, C.A. Local vibrancy and innovation spillover. Int. Rev. Econ. Financ. 2025, 99, 104039. [Google Scholar] [CrossRef]
- Rowley, T.M. Domestic vs foreign superstars: Comparative advantage and productivity spillovers. Rev. World Econ. 2024, 161, 869–909. [Google Scholar] [CrossRef]
- Do, Q.A.; Le, Q.H.; Nguyen, T.D.; Vu, V.A.; Tran, L.H.; Nguyen, C.T.T. Spatial Impact of Foreign Direct Investment on Poverty Reduction in Vietnam. J. Risk Financ. Manag. 2021, 14, 292. [Google Scholar] [CrossRef]
- Bates, T.; Robb, A. Impacts of Owner Race and Geographic Context on Access to Small-Business Financing. Econ. Dev. Q. 2015, 30, 159–170. [Google Scholar] [CrossRef]
- Okitsu, T.; Edwards, D.B.; Mwanza, P.; Miller, S. Low-fee private preschools as the symbol of imagined ‘modernity’?—Parental perspectives on early childhood care and education (ECCE) in an urban informal settlement in Zambia. Int. J. Educ. Dev. 2023, 97, 102723. [Google Scholar] [CrossRef]
- Eckwert, B.; Zilcha, I. Improvement in information and private investment in education. J. Econ. Dyn. Control. 2010, 34, 585–597. [Google Scholar] [CrossRef]
- Mor-Anavy, S.; Lev-Ari, S.; Levin-Zamir, D. Health Literacy, Primary Care Health Care Providers, and Communication. HLRP Health Lit. Res. Pract. 2021, 5, e194–e200. [Google Scholar] [CrossRef]
- Fraenkel, M.; Kim, M.; Faggiano, A.; De Herder, W.W.; Valk, G.D. Incidence of gastroenteropancreatic neuroendocrine tumours: A systematic review of the literature. Endocr.-Relat. Cancer 2014, 21, R153–R163. [Google Scholar] [CrossRef]
- Gusmano, M.K. The Role of the Public and Private Sectors in China’s Health Care System. Glob. Soc. Welf. 2016, 3, 193–200. [Google Scholar] [CrossRef]
- Johannessen, A.; Rosemarin, A.; Gerger Swartling, A.; Han, G.; Vulturius, G.; Stenström, T.A. Linking Investment Decisions with Disaster Risk Reduction in Water Sanitation and Hygiene (WASH): The Role of the Public and Private Sectors, Potentials for Partnership and Social Learning. In Background Paper for the Global Assessment Report on Disaster Risk Reduction (GAR 2013); UN Office for Disaster Risk Reduction: Geneva, Switzerland, 2013; Available online: https://www.agr.una.py/descargas/biblioteca_digital_gestion_riesgos/G/GAR%202013/Johanessen%20et.al,%202013.pdf (accessed on 8 February 2025).
- Andersson, M.; Eklund, J.E.; Tsvetkova, A. Spatial variations in financial constraints of SMEs—Evidence from firm-level estimates of investment-cash flow sensitivities in Sweden. Small Bus. Econ. 2022, 60, 1683–1698. [Google Scholar] [CrossRef]
- Hiatt, S.R.; Sine, W.D. Clear and present danger: Planning and new venture survival amid political and civil violence. Strat. Manag. J. 2013, 35, 773–785. [Google Scholar] [CrossRef]
- Dahl, M.S.; Sorenson, O. Home Sweet Home: Entrepreneurs’ Location Choices and the Performance of Their Ventures. Manag. Sci. 2012, 58, 1059–1071. [Google Scholar] [CrossRef]
- Dubovik, M.V. The Digital Economy—The Service Economy for the Poor or the Poverty Digitalization. In Business 4.0 as a Subject of the Digital Economy; Springer: Cham, Switzerland, 2022; pp. 1119–1124. [Google Scholar] [CrossRef]
- Kalai, M.; Becha, H.; Helali, K. Effect of artificial intelligence on economic growth in European countries: A symmetric and asymmetric cointegration based on linear and non-linear ARDL approach. J. Econ. Struct. 2024, 13, 22. [Google Scholar] [CrossRef]
- Lv, J.; Guo, X.; Jiang, H. Rural E-Commerce and Income Inequality: Evidence from China. Sustainability 2025, 17, 4720. [Google Scholar] [CrossRef]
- Morris, M.H.; Kuratko, D.F.; Santos, S.C.; Soleimanof, S. Fear and the poverty entrepreneur: The paradox of failure and success. Bus. Horiz. 2023, 67, 41–54. [Google Scholar] [CrossRef]
- Javadi, S.; Kroll, M.; Liu, Y. The dark side of competition in developing economies: Evidence from closely held SMEs. Financ. Rev. 2024, 60, 201–229. [Google Scholar] [CrossRef]
- Ugur, M.; Mitra, A. Technology Adoption and Employment in Less Developed Countries: A Mixed-Method Systematic Review. World Dev. 2017, 96, 1–18. [Google Scholar] [CrossRef]
- Marcella, R.; Chowdhury, G. Eradicating information poverty: An agenda for research. J. Libr. Inf. Sci. 2018, 52, 366–381. [Google Scholar] [CrossRef]
- Scott, K.; Shinde, A.; Ummer, O.; Yadav, S.; Sharma, M.; Purty, N.; Jairath, A.; Chamberlain, S.; LeFevre, A.E. Freedom within a cage: How patriarchal gender norms limit women’s use of mobile phones in rural central India. BMJ Glob. Health 2021, 6, e005596. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Menzfeld, G.; Erfani, G.; Young-Murphy, L.; Charlton, W.; De Luca, H.; Brittain, K.; Steven, A. Identifying and understanding digital exclusion: A mixed-methods study. Behav. Inf. Technol. 2024, 44, 1649–1666. [Google Scholar] [CrossRef]
- Cordes, D.L.; Marinova, D. Systematic literature review of the role of e-commerce in providing pathways to sustainability for poverty alleviation in Sub-Saharan Africa. Discov. Sustain. 2023, 4, 7. [Google Scholar] [CrossRef]
- Manzalini, A.; Artusio, L. The Rise of Quantum Information and Communication Technologies. Quantum Rep. 2024, 6, 29–40. [Google Scholar] [CrossRef]
- Li, J.; Ji, J.; Guo, H.; Chen, L. Research on the Influence of Real Estate Development on Private Investment: A Case Study of China. Sustainability 2018, 10, 2659. [Google Scholar] [CrossRef]
- Baker, T.; Evans, J.; Hennigan, B. Investable poverty: Social investment states and the geographies of poverty management. Prog. Hum. Geogr. 2019, 44, 534–554. [Google Scholar] [CrossRef]
- Pusok, K. Public-Private Partnerships and Corruption in the Water and Sanitation Sectors in Developing Countries. Political Res. Q. 2016, 69, 678–691. [Google Scholar] [CrossRef]
- Ferro, G.; Mercadier, A.C. Technical efficiency in Chile’s water and sanitation providers. Util. Policy 2016, 43, 97–106. [Google Scholar] [CrossRef]
- Baer, M. Private Water, Public Good: Water Privatization and State Capacity in Chile. Stud. Comp. Int. Dev. 2014, 49, 141–167. [Google Scholar] [CrossRef]
- Sy, J.; Warner, R.; Jamieson, J. Tapping the Markets: Opportunities for Domestic Investments in Water and Sanitation for the Poor; World Bank Publications: Washington, DC, USA, 2014; pp. 23–45. Available online: https://documents.worldbank.org/pt/publication/documents-reports/documentdetail/566761468158387510/tapping-the-markets-opportunities-for-domestic-investments-in-water-and-sanitation-for-the-poor (accessed on 2 February 2025).
- Bayliss, K. Utility privatisation in Sub-Saharan Africa: A case study of water. J. Mod. Afr. Stud. 2003, 41, 507–531. [Google Scholar] [CrossRef]
- Johannessen, Å.; Wamsler, C. What does resilience mean for urban water services? Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef]
- Plummer, J.; Cross, P. Tackling Corruption in the Water and Sanitation Sector in Africa. In The Many Faces of Corruption; World Bank: Washington, DC, USA, 2006; pp. 178–221. Available online: https://www.ircwash.org/sites/default/files/Plummer-2006-Tackling.pdf (accessed on 8 February 2025).
- O’DOnnell, O. Health and health system effects on poverty: A narrative review of global evidence. Health Policy 2024, 142, 105018. [Google Scholar] [CrossRef] [PubMed]
- Pinilla-Roncancio, M.; Mactaggart, I.; Kuper, H.; Dionicio, C.; Naber, J.; Murthy, G.V.S.; Polack, S. Multidimensional poverty and disability: A case control study in India, Cameroon, and Guatemala. SSM-Popul. Health 2020, 11, 100591. [Google Scholar] [CrossRef] [PubMed]
- Clausen, J.; Barrantes, N.; Trivelli, C.; Salas, F. Evaluating Poverty in all its Forms and Dimensions: Monetary, Multidimensional, and Subjective Poverty in Peru. Soc. Indic. Res. 2025, 179, 861–893. [Google Scholar] [CrossRef]
- Härmä, J. Ensuring quality education? Low-fee private schools and government regulation in three sub-Saharan African capitals. Int. J. Educ. Dev. 2019, 66, 139–146. [Google Scholar] [CrossRef]
- Baum, D.R.; Cooper, R.; Lusk-Stover, O. Regulating market entry of low-cost private schools in Sub-Saharan Africa: Towards a theory of private education regulation. Int. J. Educ. Dev. 2018, 60, 100–112. [Google Scholar] [CrossRef]
- Center for Community Support and Development Studies; Real-Time Analytics; United Nations Development Programme. The Vietnam Provincial Governance and Public Administration Performance Index (PAPI). Available online: https://papi.org.vn/eng/ (accessed on 22 August 2025).
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels; Cambridge Working Papers in Economics; Faculty of Economics, University of Cambridge: Cambridge, UK, 2004; No. 0435, Working Paper. [Google Scholar] [CrossRef]
- Pesaran, M.H. Testing Weak Cross-Sectional Dependence in Large Panels. Econ. Rev. 2014, 34, 1089–1117. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econ. 2008, 142, 50–93. [Google Scholar] [CrossRef]
- Blomquist, J.; Westerlund, J. Testing slope homogeneity in large panels with serial correlation. Econ. Lett. 2013, 121, 374–378. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econ. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Pedroni, P. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Pedroni, P. Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econ. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Westerlund, J. Testing for Error Correction in Panel Data*. Oxf. Bull. Econ. Stat. 2007, 69, 709–748. [Google Scholar] [CrossRef]
- Elhorst, J.P. Specification and Estimation of Spatial Panel Data Models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Pesaran, M.H. Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure. Econometrica 2006, 74, 967–1012. [Google Scholar] [CrossRef]
- Chudik, A.; Pesaran, M.H. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. J. Econ. 2015, 188, 393–420. [Google Scholar] [CrossRef]
- Dung, D.T.K.; Van Bao, N.; Thuong, P.T.S.; Thuy, H.T.K. Export Persistence and Productivity in Vietnam: Who Learns? J. Econ. Integr. 2024, 39, 714–749. [Google Scholar] [CrossRef]
- Center for WTO and Integration. Available online: https://trungtamwto.vn/thong-ke/12065-tong-hop-cac-fta-cua-viet-nam-tinh-den-thang-112018 (accessed on 22 August 2025).
- Nguyen, D.T.; Sen, L.T.H.; Hoang, H.G.; Tran, T.N.; Tran, N.A.T.; Mazancova, J. Insight into the Multidimensional Poverty of the Mountainous Ethnic Minorities in Central Vietnam. Soc. Sci. 2023, 12, 331. [Google Scholar] [CrossRef]
- Tran, V.Q.; Alkire, S.; Klasen, S. Static and dynamic disparities between monetary and multidimensional poverty measurement: Evidence from Vietnam. In Measurement of Poverty, Deprivation, and Economic Mobility; Emerald Group Publishing Limited: Bingley, UK, 2015; pp. 249–281. [Google Scholar] [CrossRef]
- Pham, A.T.Q.; Mukhopadhaya, P.; Vu, H. Targeting Administrative Regions for Multidimensional Poverty Alleviation: A Study on Vietnam. Soc. Indic. Res. 2020, 150, 143–189. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Basher, S.A.; Westerlund, J. Panel cointegration and the monetary exchange rate model. Econ. Model. 2009, 26, 506–513. [Google Scholar] [CrossRef]
- Lesage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Banks, L.M.; Pinilla-Roncancio, M.; Walsham, M.; Van Minh, H.; Neupane, S.; Mai, V.Q.; Neupane, S.; Blanchet, K.; Kuper, H. Does disability increase the risk of poverty ‘in all its forms’? Comparing monetary and multidimensional poverty in Vietnam and Nepal. Oxf. Dev. Stud. 2021, 49, 386–400. [Google Scholar] [CrossRef]
- Roelen, K.; Gassmann, F.; de Neubourg, C. False positives or hidden dimensions: What can monetary and multidimensional measurement tell us about child poverty in Vietnam? Int. J. Soc. Welf. 2011, 21, 393–407. [Google Scholar] [CrossRef]
- Xuan, V.N. Factors affecting open innovation in Vietnam: New insights from the ARDL method. Environ. Sustain. Indic. 2025, 27, 100787. [Google Scholar] [CrossRef]
- Dubovik, M.; Dmitriev, S.; Aitkazina, M. The Impact of Gross Regional Product Per Capita on the Processes of Convergence between Different Regions of the Country. Qubahan Acad. J. 2024, 4, 443–445. [Google Scholar] [CrossRef]
- Roelen, K.; Gassmann, F.; de Neubourg, C. Child Poverty in Vietnam: Providing Insights Using a Country-Specific and Multidimensional Model. Soc. Indic. Res. 2009, 98, 129–145. [Google Scholar] [CrossRef]
- Дубoвик, М.; Дмитриев, С. Дивергенция денежных дoхoдoв населения региoнoв Рoссии. Creat. Econ. 2024, 18, 697–724. [Google Scholar] [CrossRef]
- Do, N.N.; Le, D.Q. Population Growth and Urbanization in Vietnam. In Recent Trends in Vietnam’s Rapid Economic Development: 1990–2023; Springer Nature Singapore: Singapore, 2024; pp. 219–245. [Google Scholar] [CrossRef]
- Pham, V.A.T.; Tran, T.K.; Nguyen, K.M.; Van Tran, T.; Vu, L.H.; Pham, H.T.T. The relationship between population growth and precipitation change in some regions across Vietnam: Implications for urbanization effect. Environ. Sci. Pollut. Res. 2024, 31, 15007–15025. [Google Scholar] [CrossRef] [PubMed]
- Olaoye, O.O. Interrogating sub-Saharan Africa’s high economic growth rate and low poverty reduction rate: A poverty paradox? J. Public Aff. 2022, 23, e2851. [Google Scholar] [CrossRef]
- Le, H.D.; Anh, T.T.M.; Hien, V.T.H.; Van, L.T.; Mai, N.T. Analyzing determinants of long-rotation plantation decisions by local households in Quang Tri Province, Vietnam with Bayesian Networks. Land Use Policy 2023, 138, 107029. [Google Scholar] [CrossRef]
- Mondal, S.; Kumar, S.; Mishra, A.P. Contextualizing spatiality of multidimensional poverty in rural and urban India: A geographical perspective. Belgeo 2023, 1. [Google Scholar] [CrossRef]


| Variables | Type | Unit | Definition and Measurement | Sources | Expected Sign |
|---|---|---|---|---|---|
| Multidimensional poverty (MP) | Dependent variable | [0, 1] | Decision 59/2015/QD-TTg Decision 09/2011/QĐ-TTg | General Statistics Office [5] | |
| PAPI index (PAPI) | Control variable | [1, 100] | Measuring the quality of state governance from the citizen’s perspective (research proposed) | PAPI Vietnam [69] | - |
| Private investment (PI) | Independent variable | Trillion VND | PI = Ln (Private Investment/GRDP) | General Statistics Office [5] | - |
| GRDP per capita (GRDPpc) | Control variable | Million VND | GRDPpc = Ln (GRDP/Population) | General Statistics Office [5] | - |
| Literacy (LI) | Control variable | [0, 1] | Literacy rate | General Statistics Office [5] | - |
| Urbanization rate (UR) | Control variable | [0, 1] | The ratio of people living in rural and urban areas | General Statistics Office [5] | - |
| Variable | Test Statistics (p-Value) |
|---|---|
| MP | 20.875 *** |
| PAPI | 18.163 *** |
| PI | 17.432 *** |
| GRDPpc | 12.583 *** |
| LI | 21.583 *** |
| UR | 13.362 *** |
| Variables | CADF Test | CIPS Test | ||
|---|---|---|---|---|
| Level | First Diff | Level | First Diff | |
| MP | 0.473 | 3.287 *** | 1.837 | 4.364 *** |
| PAPI | 3.898 *** | 5.847 *** | 4.527 *** | 7.837 *** |
| PI | −5.233 *** | −8.526 *** | −7.377 *** | −10.387 *** |
| GRDPpc | 4.652 *** | 5.374 *** | 7.583 *** | 9.384 *** |
| LI | −4.582 *** | −6.734 *** | −5.384 *** | −8.763 *** |
| UR | 3.482 *** | 5.638 *** | 4.513 *** | 6.384 *** |
| Pesaran & Yamagata Test | Blomquist & Westerlund Test | ||
|---|---|---|---|
| Delta | Adjusted Delta | Delta | Adjusted Delta |
| 1.142 | 1.224 | 1.356 | 1.524 |
| Estimates | Statistic | p-Value |
|---|---|---|
| Pedroni test for cointegration | ||
| Modified Phillips–Perron | 8.3654 | 0.000 |
| Phillips–Perron | −5.3153 | 0.000 |
| Augmented Dickey–Fuller | −7.3252 | 0.000 |
| Kao test for cointegration | ||
| Modified Dickey–Fuller | −2.6673 | 0.000 |
| Dickey–Fuller | −7.6729 | 0.000 |
| Augmented Dickey–Fuller | −2.5665 | 0.000 |
| Unadjusted modified Dickey–Fuller | −22.3563 | 0.000 |
| Unadjusted Dickey–Fuller | −17.0600 | 0.000 |
| Statistic | Value | Z-Value | p-Value |
|---|---|---|---|
| −9.6371 | −4.2742 | 0.000 | |
| −7.3463 | −3.6541 | 0.000 | |
| −5.5862 | −4.6255 | 0.000 | |
| −8.4676 | −5.6373 | 0.000 |
| Year | Employing the Contiguity Weight Matrix | Employing the Inverse Distance Weight Matrix | ||
|---|---|---|---|---|
| Moran’s I Results | Z-Value | Moran’s I Results | Z-Value | |
| 2010 | 0.3154 *** | 4.1531 | 0.0463 *** | 2.6374 |
| 2011 | 0.3246 *** | 4.3272 | 0.0497 *** | 2.7493 |
| 2012 | 0.3743 *** | 4.3846 | 0.5791 *** | 3.2842 |
| 2013 | 0.3725 *** | 4.3735 | 0.0578 *** | 3.2648 |
| 2014 | 0.3158 *** | 4.1763 | 0.0473 *** | 2.6847 |
| 2015 | 0.3272 *** | 4.3972 | 0.0523 *** | 2.8634 |
| 2016 | 0.3683 *** | 4.3124 | 0.5742 *** | 3.1763 |
| 2017 | 0.3545 *** | 4.2537 | 0.0548 *** | 3.0183 |
| 2018 | 0.3268 *** | 4.3654 | 0.0516 ** | 2.7972 |
| 2019 | 0.3828 *** | 4.5263 | 0.0585 *** | 3.4253 |
| 2020 | 0.3846 ** | 4.6654 | 0.0589 *** | 3.4645 |
| 2021 | 0.3762 ** | 4.4723 | 0.0583 ** | 3.3762 |
| 2022 | 0.3572 ** | 4.2874 | 0.5627 *** | 3.1526 |
| 2023 | 0.3846 *** | 4.7267 | 0.0593 *** | 3.4892 |
| 2024 | 0.3426 *** | 4.1254 | 0.0528 *** | 2.9374 |
| Variables | Contiguity Weight Matrix | Inverse-Distance Weight Matrix | ||||
|---|---|---|---|---|---|---|
| SAR | SEM | SDM | SAR | SEM | SDM | |
| PAPI | −0.0648 *** | −0.0553 *** | −0.0555 *** | −0.0649 *** | −0.0615 *** | −0.0613 *** |
| PI | −0.1708 *** | −01881 *** | −0.1955 *** | −0.1695 *** | −0.1727 *** | −0.1789 *** |
| GRDPpc | −0.0464 *** | −0.0528 *** | −0.0530 *** | −0.0460 *** | −0.0485 *** | −0.0489 *** |
| LI | −0.0084 *** | −0.0105 *** | −0.0101 *** | −0.0083 *** | −0.0092 *** | −0.0086 *** |
| UR | −0.0197 *** | −0.0202 *** | −0.0189 *** | −0.0198 *** | −0.0193 *** | −0.0183 *** |
| Rho | 0.2342 *** | NA | 0.2596 *** | 0.4933 *** | NA | 0.3907 *** |
| Lambda | NA | 0.3275 *** | NA | NA | 0.7172 *** | NA |
| W*PAPI | NA | NA | −0.0332 *** | NA | NA | −0.0677 *** |
| W*PI | NA | NA | −0.1241 *** | NA | NA | −0.1601 *** |
| W*GRDPpc | NA | NA | 0.0042 | NA | NA | −0.0144 *** |
| W*LI | NA | NA | 0.0099 ** | NA | NA | 0.0159 |
| W*UR | NA | NA | 0.0056 | NA | NA | 0.0274 |
| sigma2_e | 5.2270 *** | 6.2639 *** | 5.9620 *** | 5.1429 *** | 5.5908 *** | 5.4870 *** |
| Log-Likelihood | −2213 | −2221 | −2192 | −2193 | −2168 | −2148 |
| 0.3591 | 0.3705 | 0.5292 | 0.3286 | 0.3659 | 0.5936 | |
| SAR: θ = 0 | NA | NA | 33.07 *** | NA | NA | 31.51 *** |
| SEM: θ = −βλ | NA | NA | 58.37 *** | NA | NA | 35.89 *** |
| Hausman test for FE and RE | 25.20 *** | 24.44 *** | 53.37 *** | 38.12 *** | 25.88 *** | 54.36 *** |
| Variables | Contiguity Weight Matrix | Inverse-Distance Weight Matrix | ||||
|---|---|---|---|---|---|---|
| Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect | |
| PAPI | −0.0845 *** | −0.0237 ** | −0.1082 ** | −0.0808 *** | −0.0206 *** | −0.1014 *** |
| PI | −0.2082 *** | −0.1233 *** | −0.3315 *** | −0.1855 *** | −0.1333 *** | −0.3188 *** |
| GRDPpc | −0.0532 *** | −0.0125 *** | −0.0657 *** | −0.0490 *** | −0.0112 *** | −0.0602 *** |
| LI | −0.0096 *** | 0.0098 * | 0.0002 | −0.0084 *** | 0.0220 | 0.0136 |
| UR | −0.0188 *** | 0.0014 | −0.0174 | −0.0180 *** | 0.0147 | −0.0033 |
| Variables | PMG (Short-Run) | Long Run Estimates | |
|---|---|---|---|
| PMG | CCEP | ||
| ECT (−1) | −0.7363 *** | - | - |
| PAPI | −0.1013 *** | −0.0949 *** | −0.0965 *** |
| PI | −0.0189 *** | −0.1224 *** | −0.1344 *** |
| GRDPpc | −0.0328 *** | −0.0743 *** | −0.0521 *** |
| LI | −0.0013 *** | −0.0113 | −0.0044 |
| UR | −0.0147 *** | −0.0058 * | −0.0085 |
| Variables | Coef. | Std. Err | Z | p > |z| |
|---|---|---|---|---|
| PAPI | −0.0709 | 0.0187 | −3.79 | 0.000 |
| PI | −0.2355 | 0.0243 | −9.68 | 0.000 |
| GRDPpc | −0.0408 | 0.0118 | −4.07 | 0.000 |
| LI | −0.0056 | 0.0032 | −1.71 | 0.087 |
| UR | −0.0116 | 0.0058 | −2.01 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, D.T.; Dubovik, M.; Quynh Nam, V. Does Private Investment Promote Multidimensional Poverty Reduction in a Sustainable Way? A Spillover Analysis. Sustainability 2025, 17, 10172. https://doi.org/10.3390/su172210172
An DT, Dubovik M, Quynh Nam V. Does Private Investment Promote Multidimensional Poverty Reduction in a Sustainable Way? A Spillover Analysis. Sustainability. 2025; 17(22):10172. https://doi.org/10.3390/su172210172
Chicago/Turabian StyleAn, Dinh Trong, Mayya Dubovik, and Vu Quynh Nam. 2025. "Does Private Investment Promote Multidimensional Poverty Reduction in a Sustainable Way? A Spillover Analysis" Sustainability 17, no. 22: 10172. https://doi.org/10.3390/su172210172
APA StyleAn, D. T., Dubovik, M., & Quynh Nam, V. (2025). Does Private Investment Promote Multidimensional Poverty Reduction in a Sustainable Way? A Spillover Analysis. Sustainability, 17(22), 10172. https://doi.org/10.3390/su172210172

