Banana Yield Prediction Using Random Forest, Integrating Phenology Data, Soil Properties, Spectral Technology, and UAV Imagery in the Ecuadorian Littoral Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Spectral Data and UAV Images
2.3. Soil Data
2.4. Agronomic Data
2.5. Model Development
2.5.1. Data Preprocessing
2.5.2. Predictor Variable Selection
2.5.3. Modeling
2.5.4. Hyperparameter Tuning for Random Forest Model
2.5.5. Python Code Implementation to Deploy the Model
2.5.6. Evaluation in Probable Scenarios
3. Results
3.1. Results of Variables
3.2. Modeling Results
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veliz, K.; Chico-Santamarta, L.; Ramirez, A.D. The Environmental Profile of Ecuadorian Export Banana: A Life Cycle Assessment. Foods 2022, 11, 3288. [Google Scholar] [CrossRef]
- Roibás, L.; Elbehri, A.; Hospido, A. Evaluating the Sustainability of Ecuadorian Bananas: Carbon Footprint, Water Usage and Wealth Distribution along the Supply Chain. Sustain. Prod. Consum. 2015, 2, 3–16. [Google Scholar] [CrossRef]
- Quiloango-Chimarro, C.A.; Gioia, H.R.; de Oliveira Costa, J. Typology of Production Units for Improving Banana Agronomic Management in Ecuador. AgriEngineering 2024, 6, 2811–2823. [Google Scholar] [CrossRef]
- Jayasinghe, S.L.; Ranawana, C.J.K.; Liyanage, I.C.; Kaliyadasa, P.E. Growth and Yield Estimation of Banana through Mathematical Modelling: A Systematic Review. J. Agric. Sci. 2022, 160, 152–167. [Google Scholar] [CrossRef]
- Silva, A.C.B.D.; Oliveira, F.G.; da Fonseca Garcia Pereira Braga, R.N. Yield Prediction in Banana (Musa Sp.) Using STELLA Model. Acta Sci., Agron. 2023, 45, e58947. [Google Scholar] [CrossRef]
- Aeberli, A.; Phinn, S.; Johansen, K.; Robson, A.; Lamb, D.W. Characterisation of Banana Plant Growth Using High-Spatiotemporal-Resolution Multispectral UAV Imagery. Remote Sens. 2023, 15, 679. [Google Scholar] [CrossRef]
- UAV Imaging: The Future of Yield Prediction Research. Pix4D 2021. Available online: https://www.pix4d.com/blog/uav-imaging-future-of-yield-prediction-research/ (accessed on 1 March 2024).
- Sönmez, F.; Ashyrov, P.; Toylan, H. Yield Prediction with Deep Learning on UAV Images: Banana Tree Application. Kirklareli Univ. J. Eng. Sci. 2025, 11, 11–22. [Google Scholar] [CrossRef]
- Razavi, S.; Jakeman, A.; Saltelli, A.; Prieur, C.; Iooss, B.; Borgonovo, E.; Plischke, E.; Lo Piano, S.; Iwanaga, T.; Becker, W.; et al. The Future of Sensitivity Analysis: An Essential Discipline for Systems Modeling and Policy Support. Environ. Model. Softw. 2021, 137, 104954. [Google Scholar] [CrossRef]
- Olivares, B.O.; Rey, J.C.; Perichi, G.; Lobo, D. Relationship of Microbial Activity with Soil Properties in Banana Plantations in Venezuela. Sustainability 2022, 14, 13531. [Google Scholar] [CrossRef]
- Panigrahi, B.; Kathala, K.C.R.; Sujatha, M. A Machine Learning-Based Comparative Approach to Predict the Crop Yield Using Supervised Learning With Regression Models. Procedia Comput. Sci. 2023, 218, 2684–2693. [Google Scholar] [CrossRef]
- Saxena, S. A Beginner’s Guide to Random Forest Hyperparameter Tuning. Anal. Vidhya 2020. Available online: https://www.analyticsvidhya.com/blog/2020/03/beginners-guide-random-forest-hyperparameter-tuning/ (accessed on 10 October 2025).
- Shahhosseini, M.; Hu, G.; Archontoulis, S.V.; Huber, I. Coupling Machine Learning and Crop Modeling Improves Crop Yield Prediction in the US Corn Belt. Sci. Rep. 2021, 11, 1606. [Google Scholar] [CrossRef]
- MAG. Boletín Situacional Cultivo de Banano. 2024. Available online: https://sipa.agricultura.gob.ec/index.php/bananos (accessed on 10 October 2025).
- Delgado, D.; Sadaoui, M.; Ludwig, W.; Méndez, W. Spatio-Temporal Assessment of Rainfall Erosivity in Ecuador Based on RUSLE Using Satellite-Based High Frequency GPM-IMERG Precipitation Data. CATENA 2022, 219, 106597. [Google Scholar] [CrossRef]
- DJI DJI MAVIC 3M. User Manual, v1.0; DJI: Shenzhen, China, 2022. [Google Scholar]
- Linero-Ramos, R.; Parra-Rodríguez, C.; Espinosa-Valdez, A.; Gómez-Rojas, J.; Gongora, M. Assessment of Dataset Scalability for Classification of Black Sigatoka in Banana Crops Using UAV-Based Multispectral Images and Deep Learning Techniques. Drones 2024, 8, 503. [Google Scholar] [CrossRef]
- Franaszek, M.; Qiao, H.; Saidi, K.S.; Rachakonda, P. A Method to Estimate Orientation and Uncertainty of Objects Measured Using 3D Imaging Systems per ASTM Standard E2919-22; NIST: Gaithersburg, MD, USA, 2024. [Google Scholar]
- Edwards, J.; Anderson, J.; Shuart, W.; Woolard, J. An Evaluation of Reflectance Calibration Methods for UAV Spectral Imagery. Photogramm. Eng. Remote Sens. 2019, 85, 221–230. [Google Scholar] [CrossRef]
- PIX4D SA Pix4Dmapper 4.1, User Manual 2016. Available online: https://data.pix4d.com/misc/manual_pdf/manual_4_1.pdf (accessed on 10 October 2025).
- Poortinga, A.; Clinton, N.; Saah, D.; Cutter, P.; Chishtie, F.; Markert, K.N.; Anderson, E.R.; Troy, A.; Fenn, M.; Tran, L.H.; et al. An Operational Before-After-Control-Impact (BACI) Designed Platform for Vegetation Monitoring at Planetary Scale. Remote Sens. 2018, 10, 760. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. Versión 3.34.4. Open Source Geospatial Foundation. 2025. Available online: https://www.qgis.org (accessed on 10 October 2025).
- Tang, W.; Zhao, C.; Lin, J.; Jiao, C.; Zheng, G.; Zhu, J.; Pan, X.; Han, X. Improved Spectral Water Index Combined with Otsu Algorithm to Extract Muddy Coastline Data. Water 2022, 14, 855. [Google Scholar] [CrossRef]
- Yin, H.; Li, B.; Liu, Y.; Zhang, F.; Su, C.; Ou-yang, A. Detection of Early Bruises on Loquat Using Hyperspectral Imaging Technology Coupled with Band Ratio and Improved Otsu Method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 283, 121775. [Google Scholar] [CrossRef] [PubMed]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-31211-6. [Google Scholar]
- Stevens, B.; Diels, J.; Brown, A.; Bayo, S.; Ndakidemi, P.A.; Swennen, R. Banana Biomass Estimation and Yield Forecasting from Non-Destructive Measurements for Two Contrasting Cultivars and Water Regimes. Agronomy 2020, 10, 1435. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, L.; Peng, C.; Li, H.; Li, X.; Zhang, M. Banana Plant Counting and Morphological Parameters Measurement Based on Terrestrial Laser Scanning. Plant Methods 2022, 18, 66. [Google Scholar] [CrossRef]
- FAO. FAO Good Agricultural Practices for Bananas; World Banana Forum; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Volume 1, pp. 1–5. [Google Scholar]
- Lamessa, K. Performance Evaluation of Banana Varieties, through Farmer’s Participatory Selection. Int. J. Fruit Sci. 2021, 21, 768–778. [Google Scholar] [CrossRef]
- Eckstein, K.; Robinson, J.C.; Fraser, C. Physiological Responses of Banana (Musa AAA; Cavendish Sub-Group) in the Subtropics. VII. Effects of Windbreak Shading on Phenology, Physiology and Yield. J. Hortic. Sci. 1997, 72, 389–396. [Google Scholar] [CrossRef]
- Kikulwe, E.M.; Kyanjo, J.L.; Kato, E.; Ssali, R.T.; Erima, R.; Mpiira, S.; Ocimati, W.; Tinzaara, W.; Kubiriba, J.; Gotor, E.; et al. Management of Banana Xanthomonas Wilt: Evidence from Impact of Adoption of Cultural Control Practices in Uganda. Sustainability 2019, 11, 2610. [Google Scholar] [CrossRef]
- Guo, J.; Fu, H.; Yang, Z.; Li, J.; Jiang, Y.; Jiang, T.; Liu, E.; Duan, J. Research on the Physical Characteristic Parameters of Banana Bunches for the Design and Development of Postharvesting Machinery and Equipment. Agriculture 2021, 11, 362. [Google Scholar] [CrossRef]
- Rapetti, M.; Dorel, M. Bunch Weight Determination in Relation to the Source-Sink Balance in 12 Cavendish Banana Cultivars. Agronomy 2022, 12, 333. [Google Scholar] [CrossRef]
- Donato, S.L.R.; da Silva, J.A.; Guimarães, B.V.C.; Silva, S.d.O.e. Experimental Planning for the Evaluation of Phenotipic Descriptors in Banana. Rev. Bras. Frutic. 2018, 40, e-962. [Google Scholar] [CrossRef]
- van Asten, P.J.A.; Fermont, A.M.; Taulya, G. Drought Is a Major Yield Loss Factor for Rainfed East African Highland Banana. Agric. Water Manag. 2011, 98, 541–552. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Li, X.; Li, M.; Tian, Z. Predicting Banana Yield at the Field Scale by Combining Sentinel-2 Time Series Data and Regression Models. Appl. Eng. Agric. 2023, 39, 81–94. [Google Scholar] [CrossRef]
- Jhajharia, K.; Mathur, P. Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India. Iraqi J. Sci. 2024, 65, 390–400. [Google Scholar] [CrossRef]
- Mayanda, M.S.; Didit, W.; Desta, S.P.; Jayanta; Wan, S.W.A. Prediction of Horticultural Production Using Machine Learning Regression Models: A Case Study from Indramayu Regency, Indonesia. Math. Model. Eng. Probl. 2024, 11, 3015–3024. [Google Scholar] [CrossRef]
- Olivares, B.O.; Calero, J.; Rey, J.C.; Lobo, D.; Landa, B.B.; Gómez, J.A. Correlation of Banana Productivity Levels and Soil Morphological Properties Using Regularized Optimal Scaling Regression. CATENA 2022, 208, 105718. [Google Scholar] [CrossRef]
- Kyriazos, T.; Poga, M. Dealing with Multicollinearity in Factor Analysis: The Problem, Detections, and Solutions. Open J. Stat. 2023, 13, 404–424. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Archontoulis, S.V. Forecasting Corn Yield With Machine Learning Ensembles. Front. Plant Sci. 2020, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- Ennaji, O.; Baha, S.; Vergutz, L.; Allali, A.E. Gradient Boosting for Yield Prediction of Elite Maize Hybrid ZhengDan 958. PLoS ONE 2024, 19, e0315493. [Google Scholar] [CrossRef]
- Asamoah, E.; Heuvelink, G.B.M.; Chairi, I.; Bindraban, P.S.; Logah, V. Random Forest Machine Learning for Maize Yield and Agronomic Efficiency Prediction in Ghana. Heliyon 2024, 10, e37065. [Google Scholar] [CrossRef]
- Mahesh, P.; Soundrapandiyan, R. Yield Prediction for Crops by Gradient-Based Algorithms. PLoS ONE 2024, 19, e0291928. [Google Scholar] [CrossRef]
- Mekonnen, D.K.; Yimam, S.; Arega, T.; Matheswaran, K.; Schmitter, P.M.V. Relatives, Neighbors, or Friends: Information Exchanges among Irrigators on New on-Farm Water Management Tools. Agric. Syst. 2022, 203, 103492. [Google Scholar] [CrossRef]
- Ranta, M.; Rotar, I.; Vidican, R.; Mălinaș, A.; Ranta, O.; Lefter, N. Influence of the UAN Fertilizer Application on Quantitative and Qualitative Changes in Semi-Natural Grassland in Western Carpathians. Agronomy 2021, 11, 267. [Google Scholar] [CrossRef]
- Feldman, G.M. Generalized Polya’s Theorem on Connected Locally Compact Abelian Groups Dimension 1. arXiv 2021, arXiv:2105.12345. [Google Scholar]
- Zhang, Q.; Huang, W.; Wang, Q.; Wu, J.; Li, J. Detection of Pears with Moldy Core Using Online Full-Transmittance Spectroscopy Combined with Supervised Classifier Comparison and Variable Optimization. Comput. Electron. Agric. 2022, 200, 107231. [Google Scholar] [CrossRef]
- Liu, Y.; Bachofen, C.; Wittwer, R.; Silva Duarte, G.; Sun, Q.; Klaus, V.H.; Buchmann, N. Using PhenoCams to Track Crop Phenology and Explain the Effects of Different Cropping Systems on Yield. Agric. Syst. 2022, 195, 103306. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, Y.; Yang, Y.; Liu, Y.; Gao, Q.; Li, J.; Li, G.; Yuan, J. Using Tree-Based Machine Learning Models to Predict Diverse Compost Maturity via One-Hot Encoding: Model Deployment, Experimental Validation, and Practical Application. Waste Manag. 2025, 205, 114981. [Google Scholar] [CrossRef]
- K, D.; Devi, O.R.; Ansari, M.S.A.; Reddy, B.P.; T, M.H.; El-Ebiary, Y.A.B.; Rengarajan, M. Optimizing Crop Yield Prediction in Precision Agriculture with Hyperspectral Imaging-Unmixing and Deep Learning. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 586. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; ISBN 978-1-4414-1269-0. [Google Scholar]
- McKinney, W. Data Structures for Statistical Computing in Python. Scipy 2010, 445, 51–56. [Google Scholar] [CrossRef]
- Numpy: Fundamental Package for Array Computing in Python. Available online: https://www.numpy.org (accessed on 7 June 2025).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Pereira, F.V.; Martins, G.D.; Vieira, B.S.; de Assis, G.A.; Orlando, V.S.W. Multispectral Images for Monitoring the Physiological Parameters of Coffee Plants under Different Treatments against Nematodes. Precis. Agric 2022, 23, 2312–2344. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Wang, P.; Lombi, E.; Zhao, F.-J.; Kopittke, P.M. Nanotechnology: A New Opportunity in Plant Sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef]
- Burke, R.; Schwarze, J.; Sherwood, O.L.; Jnaid, Y.; McCabe, P.F.; Kacprzyk, J. Stressed to Death: The Role of Transcription Factors in Plant Programmed Cell Death Induced by Abiotic and Biotic Stimuli. Front. Plant Sci. 2020, 11, 1235. [Google Scholar] [CrossRef]
- Ciężkowski, W.; Szporak-Wasilewska, S.; Kleniewska, M.; Jóźwiak, J.; Gnatowski, T.; Dąbrowski, P.; Góraj, M.; Szatyłowicz, J.; Ignar, S.; Chormański, J. Remotely Sensed Land Surface Temperature-Based Water Stress Index for Wetland Habitats. Remote Sens. 2020, 12, 631. [Google Scholar] [CrossRef]
- Li, J.; Veeranampalayam-Sivakumar, A.-N.; Bhatta, M.; Garst, N.D.; Stoll, H.; Stephen Baenziger, P.; Belamkar, V.; Howard, R.; Ge, Y.; Shi, Y. Principal Variable Selection to Explain Grain Yield Variation in Winter Wheat from Features Extracted from UAV Imagery. Plant Methods 2019, 15, 123. [Google Scholar] [CrossRef] [PubMed]
- Richter, D.D.; Eppes, M.-C.; Austin, J.C.; Bacon, A.R.; Billings, S.A.; Brecheisen, Z.; Ferguson, T.A.; Markewitz, D.; Pachon, J.; Schroeder, P.A.; et al. Soil Production and the Soil Geomorphology Legacy of Grove Karl Gilbert. Soil Sci. Soc. Am. J. 2020, 84, 1–20. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, L.; Chen, F.; Ren, X.; Tan, Z. Soil Carbon Sequestration Efficiency under Continuous Paddy Rice Cultivation and Excessive Nitrogen Fertilization in South China. Soil Tillage Res. 2021, 213, 105108. [Google Scholar] [CrossRef]
- Casas, F.; Gurarie, E.; Fagan, W.F.; Mainali, K.; Santiago, R.; Hervás, I.; Palacín, C.; Moreno, E.; Viñuela, J. Are Trellis Vineyards Avoided? Examining How Vineyard Types Affect the Distribution of Great Bustards. Agric. Ecosyst. Environ. 2020, 289, 106734. [Google Scholar] [CrossRef]
- Traoré, A.; Falconnier, G.N.; Ba, A.; Sissoko, F.; Sultan, B.; Affholder, F. Modeling Sorghum-Cowpea Intercropping for a Site in the Savannah Zone of Mali: Strengths and Weaknesses of the Stics Model. Field Crops Res. 2022, 285, 108581. [Google Scholar] [CrossRef]
- Lou, Z.; Lu, X.; Li, S. Yield Prediction of Winter Wheat at Different Growth Stages Based on Machine Learning. Agronomy 2024, 14, 1834. [Google Scholar] [CrossRef]
- Sarr, A.B.; Sultan, B. Predicting Crop Yields in Senegal Using Machine Learning Methods. Int. J. Climatol. 2023, 43, 1817–1838. [Google Scholar] [CrossRef]
- Hammond, J.; Pagella, T.; Caulfield, M.E.; Fraval, S.; Teufel, N.; Wichern, J.; Kihoro, E.; Herrero, M.; Rosenstock, T.S.; van Wijk, M.T. Poverty Dynamics and the Determining Factors among East African Smallholder Farmers. Agric. Syst. 2023, 206, 103611. [Google Scholar] [CrossRef]
- Agnolucci, M.; Avio, L.; Palla, M.; Sbrana, C.; Turrini, A.; Giovannetti, M. Health-Promoting Properties of Plant Products: The Role of Mycorrhizal Fungi and Associated Bacteria. Agronomy 2020, 10, 1864. [Google Scholar] [CrossRef]
- Wang, G.; Otte, M.L.; Jiang, M.; Wang, M.; Yuan, Y.; Xue, Z. Does the Element Composition of Soils of Restored Wetlands Resemble Natural Wetlands? Geoderma 2019, 351, 174–179. [Google Scholar] [CrossRef]
- Khatibi, S.M.H.; Ali, J. Harnessing the Power of Machine Learning for Crop Improvement and Sustainable Production. Front. Plant Sci. 2024, 15, 1417912. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yang, M.; Mohammadi, K.; Song, D.; Bi, J.; Wang, G. Machine Learning Crop Yield Models Based on Meteorological Features and Comparison with a Process-Based Model. Artif. Intell. Earth Syst. 2022, 1, e220002. [Google Scholar] [CrossRef]
- Gasanov, M.; Petrovskaia, A.; Nikitin, A.; Matveev, S.; Tregubova, P.; Pukalchik, M.; Oseledets, I. Sensitivity Analysis of Soil Parameters in Crop Model Supported with High-Throughput Computing. Comput. Sci.–ICCS 2020 2020, 12143, 731–741. [Google Scholar] [CrossRef]
- Krishnan, P.; Maity, P.P.; Kundu, M. Sensitivity Analysis of Cultivar Parameters to Simulate Wheat Crop Growth and Yield under Moisture and Temperature Stress Conditions. Heliyon 2021, 7, e07602. [Google Scholar] [CrossRef]
- Xu, Y.; Albalawneh, A.; Al-Zoubi, M.; Baroud, H. Variance-Based Sensitivity Analysis of Climate Variability Impact on Crop Yield Using Machine Learning: A Case Study in Jordan. Agric. Water Manag. 2025, 313, 109409. [Google Scholar] [CrossRef]
- Tunkiel, A.T.; Sui, D.; Wiktorski, T. Data-Driven Sensitivity Analysis of Complex Machine Learning Models: A Case Study of Directional Drilling. J. Pet. Sci. Eng. 2020, 195, 107630. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.-M.; Gerber, J.S.; Reddy, V.R.; et al. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Habyarimana, E.; Baloch, F.S. Machine Learning Models Based on Remote and Proximal Sensing as Potential Methods for In-Season Biomass Yields Prediction in Commercial Sorghum Fields. PLoS ONE 2021, 16, e0249136. [Google Scholar] [CrossRef]
- Shahi, T.B.; Xu, C.-Y.; Neupane, A.; Guo, W.; Shahi, T.B.; Xu, C.-Y.; Neupane, A.; Guo, W. Machine Learning Methods for Precision Agriculture with UAV Imagery: A Review. Era 2022, 30, 4277–4317. [Google Scholar] [CrossRef]
- Skully, S.; Aziz, E. CAPÍTULO 3: Cambio climático y sus efectos en el sector Bananero del Ecuador. In Cambio Climático y Sostenibilidad del Banano en Ecuador, Evaluación de Impacto y Directrices de Política; FAO: Rome, Italy, 2015; Volume 1, pp. 53–65. ISBN 978-92-5-308952-9. [Google Scholar]






| Variable | Type | Included | VIF | Main Decision/Reason |
|---|---|---|---|---|
| NDVI | Spectral | yes | 1.88 | Principal predictor; high correlation with yield |
| Plant height (m) | Agronomic | yes | 2.35 | Early indicator of vegetative vigor |
| Diameter (cm) | Agronomic | yes | 28.76 | Conserved for agronomic relevance (corrected VIF: 1.2) |
| Nitrogen (mg/kg) | Soil | yes | 3.21 | Key nutrient for crop development |
| Porosity (%) | Soil | yes | 6.99 | Conserved as physical soil indicator (corrected VIF: 1.8) |
| Slope | Topographic | yes | 1.05 | Transformed to ordinal; affects drainage and stability |
| Plant weight (pounds) | Agronomic | no | 31.25 | Excluded due to multicollinearity with diameter (r = 0.97) |
| Moisture (%) | Soil | no | 7.12 | Excluded due to multicollinearity with porosity (r = 0.83) |
| Density (g/cm3) | Soil | no | 15.43 | Excluded due to redundancy with porosity (r = −0.92) |
| Bunch weight (pounds) | yield | no | - | Excluded due to data leakage (yield component) |
| Number of hands | yield | no | 22.47 | Excluded for being component of label variable |
| Ratio | Calculated | no | 18.92 | Excluded due to ambiguous definition and multicollinearity |
| Model | Best Hyperparameters | R2 | RMSE (kg ha−1) |
|---|---|---|---|
| Ridge Regression | α = 0.1 | 0.950 | 1223.4 |
| Random Forest | max_depth = 7, min_samples_split = 2, n_estimators = 150 | 0.956 | 1164.9 |
| Gradient Boosting | learning_rate = 0.1, max_depth = 3, n_estimators = 150 | 0.953 | 1190.2 |
| Yield | NDVI | Height (m) | Diameter (cm) | Nitrogen (%) | Porosity (%) | Slope | Yield (kg ha−1) | Boxes ha−1 |
|---|---|---|---|---|---|---|---|---|
| Baja | 0.70 | 2.5 | 16.0 | 20 | 30 | 3 | 35,988.5 | 1983.9 |
| Alta | 0.85 | 4.0 | 25 | 55 | 45 | 1 | 50,571.7 | 2787.9 |
| Yield | Modified Variable | Change (%) | Yield (kg ha−1) | Δ Yield (kg ha−1) | Boxes ha−1 | Δ Boxes ha−1 |
|---|---|---|---|---|---|---|
| Low | NDVI | −10% | 35,637.30 | −351.19 | 1964.57 | −19.36 |
| Low | NDVI | +10% | 36,967.59 | +979.09 | 2037.90 | +53.97 |
| Low | Height | −10% | 35,988.49 | 0.00 | 1983.93 | 0.00 |
| Low | Height | +10% | 36,980.12 | +991.63 | 2038.60 | +54.67 |
| Low | Diameter | −10% | 35,988.49 | 0.00 | 1983.93 | 0.00 |
| Low | Diameter | +10% | 37,347.32 | +1358.83 | 2058.84 | +74.91 |
| Low | Nitrogen | −10% | 35,988.49 | 0.00 | 1983.93 | 0.00 |
| Low | Nitrogen | +10% | 35,988.49 | 0.00 | 1983.93 | 0.00 |
| Low | Porosity | −10% | 35,988.49 | 0.00 | 1983.93 | 0.00 |
| Low | Porosity | +10% | 36,920.10 | +268.67 | 1998.74 | +14.81 |
| High | NDVI | −10% | 48,025.58 | 2647.50 | −2546.10 | −140.36 |
| High | NDVI | +10% | 50,571.68 | 2787.85 | 0.00 | 0.00 |
| High | Height | −10% | 50,571.68 | 2787.85 | 0.00 | 0.00 |
| High | Height | +10% | 50,571.68 | 2787.85 | 0.00 | 0.00 |
| High | Diameter | −10% | 50,571.68 | 2787.85 | 0.00 | 0.00 |
| High | Diameter | +10% | 50,571.68 | 2787.85 | 0.00 | 0.00 |
| High | Nitrogen | −10% | 49,256.46 | 2715.35 | −1315.20 | −72.50 |
| High | Nitrogen | +10% | 50,571.68 | 2787.85 | 0.00 | 0.00 |
| High | Porosity | −10% | 50,135.07 | 2763.79 | −436.61 | −24.07 |
| High | Porosity | +10% | 50,571.68 | 2787.85 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yánez-Cajo, D.; Vásconez-Montúfar, G.; Villamar-Torres, R.O.; Godoy-Montiel, L.; Jazayeri, S.M.; Pérez-Porras, F.; Mesas-Carrascosa, F. Banana Yield Prediction Using Random Forest, Integrating Phenology Data, Soil Properties, Spectral Technology, and UAV Imagery in the Ecuadorian Littoral Region. Sustainability 2025, 17, 10098. https://doi.org/10.3390/su172210098
Yánez-Cajo D, Vásconez-Montúfar G, Villamar-Torres RO, Godoy-Montiel L, Jazayeri SM, Pérez-Porras F, Mesas-Carrascosa F. Banana Yield Prediction Using Random Forest, Integrating Phenology Data, Soil Properties, Spectral Technology, and UAV Imagery in the Ecuadorian Littoral Region. Sustainability. 2025; 17(22):10098. https://doi.org/10.3390/su172210098
Chicago/Turabian StyleYánez-Cajo, Danilo, Gregorio Vásconez-Montúfar, Ronald Oswaldo Villamar-Torres, Luis Godoy-Montiel, Seyed Mehdi Jazayeri, Fernando Pérez-Porras, and Francisco Mesas-Carrascosa. 2025. "Banana Yield Prediction Using Random Forest, Integrating Phenology Data, Soil Properties, Spectral Technology, and UAV Imagery in the Ecuadorian Littoral Region" Sustainability 17, no. 22: 10098. https://doi.org/10.3390/su172210098
APA StyleYánez-Cajo, D., Vásconez-Montúfar, G., Villamar-Torres, R. O., Godoy-Montiel, L., Jazayeri, S. M., Pérez-Porras, F., & Mesas-Carrascosa, F. (2025). Banana Yield Prediction Using Random Forest, Integrating Phenology Data, Soil Properties, Spectral Technology, and UAV Imagery in the Ecuadorian Littoral Region. Sustainability, 17(22), 10098. https://doi.org/10.3390/su172210098

