Toward the Adoption of a Photocatalytic Membrane Electrode Assembly (P-MEA) System for Sustainable Green Hydrogen Production
Abstract
1. Introduction
2. Basic Principles of MEA-Based Water Electrolysis
2.1. Concepts of MEA-Based Water Electrolysis
2.2. Basic Operation Mechanism of MEA-Based Water Electrolysis
3. Challenges and Strategies of MEA-Based Water Electrolysis
- Proper photocatalytic electrode materials;
- A suitable MEA deposition technique for P-MEA;
- A promising P-MEA system design.
3.1. Photocatalytic MEA (P-MEA) Fabrication
3.1.1. Challenges in P-MEA Fabrication
3.1.2. Photocatalytic Electrode Materials for P-MEA
- Band modulation of electrode materials;
- Geometric optimization;
- Morphology engineering.
3.1.3. Suitable Deposition Technique for P-MEA
3.2. P-MEA System Fabrication
- Integrated photovoltaic membrane electrode assembly (PV-MEA);
- Tandem photoelectrochemical membrane electrode assembly (PEC-MEA);
- Window-induced photocatalytic membrane electrode assembly (P-MEA).
4. Conclusions and Future Perspectives
- i.
- Improved stability of light absorber and reduced bias overpotential;
- ii.
- Scalable fabrication system design;
- iii.
- Membrane-catalyst interface engineering to minimize resistive losses and enhance mass transport.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammi, Z.; Labjar, N.; Dalimi, M.; El Hamdouni, Y.; Lotfi, E.M.; El Hajjaji, S. Green hydrogen: A holistic review covering life cycle assessment, environmental impacts, and color analysis. Int. J. Hydrogen Energy 2024, 80, 1030–1045. [Google Scholar] [CrossRef]
- Jaradat, M.; Almashaileh, S.; Bendea, C.; Juaidi, A.; Bendea, G.; Bungau, T. Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments. Energies 2024, 17, 3992. [Google Scholar] [CrossRef]
- Sambasivam, B.; Sarma, R.N. India’s National Green Hydrogen Mission: An analysis of the strategies, policies for net-zero emissions and sustainability. Environ. Res. Energy 2024, 1, 045015. [Google Scholar] [CrossRef]
- Koivunen, T.; Hirvijoki, E. Effect of investment cost on technology preference in a flexible, low-carbon Finnish power system. Nucl. Eng. Des. 2024, 417, 112854. [Google Scholar] [CrossRef]
- Hyvönen, J.; Koivunen, T.; Syri, S. Possible bottlenecks in clean energy transitions: Overview and modelled effects–Case Finland. J. Clean. Prod. 2023, 410, 137317. [Google Scholar] [CrossRef]
- Durakovic, G.; Zhang, H.; Knudsen, B.R.; Tomasgard, A.; del Granado, P.C. Decarbonizing the European energy system in the absence of Russian gas: Hydrogen uptake and carbon capture developments in the power, heat and industry sectors. J. Clean. Prod. 2024, 435, 140473. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Gbadamosi, A.O.; Epelle, E.I.; Abdulrasheed, A.A.; Haq, B.; Patil, S.; Al-Shehri, D.; Kamal, M.S. Hydrogen production, transportation, utilization, and storage: Recent advances towards sustainable energy. J. Energy Storage 2023, 73, 109207. [Google Scholar] [CrossRef]
- Nocera, D.G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767–776. [Google Scholar] [CrossRef]
- Jin, W.; Shin, C.; Lim, S.; Lee, K.; Yu, J.M.; Seo, K.; Jang, J.-W. Natural leaf-inspired solar water splitting system. Appl. Catal. B Environ. 2023, 322, 122086. [Google Scholar] [CrossRef]
- Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D.J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems. ACS Chem. Rev. 2018, 118, 5201–5241. [Google Scholar] [CrossRef]
- Mo, S.; Du, L.; Huang, Z.; Chen, J.; Zhou, Y.; Wu, P.; Meng, L.; Wang, N.; Xing, L.; Zhao, M.; et al. Recent Advances on PEM Fuel Cells: From Key Materials to Membrane Electrode Assembly. Electrochem. Energy Rev. 2023, 6, 28. [Google Scholar] [CrossRef]
- Segovia-Hernández, J.G.; Hernández, S.; Cossío-Vargas, E.; Juarez-García, M.; Sánchez-Ramírez, E. Green hydrogen production for sustainable development: A critical examination of barriers and strategic opportunities. RSC Sustain. 2024, 3, 134–157. [Google Scholar] [CrossRef]
- Galletti, A.; Pasimeni, F.; Melideo, D.; Desideri, U.; Alkemade, F. Learning in green hydrogen production: Insights from a novel European dataset. Int. J. Hydrogen Energy 2025, 148, 149812. [Google Scholar] [CrossRef]
- Siegmund, D.; Metz, S.; Peinecke, V.; Warner, T.E.; Cremers, C.; Grevé, A.; Smolinka, T.; Segets, D.; Apfel, U.-P. Crossing the Valley of Death: From Fundamental to Applied Research in Electrolysis. JACS Au 2021, 1, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Seo, J.H.; Lim, J.; Park, S.; Jang, H.W. Best Practices in Membrane Electrode Assembly for Water Electrolysis. ACS Mater. Lett. 2024, 6, 2757–2786. [Google Scholar] [CrossRef]
- Ampurdanés, J.; Chourashiya, M.; Urakawa, A. Cobalt oxide-based materials as non-PGM catalyst for HER in PEM electrolysis and in situ XAS characterization of its functional state. Catal. Today 2019, 336, 161–168. [Google Scholar] [CrossRef]
- Corrales-Sánchez, T.; Ampurdanés, J.; Urakawa, A. MoS2-based materials as alternative cathode catalyst for PEM electrolysis. Int. J. Hydrogen Energy 2014, 39, 20837–20843. [Google Scholar] [CrossRef]
- Shim, J.W.; Koo, J.; Yoo, S.J.; Shim, J.H. Exceptionally Stable Polymer Electrolyte Membrane Fuel Cells Enabled by One-Pot Sequential Atomic Layer Deposition of Titania and Platinum. ACS Sustain. Chem. Eng. 2024, 12, 15634–15642. [Google Scholar] [CrossRef]
- Liang, H.; Su, H.; Pollet, B.G.; Pasupathi, S. Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method. J. Power Sources 2015, 288, 121–127. [Google Scholar] [CrossRef]
- Fouzaï, I.; Gentil, S.; Bassetto, V.C.; Silva, W.O.; Maher, R.; Girault, H.H. Catalytic layer-membrane electrode assembly methods for optimum triple phase boundaries and fuel cell performances. RSC J. Mater. Chem. A 2021, 9, 11096–11123. [Google Scholar] [CrossRef]
- Nishioka, S.; Osterloh, F.E.; Wang, X.; Mallouk, T.E.; Maeda, K. Photocatalytic water splitting. Nat. Rev. Methods Prim. 2023, 3, 42. [Google Scholar] [CrossRef]
- Ma, Y.; Lin, L.; Takata, T.; Hisatomi, T.; Domen, K. A perspective on two pathways of photocatalytic water splitting and their practical application systems. Phys. Chem. Chem. Phys. 2023, 25, 6586–6601. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Duan, X.; Sun, H.; Wang, S. Photothermal catalysis: From fundamentals to practical applications. Mater. Today 2023, 68, 234–253. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Liu, J.; Zhou, J.; Jiao, Y.; Xiao, X.; Zhao, C.; Zhou, Y.; Ye, S.; Jiang, B.; et al. Porous Carbon Nitride Thin Strip: Precise Carbon Doping Regulating Delocalized π-Electron Induces Elevated Photocatalytic Hydrogen Evolution. Small 2021, 17, 2006622. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, S.; Jiang, B.; Jaroniec, M.; Zhang, L. Engineering defects in graphitic carbon nitride photocatalysts. Mater. Today 2024, 80, 886–904. [Google Scholar] [CrossRef]
- Ha, M.N.; Lu, G.; Liu, Z.; Wang, L.; Zhao, Z. 3DOM-LaSrCoFeO6-: δ as a highly active catalyst for the thermal and photothermal reduction of CO2 with H2O to CH4. J. Mater. Chem. A 2016, 4, 13155–13165. [Google Scholar] [CrossRef]
- Grand, J.; Auguié, B.; Le Ru, E.C. Combined Extinction and Absorption UV-Visible Spectroscopy as a Method for Revealing Shape Imperfections of Metallic Nanoparticles. Anal. Chem. 2019, 91, 14639–14648. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhang, J.; Yang, S.; Jin, J.; Wang, B.; Li, G.T. The Oxygen Reduction Performance of Pt Supported on the Hybrid of Porous Carbon Nanofibers and Carbon Black. Materials 2022, 15, 4560. [Google Scholar] [CrossRef]
- Binninger, T.; Fabbri, E.; Kötz, R.; Schmidt, T.J. Determination of the Electrochemically Active Surface Area of Metal-Oxide Supported Platinum Catalyst. J. Electrochem. Soc. 2014, 161, H121–H128. [Google Scholar] [CrossRef]
- Dix, S.T.; Lu, S.; Linic, S. Critical Practices in Rigorously Assessing the Inherent Activity of Nanoparticle Electrocatalysts. ACS Catal. 2020, 10, 10735–10741. [Google Scholar] [CrossRef]
- Lian, M.M.; Lee, S.-M.; Ahn, S.-H.; Kim, B.-S.; Yun, J.-H. Sulfur Vacancy and V-Doped CoP-Modulated 3D Zr-MOF (UiO-66-NH2)/2D MoS2 Interface Restructuring for Efficient and Durable Hydrogen Evolution Reaction. ACS Energy Fuels 2025, 39, 16985–16993. [Google Scholar] [CrossRef]
- Suter, T.A.M.; Smith, K.; Hack, J.; Rasha, L.; Rana, Z.; Angel, G.M.A.; Shearing, P.R.; Miller, T.S.; Brett, D.J.L. Engineering Catalyst Layers for Next-Generation Polymer Electrolyte Fuel Cells: A Review of Design, Materials, and Methods. Adv. Energy Mater. 2021, 11, 2101025. [Google Scholar] [CrossRef]
- Wan, L.; Pang, M.; Le, J.; Xu, Z.; Zhou, H.; Xu, Q.; Wang, B. Oriented intergrowth of the catalyst layer in membrane electrode assembly for alkaline water electrolysis. Nat. Commun. 2022, 13, 7956. [Google Scholar] [CrossRef]
- Maiyalagan, T.; Pasupathi, S. Components for PEM fuel cells: An overview. Mater. Sci. Forum 2010, 657, 143–189. [Google Scholar] [CrossRef]
- Şanlı, L.I.; Yarar, B.; Bayram, V.; Gürsel, S.A. Electrosprayed catalyst layers based on graphene–carbon black hybrids for the next-generation fuel cell electrodes. J. Mater. Sci. 2017, 52, 2091–2102. [Google Scholar] [CrossRef]
- Fouzai, I.; Radaoui, M.; Díaz-Abad, S.; Rodrigo, M.A.; Lobato, J. Electrospray Deposition of Catalyst Layers with Ultralow Pt Loading for Cost-Effective H2 Production by SO2 Electrolysis. ACS Appl. Energy Mater. 2022, 5, 2138–2149. [Google Scholar] [CrossRef] [PubMed]
- Conde, J.J.; Ferreira-Aparicio, P.; Chaparro, A.M. Electrospray Deposition: A Breakthrough Technique for Proton Exchange Membrane Fuel Cell Catalyst Layer Fabrication. ACS Appl. Energy Mater. 2021, 4, 7394–7404. [Google Scholar] [CrossRef]
- Kim, G.; Eom, K.; Kim, M.; Yoo, S.J.; Jang, J.H.; Kim, H.-J.; Cho, E. Design of an Advanced Membrane Electrode Assembly Employing a Double-Layered Cathode for a PEM Fuel Cell. ACS Appl. Mater. Interfaces 2015, 7, 27581–27585. [Google Scholar] [CrossRef]
- Aoyama, Y.; Suzuki, K.; Tabe, Y.; Chikahisa, T.; Tanuma, T. Water Transport and PEFC Performance with Different Interface Structure between Micro-Porous Layer and Catalyst Layer. J. Electrochem. Soc. 2016, 163, F359–F366. [Google Scholar] [CrossRef]
- Song, Z.; Banis, M.N.; Liu, H.; Zhang, L.; Zhao, Y.; Li, J.; Doyle-Davis, K.; Li, R.; Knights, S.; Ye, S.; et al. Ultralow Loading and High-Performing Pt Catalyst for a Polymer Electrolyte Membrane Fuel Cell Anode Achieved by Atomic Layer Deposition. ACS Catal. 2019, 9, 5365–5374. [Google Scholar] [CrossRef]
- Lin, W.; Chen, H.; Li, J.; Chen, K.; Lu, X.; Ouyang, P.; Fu, J. Enhanced stability of Pt/C by the atomic layer deposition of porous MOx for the decarboxylation of oleic acid. Catal. Commun. 2019, 123, 59–63. [Google Scholar] [CrossRef]
- Yang, B.; Xiang, Z. Nanostructure Engineering of Cathode Layers in Proton Exchange Membrane Fuel Cells: From Catalysts to Membrane Electrode Assembly. ACS Nano 2024, 18, 11598–11630. [Google Scholar] [CrossRef] [PubMed]
- Turan, B.; Becker, J.-P.; Urbain, F.; Finger, F.; Rau, U.; Haas, S. Upscaling of integrated photoelectrochemical water-splitting devices to large areas. Nat. Commun. 2016, 7, 12681. [Google Scholar] [CrossRef] [PubMed]
- Kistler, T.A.; Larson, D.; Walczak, K.; Agbo, P.; Sharp, I.D.; Weber, A.Z.; Danilovic, N. Integrated Membrane-Electrode-Assembly Photoelectrochemical Cell under Various Feed Conditions for Solar Water Splitting. J. Electrochem. Soc. 2019, 166, H3020–H3028. [Google Scholar] [CrossRef]
- Leach, A.S.; Hack, J.; Amboage, M.; Diaz-Moreno, S.; Huang, H.; Cullen, P.L.; Wilding, M.; Magliocca, E.; Miller, T.; A Howard, C.; et al. A novel fuel cell design for operando energy-dispersive x-ray absorption measurements. J. Phys. Condens. Matter. 2021, 33, 314002. [Google Scholar] [CrossRef]
- Tölle, P.; Köhler, C.; Marschall, R.; Sharifi, M.; Wark, M.; Frauenheim, T. Proton transport in functionalised additives for PEM fuel cells: Contributions from atomistic simulations. Chem. Soc. Rev. 2012, 41, 5143–5159. [Google Scholar] [CrossRef]
- Wilhelm, M.; Jeske, M.; Marschall, R.; Cavalcanti, W.L.; Tölle, P.; Köhler, C.; Koch, D.; Frauenheim, T.; Grathwohl, G.; Caro, J.; et al. New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO3H-functionalized mesoporous Si-MCM-41 particles. J. Membr. Sci. 2008, 316, 164–175. [Google Scholar] [CrossRef]
- Wijayatha, K. Photoelectrochemical cells for hydrogen generation. Funct. Mater. Sustain. Energy Appl. 2012, 146e, 91–145. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Zhang, G.; Gong, Z.; Wu, B.; Wang, T.; Gong, J. Tandem cells for unbiased photoelectrochemical water splitting. RSC Chem. Soc. Rev. 2023, 52, 4644–4671. [Google Scholar] [CrossRef]
- Vinodh, R.; Palanivel, T.; Kalanur, S.S.; Pollet, B.G. Recent advancements in catalyst coated membranes for water electrolysis: A critical review. RSC Energy Adv. 2024, 3, 1144–1166. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wang, X.; Zi, G.; Zhou, C.; Liu, B.; Liu, G.; Wang, L.; Huang, W. One-step supramolecular preorganization constructed crinkly graphitic carbon nitride nanosheets with enhanced photocatalytic activity. J. Mater. Sci. Technol. 2022, 104, 155–162. [Google Scholar] [CrossRef]
- da Costa, G.P.; Garcia, D.M.; Van Nguyen, T.H.; Lacharmoise, P.; Simão, C.D. Advancements in printed components for proton exchange membrane fuel cells: A comprehensive review. Int. J. Hydrogen Energy 2024, 69, 710–728. [Google Scholar] [CrossRef]
- Vilanova, A.; Dias, P.; Lopes, T.; Mendes, A. The route for commercial photoelectrochemical water splitting: A review of large-area devices and key upscaling challenges. RSC Chem. Soc. Rev. 2024, 53, 2388–2434. [Google Scholar] [CrossRef] [PubMed]
- Mani, P.; Shenoy, S.; Sagayaraj, P.J.J.; Agamendran, N.; Son, S.; Bernaurdshaw, N.; Kim, H.-I.; Sekar, K. Scaling up of photocatalytic systems for large-scale hydrogen generation. Appl. Phys. Rev. 2025, 12, 011303. [Google Scholar] [CrossRef]
- Haferkamp, S.; Haase, W.; Pascal, A.A.; van Amerongen, H.; Kirchhoff, H. Efficient light harvesting by photosystem II requires an optimized protein packing density in grana thylakoids. J. Biol. Chem. 2010, 285, 17020–17028. [Google Scholar] [CrossRef]
- Eggimann, H.J.; Patel, J.B.; Johnston, M.B.; Herz, L.M. Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells. Nat. Commun. 2020, 11, 5525. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Z.; Wangyang, P.; Zhou, H. Light harvesting in thin film solar cells via designing nanostructured geometries. Opt. Commun. 2023, 545, 129624. [Google Scholar] [CrossRef]
- Li, J.; Yuan, H.; Zhang, W.; Jin, B.; Feng, Q.; Huang, J.; Jiao, Z. Advances in Z-scheme semiconductor photocatalysts for the photoelectrochemical applications: A review. Carbon Energy 2022, 4, 294–331. [Google Scholar] [CrossRef]
- Azam, A.M.I.N.; Li, N.K.; Zulkefli, N.N.; Masdar, M.S.; Majlan, E.H.; Baharuddin, N.A.; Zainoodin, A.M.; Yunus, R.M.; Shamsul, N.S.; Husaini, T.; et al. Parametric Study and Electrocatalyst of Polymer Electrolyte Membrane (PEM) Electrolysis Performance. Polymers 2023, 15, 560. [Google Scholar] [CrossRef]
- Wang, C.R.; Stansberry, J.M.; Mukundan, R.; Chang, H.-M.J.; Kulkarni, D.; Park, A.M.; Plymill, A.B.; Firas, N.M.; Liu, C.P.; Lang, J.T.; et al. Proton Exchange Membrane (PEM) Water Electrolysis: Cell-Level Considerations for Gigawatt-Scale Deployment. ACS Chem. Rev. 2025, 125, 1257–1302. [Google Scholar] [CrossRef]
- El-Shafie, M. Hydrogen production by water electrolysis technologies: A review. Results Eng. 2023, 20, 400006. [Google Scholar] [CrossRef]
- Amano, F.; Tsushiro, K. Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding. Energy Mater. 2024, 4, 77. [Google Scholar] [CrossRef]
- Patel, M.; Cattry, A.; Jonin, M.; Tembhurne, S.; Haussener, S. Reversible photo-electrochemical device for solar hydrogen and power generation. Cell Rep. Phys. Sci. 2024, 5, 101984. [Google Scholar] [CrossRef]
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. RSC Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar] [CrossRef]
- Wang, J.; Branco, B.; Remmerswaal, W.H.M.; Hu, S.; Schipper, N.R.M.; Zardetto, V.; Bellini, L.; Daub, N.; Wienk, M.M.; Wakamiya, A.; et al. Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting. Nat. Commun. 2025, 16, 174. [Google Scholar] [CrossRef]











| MEA System Components | Properties |
|---|---|
| Endplates (anode and cathode) | Conduct the electric flow to the entire system |
| Gas Diffusion Layer (GDL) | Mass transfer of reactants, gas, and reaction products |
| Porous Transport Layer (PTL) | Mass transfer of reactants, gas, and reaction products |
| Anode (catalyst layer) | Catalytic activity of the material, electrical resistance of the anode layer |
| Cathode (catalyst layer) | Catalytic activity of the material, electrical resistance of the cathode layer |
| Membrane (Nafion) | Conductance, solid electrolyte, gas permeance, etc. |
| Aspects | Requirements | Enhancement Strategies |
|---|---|---|
| Charge Transfer | Efficient electron and hole transport | Heterojunctions, conductive layers |
| Stability | Corrosion and degradation resistance | Passivation layers, catalyst stabilizers |
| Adhesion | Strong binding to electrodes | Conductive binders, surface functionalization |
| Ion Transport | Fast proton exchange and water balance | Ionic coatings, hydrophilic structuring |
| Light Utilization | High optical absorption and minimal loss | Plasmonic nanoparticles, transparent electrodes |
| Application Categories | Preparation Techniques | Waste Generation | Time-Consuming | Quality | Refs. |
|---|---|---|---|---|---|
| Application in solid form | a. Dry spraying | •• | • | • | [35,36,37] |
| b. Decal method | •• | • | • | [38] | |
| Vapor phase deposition | a. Magnetron sputtering | •• | • | •• | [39] |
| b. Chemical vapor deposition | • | • | •• | [39] | |
| Electro-assisted deposition | a. Electrodeposition | • | •• | •• | [35] |
| b. Electro-spraying | •• | •• | •• | [35] | |
| c. Electrophoretic deposition | • | • | • | [35] | |
| Application in precursor state | a. Electron beam reduction | • | • | •• | [35] |
| b. Impregnation reduction | • | • | •• | [37,38,40] | |
| c. Atomic layer deposition | • | • | ••• | [41,42] |
| Characteristics | P-MEA System | Photoelectrochemical (PEC) Cell |
|---|---|---|
| Charge Transfer Pathway | Direct solid-state transfer across membrane–electrode interfaces | Charge carriers traverse through the liquid electrolyte and the external circuits |
| Ion Transport Mechanism | Engineered membranes facilitate selective H+ and O2 transport | Relies on diffusion through bulk liquid electrolytes |
| Photocatalyst Integration | Photocatalysts are immobilized within solid-state interfaces, enhancing stability | Photocatalysts are often suspended or deposited, prone to detachment |
| System Architecture | Compact, modular, and scalable design | Bulky setup with complex wiring and maintenance |
| Light Utilization Efficiency | Optimized thin-film geometry allows efficient photo-absorption | Limited by electrode geometry and light penetration issues |
| Operational Stability | A protected environment reduces photocorrosion and enhances durability | Exposure to liquid electrolytes can lead to degradation |
| Scalability | Easily scalable due to modular design | Scaling up is challenging due to system complexity |
| Technology | Representative System | Typical Current Density (j) | Device Behavior (Bias Voltage) | Efficiency Metric | Refs. |
|---|---|---|---|---|---|
| PEM Water Electrolysis | Pt/C cathode + IrO2 anode, Nafion 212 membrane, 80 °C | 1.0 A.cm−2 | 1.80 V | [64] | |
| PV-MEA | Tandem solar cell integrated with MEA | 14.7 mA.cm−2 | 1.42 V | [65] | |
| PEC-MEA | Triple-junction GaAs with direct contact on PEC device, Nafion 115 membrane, 50 °C | 20 mA.cm−2 | ~1.8 V | [44] | |
| Integrated P-MEA | Triple-junction Ga-based PV with wire-connected PEC device, Nafion 115 membrane, ambient Temperature | 50 mA.cm−2 | ~1 V | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, M.M.; Kim, B.-S.; Lee, S.-M.; Ahn, S.-H.; Yun, J.-H. Toward the Adoption of a Photocatalytic Membrane Electrode Assembly (P-MEA) System for Sustainable Green Hydrogen Production. Sustainability 2025, 17, 10037. https://doi.org/10.3390/su172210037
Lian MM, Kim B-S, Lee S-M, Ahn S-H, Yun J-H. Toward the Adoption of a Photocatalytic Membrane Electrode Assembly (P-MEA) System for Sustainable Green Hydrogen Production. Sustainability. 2025; 17(22):10037. https://doi.org/10.3390/su172210037
Chicago/Turabian StyleLian, Mang Muan, Bo-Sang Kim, Su-Min Lee, Su-Ho Ahn, and Jung-Ho Yun. 2025. "Toward the Adoption of a Photocatalytic Membrane Electrode Assembly (P-MEA) System for Sustainable Green Hydrogen Production" Sustainability 17, no. 22: 10037. https://doi.org/10.3390/su172210037
APA StyleLian, M. M., Kim, B.-S., Lee, S.-M., Ahn, S.-H., & Yun, J.-H. (2025). Toward the Adoption of a Photocatalytic Membrane Electrode Assembly (P-MEA) System for Sustainable Green Hydrogen Production. Sustainability, 17(22), 10037. https://doi.org/10.3390/su172210037

