Abstract
An in-depth and comprehensive evaluation of carbon emission efficiency (CEE) is essential for promoting high-quality development and achieving the “dual-carbon” goals. This study applies a super-efficiency slacks-based measure (Super-SBM) model with carbon emissions treated as an undesirable output to measure provincial CEE and the Malmquist–Luenberger (ML) index across 30 provinces and major comprehensive economic zones in China from 2010 to 2023. Efficiency trends for 2024–2025 are projected using a hybrid Autoregressive Integrated Moving Average (ARIMA)–Long Short-Term Memory (LSTM) approach. Furthermore, CEE patterns are examined at both national and regional levels, and the relationships between CEE and potential drivers are analyzed using Tobit regressions. Combining the regression outcomes with short-term forecasts, this study provides a forward-looking perspective on the evolution of CEE and its associated factors. The results indicate that (1) China’s CEE demonstrates a generally fluctuating upward trajectory, with the southern coastal and eastern coastal regions maintaining the highest efficiency levels, while other regions remain relatively lower. (2) The temporal changes in CEE across economic zones correspond to variations in technical efficiency and technological progress, with the latter contributing more prominently to overall improvement. (3) CEE shows significant associations with multiple factors: population density, economic development, technological advancement, government intervention, and environmental regulation are positively associated with efficiency, whereas urbanization tends to correlate negatively. Based on these findings, policy implications are discussed to promote differentiated pathways for enhancing CEE across China’s regions.