Assessment of Ventilation Control Methods for Energy Efficiency and Indoor Climate Stability: A Case Study of a Zoo Exhibition Room
Abstract
1. Introduction
1.1. General
1.2. The Purpose of This Article
2. Materials and Methods
2.1. Research Facility
2.2. Methodological Framework
2.3. Measurement Data
2.4. Air System Sensible and Total Heat Transfer
2.5. Regression Analysis
2.6. Control Algorithms
2.7. Climate Data
3. Results and Discussion
4. Limitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A


| Algorithm | Fan | Heating | Cooling | T. Hold | RH. Hold |
|---|---|---|---|---|---|
| MWh | GJ (MWh) | GJ (MWh) | % | % | |
| (1) CCA | 357.7 | 1755.8 (487.7) | 49.1 (13.6) | 63.5 | 97.4 |
| (2) T control | 357.7 | 1763.9 (490.0) | 38.1 (10.6) | 96.6 | 79.8 |
| (3) Recirc. control | 357.7 | 1763.9 (490.0) | 7.7 (2.2) | 96.6 | 78.2 |
| (4) Standard | 125.7 | 1615.5 (448.7) | 16 (4.4) | 96.6 | 58.5 |
| (5) Standard eco | 106.5 | 1573.7 (437.1) | 14 (3.9) | 96.6 | 48.3 |
| (6) Standard low | 125.7 | 1615.5 (448.7) | 71.7 (19.9) | 96.6 | 60.9 |
| (7) Standard freecool | 128.6 | 1615.5 (448.7) | 7.7 (2.2) | 96.6 | 58.5 |
| (8) Standard+RH | 125.7 | 1662.3 (461.8) | 31 (8.6) | 96.6 | 97.8 |





References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2023. Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 8 April 2025).
- IEA. Electricity Market Raport. 2022. Available online: https://www.iea.org/reports/electricity-market-report-july-2022 (accessed on 29 April 2025).
- Forster, P.M.; Smith, C.J.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Hauser, M.; Ribes, A.; Rosen, D.; Gillett, N.; Palmer, M.D.; et al. Indicators of Global Climate Change 2022: Annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 2023, 15, 2295–2327. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, State of the Energy Union 2021—Contributing to the European Green Deal and the Union’s Recovery. Pursuant to Regulation (EU) 2018/1999 on the Governance of the Energy Union and Climate Action; Technical Report; Publications Office of the European Union: Brussels, Belgium, 2021. [Google Scholar]
- United Nations Environment Programme. Global Status Report for Buildings and Construction: Beyond Foundations: Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector; Technical Report; United Nations Environment Programme (UNEP) and Global Alliance for Buildings and Construction (GlobalABC): Nairobi, Kenya, 2024. [Google Scholar] [CrossRef]
- Jol, A.; Füssel, H.M.; Isoard, S.; Kurnik, B.; Hildén, M.; Marx, A.; Reker, J.; Vanneuville, W.; Kristensen, P.; Erhard, M.; et al. Climate Change, Impacts and Vulnerability in Europe 2016 an Indicator-Based Report; Technical Report; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Doherty, R.M.; Heal, M.R.; O’Connor, F.M. Climate change impacts on human health over Europe through its effect on air quality. Environ. Health 2017, 16, 33–44. [Google Scholar] [CrossRef]
- Thomson, H.; Simcock, N.; Bouzarovski, S.; Petrova, S. Energy poverty and indoor cooling: An overlooked issue in Europe. Energy Build. 2019, 196, 21–29. [Google Scholar] [CrossRef]
- Klepeis, N.; Nelson, W.; Ott, W.; Robinson, J.; Tsang, A.; Switzer, P.; Behar, J.; Hern, S.; Engelmann, W. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- WAZA. Committing to Conservation: The World Zoo and Aquarium Conservation Strategy. 2015. Available online: https://www.waza.org/wp-content/uploads/2019/03/WAZA-Conservation-Strategy-2015_Portrait.pdf (accessed on 29 April 2025).
- Cao, S.J.; Ren, C. Ventilation control strategy using low-dimensional linear ventilation models and artificial neural network. Build. Environ. 2018, 144, 316–333. [Google Scholar] [CrossRef]
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Kowalski, P.; Kwiecień, D. Evaluation of simple evaporative cooling systems in an industrial building in Poland. J. Build. Eng. 2020, 32, 101555. [Google Scholar] [CrossRef]
- De Angelis, A.; Saro, O.; Truant, M. Evaporative cooling systems to improve internal comfort in industrial buildings. Energy Procedia 2017, 126, 313–320. [Google Scholar] [CrossRef]
- Elhadary, M.I.; Alzahrani, A.M.Y.; Aly, R.M.H.; Elboshy, B. A Comparative Study for Forced Ventilation Systems in Industrial Buildings to Improve the Workers’ Thermal Comfort. Sustainability 2021, 13, 10267. [Google Scholar] [CrossRef]
- Sayegh, M.A.; Danielewicz, J.; Nannou, T.; Miniewicz, M.; Jadwiszczak, P.; Piekarska, K.; Jouhara, H. Trends of European research and development in district heating technologies. Renew. Sustain. Energy Rev. 2017, 68, 1183–1192. [Google Scholar] [CrossRef]
- World Commission on Environment and Development. Our Common Future; Technical Report; Oxford University: New York, NY, USA, 1987.
- Petrie, M.D.; Bradford, J.B.; Lauenroth, W.K.; Schlaepfer, D.R.; Andrews, C.M.; Bell, D.M. Non-analog increases to air, surface, and belowground temperature extreme events due to climate change. Clim. Change 2020, 163, 2233–2256. [Google Scholar] [CrossRef]
- González-Torres, M.; Pérez-Lombard, L.; Coronel, J.F.; Maestre, I.R.; Yan, D. A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Rep. 2022, 8, 626–637. [Google Scholar] [CrossRef]
- Zoo, N. Building a Sustainable NEW Zoo. 2013. Available online: https://newzoo.org/wp-content/uploads/2013/08/building-a-sustainable-new-zoo.pdf (accessed on 29 April 2025).
- Siemann, M. Performance and Applications of Residential Building Energy Grey-Box Models. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2013. [Google Scholar]
- Sticklen, M. The Creation of a Sustainability Internship Guidebook for the Cincinnati Zoo and Botanical Garden. Ph.D. Thesis, Miami University, Oxford, OH, USA, 2015. [Google Scholar]
- Phuong, N.L.; Ito, K. Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD. Build. Environ. 2015, 94, 504–515. [Google Scholar] [CrossRef]
- Hesaraki, A.; Holmberg, S. Demand-controlled ventilation in new residential buildings: Consequences on indoor air quality and energy savings. Indoor Built Environ. 2015, 24, 162–173. [Google Scholar] [CrossRef]
- Canbay, C.S.; Hepbasli, A.; Gokcen, G. Evaluating performance indices of a shopping centre and implementing HVAC control principles to minimize energy usage. Energy Build. 2004, 36, 587–598. [Google Scholar] [CrossRef]
- Fang, X.; Gong, G.; Li, G.; Chun, L.; Peng, P.; Li, W.; Shi, X.; Chen, X. Deep reinforcement learning optimal control strategy for temperature setpoint real-time reset in multi-zone building HVAC system. Appl. Therm. Eng. 2022, 212, 118552. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, G.; Crowe, E.; Granderson, J. Development of a Unified Taxonomy for HVAC System Faults. Energies 2021, 14, 5581. [Google Scholar] [CrossRef]
- De Masi, R.F.; Gigante, A.; Festa, V.; Ruggiero, S.; Vanoli, G.P. Effect of HVAC’s Management on Indoor Thermo-Hygrometric Comfort and Energy Balance: In Situ Assessments on a Real nZEB. Energies 2021, 14, 7187. [Google Scholar] [CrossRef]
- Ortiz, M.A.; Kurvers, S.R.; Bluyssen, P.M. A review of comfort, health, and energy use: Understanding daily energy use and wellbeing for the development of a new approach to study comfort. Energy Build. 2017, 152, 323–335. [Google Scholar] [CrossRef]
- Moon, J.W.; Han, S.H. Thermostat strategies impact on energy consumption in residential buildings. Energy Build. 2011, 43, 338–346. [Google Scholar] [CrossRef]
- Turley, C.; Jacoby, M.; Pavlak, G.; Henze, G. Development and Evaluation of Occupancy-Aware HVAC Control for Residential Building Energy Efficiency and Occupant Comfort. Energies 2020, 13, 5396. [Google Scholar] [CrossRef]
- Mor, G.; Cipriano, J.; Gabaldon, E.; Grillone, B.; Tur, M.; Chemisana, D. Data-Driven Virtual Replication of Thermostatically Controlled Domestic Heating Systems. Energies 2021, 14, 5430. [Google Scholar] [CrossRef]
- Ürge Vorsatz, D.; Khosla, R.; Bernhardt, R.; Chan, Y.C.; Vérez, D.; Hu, S.; Cabeza, L.F. Advances Toward a Net-Zero Global Building Sector. Annu. Rev. Environ. Resour. 2020, 45, 227–269. [Google Scholar] [CrossRef]
- Vérez, D.; Cabeza, L.F. Which Building Services Are Considered to Have Impact on Climate Change? Energies 2021, 14, 3917. [Google Scholar] [CrossRef]
- Zhang, R.; Hong, T. Modeling of HVAC operational faults in building performance simulation. Appl. Energy 2017, 202, 178–188. [Google Scholar] [CrossRef]
- Michailidis, I.T.; Schild, T.; Sangi, R.; Michailidis, P.; Korkas, C.; Fütterer, J.; Müller, D.; Kosmatopoulos, E.B. Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study. Appl. Energy 2018, 211, 113–125. [Google Scholar] [CrossRef]
- Marta, M.; Belinda, L.M. Simplified model to determine the energy demand of existing buildings. Case study of social housing in Zaragoza, Spain. Energy Build. 2017, 149, 483–493. [Google Scholar] [CrossRef]
- Sugarman, S.C. HVAC Fundamentals, 3rd ed.; River Publishers: Roma, Italy, 2016. [Google Scholar]
- Lumbreras, M.; Garay-Martinez, R.; Arregi, B.; Martin-Escudero, K.; Diarce, G.; Raud, M.; Hagu, I. Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters. Energy 2022, 239, 122318. [Google Scholar] [CrossRef]
- Hao, Z.; Xie, J.; Zhang, X.; Liu, J. Simplified Model of Heat Load Prediction and Its Application in Estimation of Building Envelope Thermal Performance. Buildings 2023, 13, 1076. [Google Scholar] [CrossRef]
- Zeller, M. Zellers Handbuch Klimatisierung; Zeller Consulting Suisse: Ittigen, Switzerland, 1997. [Google Scholar]
- Pełech, A. Wentylacja i Klimatyzacja—Podstawy; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2008. [Google Scholar]
- Przydróżny, S.; Ferencowicz, J. Klimatyzacja; Wydawnictwo Politechniki Wrocławskiej: Wrocław, Poland, 1988. [Google Scholar]
- Narowski, P. Typical Meteorological Year for Poland Based on Meteorological and Climatic Data from the Year 2000 to 2022. 2022. Available online: http://fizyka-budowli.pl/projekt-tlm2000/projekt-tlm2000-download/ (accessed on 13 January 2025).
- i Klimat, P. Historyczne Dane Pomiarowe—Dane Meteorologiczne. Available online: https://meteomodel.pl/dane/historyczne-dane-pomiarowe/ (accessed on 13 January 2025).
- Zawada, B. Układy Sterowania w Systemach Wentylacji i Klimatyzacji; Wydanie, I., Ed.; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2006. [Google Scholar]
- Zhao, T.; Hua, P.; Dai, W.; Zhang, J.; Ma, L. An optimal control method for discrete variable outdoor air volume setpoint determination in variable air volume systems. Build. Environ. 2020, 167, 106444. [Google Scholar] [CrossRef]
- ASHRAE. 90.1 User’s Manual; ASHRAE: Atlanta, GA, USA, 2004; ISBN 1-931862-63-x. [Google Scholar]
- ASHRAE. High Performance Sequences of Operation for HVAC Systems; Guideline 36p; ASHRAE: Atlanta, GA, USA, 2015. [Google Scholar]
- ASHRAE. ASHRAE Handbook—HVAC Applications; ASHRAE: Atlanta, GA, USA, 2011. [Google Scholar]
- Resources, E.D. The Advanced Variable Air Volume (VAV) System Design Guide; Technical Report; Pacific Gas and Electric Company: Fair Oaks, CA, USA, 2009. [Google Scholar]
- Phalak, K.; Wang, G. Minimum Outdoor Air Control and Building Pressurization with Lack of Airflow and Pressure Sensors in Air-Handling Units. J. Archit. Eng. 2016, 22, 04015017. [Google Scholar] [CrossRef]
- Cohen, T. Providing constant ventilation in variable air volume systems. ASHRAE J. 1994, 36, 38–40. [Google Scholar]
- Felker, L. Minimum Outside Air Damper Control. ASHRAE J. 2002, 44, 30–36. [Google Scholar]
- Grondzik, W. Air-Conditioning System Design Manual, 2nd ed.; ASHRAE Press: Atlanta, GA, USA, 2007. [Google Scholar]
- Hoyt, T.; Lee, K.H.; Zhang, H. Energy savings from extended air temperature setpoints and reductions in room air mixing. UC Berkeley Cent. Built Environ. 2005. Available online: https://api.semanticscholar.org/CorpusID:107651529 (accessed on 13 January 2025).
- Hoyt, T.; Arens, E.; Zhang, H. Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 2015, 88, 89–96. [Google Scholar] [CrossRef]
- Cao, S.J.; Deng, H.Y. Investigation of temperature regulation effects on indoor thermal comfort, air quality, and energy savings toward green residential buildings. Sci. Technol. Built Environ. 2019, 25, 309–321. [Google Scholar] [CrossRef]
- Dharmasena, P.; Nassif, N. Development and Optimization of a Novel Damper Control Strategy Integrating DCV and Duct Static Pressure Setpoint Reset for Energy-Efficient VAV Systems. Buildings 2025, 15, 518. [Google Scholar] [CrossRef]
- Yu, K.T.; Su, C.L.; Kuo, J.L. Variable recycled air controls of HVAC systems for energy savings in high-tech industries. In Proceedings of the 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei, Taiwan, 14–17 March 2016; pp. 215–220. [Google Scholar] [CrossRef]
- Li, B.; Wild, P.; Rowe, A. Free cooling potential of air economizer in residential houses in Canada. Build. Environ. 2020, 167, 106460. [Google Scholar] [CrossRef]
- Ke, Y.; Mumma, S. Optimized supply-air temperature (SAT) in variable-air-volume (VAV) systems. Energy 1997, 22, 601–614. [Google Scholar] [CrossRef]
- Engdahl, F.; Johansson, D. Optimal supply air temperature with respect to energy use in a variable air volume system. Energy Build. 2004, 36, 205–218. [Google Scholar] [CrossRef]
- Ferdyn-Grygierek, J. Indoor environment quality in the museum building and its effect on heating and cooling demand. Energy Build. 2014, 85, 32–44. [Google Scholar] [CrossRef]
- Neuhaus, E.; Pernot, C.; Schellen, H. Displacement ventilation in the museum environment: A case study. In Proceedings of the Clima World Congress Sustainable Energy Use in Buildings, Lausanne, Switzerland, 9–12 October 2006. [Google Scholar]
- Rismanchi, B.; Zambrano, J.M.; Saxby, B.; Tuck, R.; Stenning, M. Control Strategies in Multi-Zone Air Conditioning Systems. Energies 2019, 12, 347. [Google Scholar] [CrossRef]
- Kalaiselvam, S.; Vidhya, S.V.; Iniyan, S.; Samuel, A.A. Comparative Energy Analysis of a Constant Air Volume (CAV) System and a Variable Air Volume (VAV) System for a Software Laboratory. Int. J. Vent. 2006, 5, 229–237. [Google Scholar] [CrossRef]
- Sørensen, B.R. Applications and Energy Consumption of Demand Controlled Ventilation Systems: Modelling, Simulation and Implementation of Modular Builtdynamical VAV Systems and Control Strategies. Ph.D. Thesis, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway, 2002. [Google Scholar]
- Anand, P.; Sekhar, C.; Cheong, D.K.W.; Santamouris, M.; Kondepudi, S. Occupancy-based zone-level VAV system control implications on thermal comfort, ventilation, indoor air quality and building energy efficiency. Energy Build. 2019, 204, 109473. [Google Scholar] [CrossRef]
- Lu, D.B.; Warsinger, D.M. Energy savings of retrofitting residential buildings with variable air volume systems across different climates. J. Build. Eng. 2020, 30, 101223. [Google Scholar] [CrossRef]
- Gao, J.; Xu, X.; Li, X.; Zhang, J.; Zhang, Y.; Wei, G. Model-based space temperature cascade control for constant air volume air-conditioning system. Build. Environ. 2018, 145, 308–318. [Google Scholar] [CrossRef]
- Morgan, S.; Krarti, M. Impact of electricity rate structures on energy cost savings of pre-cooling controls for office buildings. Build. Environ. 2007, 42, 2810–2818. [Google Scholar] [CrossRef]
- Chua, K.; Chou, S.; Yang, W.; Yan, J. Achieving better energy-efficient air conditioning—A review of technologies and strategies. Appl. Energy 2013, 104, 87–104. [Google Scholar] [CrossRef]

















| Sensor | Measuring Range | Accuracy | Resolution |
|---|---|---|---|
| Air temperature | −20 °C to +70 °C | ±0.5 °C ±0.03 %RH/K ±1 Digit | 0.1 °C |
| Relative humidity | 0 to 100 %RH | ±3 %RH (2 to 98 %RH) at +25 °C ± 0.03 %RH/K ±1 Digit | 0.1 %RH |
| Differential pressure | 0 hPa to +200 hPa | ±(0.3 Pa + 1 % of mv 1) ± 1 Digit (0 to 25 hPa) | 0.1 hPa |
| Air Heat Transfer | a | b | p-Value a | p-Value b | ||||
|---|---|---|---|---|---|---|---|---|
| Sensible at night | 3.263 ± 0.026 | −39.005 ± 0.423 | - | 0.862 | 0.00 | 0.00 | 125.5 | 92.2 |
| Sensible at day | 6.817 ± 0.060 | −100.043 ± 1.221 | - | 0.816 | 0.00 | 0.00 | 113.6 | 81.9 |
| Total at night | 1.293 ± 0.302 | 2.725 ± 0.064 | 17.3 | 0.851 | 0.00 | 0.00 | 4.28 | 42.6 |
| Total at day | 1.923 ± 0.24 | 4.587 ± 0.091 | 17.3 | 0.809 | 0.00 | 0.00 | 8.0 | 50.4 |
| Algorithm | Indoor Air | Supply Air | Recirculation | Airflow |
|---|---|---|---|---|
| (1) CCA | no control | 27 °C (day) | 66% | 100% (day) |
| 24 °C (night) | 70% (night) | |||
| (2) T control | 23–32 °C | min 25 °C for cooling | 66% | 100% (day) |
| max 30 °C for heating | 70% (night) | |||
| (3) Recirc. control | 23–32 °C | min 25 °C for cooling | 0–66% | 100% (day) |
| max 30 °C for heating | 70% (night) | |||
| (4) Standard | 23–32 °C | min 25 °C for cooling | 0–66% | 50–100% |
| max 30 °C for heating | ||||
| (5) Standard eco | 22–33 °C | min 25 °C for cooling | 0–66% | 50–100% |
| max 30 °C for heating | ||||
| (6) Standard low | 23–32 °C | min 25 °C for cooling | 66% | 50–100% |
| max 30 °C for heating | ||||
| (7) Standard freecool | 23–32 °C | min 25 °C for cooling | 0–66% | 50–100% |
| max 30 °C for heating | ||||
| (8) Standard+RH | 23–32 °C | min 25 °C for cooling | 0–66% | 50–100% |
| max 30 °C for heating |
| Algorithm | Fan | Heating | Cooling | T. Hold | RH. Hold |
|---|---|---|---|---|---|
| MWh | GJ (MWh) | GJ (MWh) | % | % | |
| (1) CCA | 357.7 | 1524.7 (423.5) | 72.3 (20.1) | 71.7 | 98.4 |
| (2) T control | 357.7 | 1521.7 (422.7) | 54.1 (15.0) | 97.9 | 79.3 |
| (3) Recirc. control | 357.7 | 1521.7 (422.7) | 14.6 (4.0) | 97.9 | 77.2 |
| (4) Standard | 109.3 | 1375.4 (382.1) | 25.7 (7.1) | 98.1 | 54.9 |
| (5) Standard eco | 92.7 | 1337.7 (371.6) | 22.6 (6.3) | 98.1 | 44.5 |
| (6) Standard low | 109.3 | 1375.4 (382.1) | 98.4 (27.3) | 98.1 | 57.8 |
| (7) Standard freecool | 113.3 | 1375.4 (382.1) | 14.6 (4.0) | 98.1 | 54.9 |
| (8) Standard+RH | 109.3 | 1430 (397.2) | 40.8 (11.3) | 98.1 | 98.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczęśniak, S.; Karpuk, M.; Walaszczyk, J. Assessment of Ventilation Control Methods for Energy Efficiency and Indoor Climate Stability: A Case Study of a Zoo Exhibition Room. Sustainability 2025, 17, 9912. https://doi.org/10.3390/su17219912
Szczęśniak S, Karpuk M, Walaszczyk J. Assessment of Ventilation Control Methods for Energy Efficiency and Indoor Climate Stability: A Case Study of a Zoo Exhibition Room. Sustainability. 2025; 17(21):9912. https://doi.org/10.3390/su17219912
Chicago/Turabian StyleSzczęśniak, Sylwia, Michał Karpuk, and Juliusz Walaszczyk. 2025. "Assessment of Ventilation Control Methods for Energy Efficiency and Indoor Climate Stability: A Case Study of a Zoo Exhibition Room" Sustainability 17, no. 21: 9912. https://doi.org/10.3390/su17219912
APA StyleSzczęśniak, S., Karpuk, M., & Walaszczyk, J. (2025). Assessment of Ventilation Control Methods for Energy Efficiency and Indoor Climate Stability: A Case Study of a Zoo Exhibition Room. Sustainability, 17(21), 9912. https://doi.org/10.3390/su17219912

