Simulation-Integrated Climate-Adaptive Pedestrian Design Explorations for Summer Thermal Comfort: The Case of Culturally Diversified Green Way Project in Seoul, South Korea
Abstract
1. Introduction
2. Literature Review
2.1. Climate-Adaptive Urban Regeneration
2.2. Adaptive Design Parameters for Pedestrian Thermal Comfort in Urban Microclimates
3. Methodology
3.1. Study Area
3.2. Research Flow
3.3. ENVI-Met Modeling for OTC Simulation
3.4. Thermal Comfort Evaluation
4. Results and Discussion
4.1. Precondition Simulation for Five Street Types
- First Street Type: Hyehwa-ro

- Second Street Type: Daehak-ro

- Third Street Type: Heunginjimun

- Fourth Street Type: Yulgok-ro (DDP)

- Fifth Street Type: Jangchungdan-ro

4.2. Design Application and Thermal Comfort Comparison Before and After Pedestrian Design
4.2.1. Hyehwa-Ro
4.2.2. Daehak-Ro
4.2.3. Yulgok-Ro—Heunginjimun
4.2.4. Yulgok-Ro—DDP
4.2.5. Jangchungdan—Ro
4.3. Temporal Thermal Comfort Comparison Before and After Pedestrian Design
4.4. Overall Comparison and the Influence of Landscape Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Example of Preliminary Simulation Result of PET (Based on a Wider Range of Legend Class)


References
- Pourya, T.; Alessio, R. Assessing the Benefits of Climate-Sensitive Design with Nature-Based Solutions for Climate Change Adaptation in Urban Regeneration: A Case Study in Cheltenham, UK. Sustainability 2023, 15, 15855. [Google Scholar] [CrossRef]
- Russo, A.; Cirella, G.T. Urban Sustainability: Integrating Ecology in City Design and Planning. In Sustainable Human–Nature Relations: Environmental Scholarship, Economic Evaluation, Urban Strategies; Cirella, G.T., Ed.; Springer: Singapore, 2020; pp. 187–204. [Google Scholar] [CrossRef]
- Marvuglia, A.; Koppelaar, R.; Rugani, B. The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities. Ecol. Modell. 2020, 438, 109351. [Google Scholar] [CrossRef]
- Iungman, T.; Cirach, M.; Marando, F.; Pereira Barboza, E.; Khomenko, S.; Masselot, P.; Quijal-Zamorano, M.; Mueller, N.; Gasparrini, A.; Urquiza, J.; et al. Cooling cities through urban green infrastructure: A health impact assessment of European cities. Lancet 2023, 401, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yeo, G. A Study on the Development of Indicators and Activate about Urban Regeneration Corresponding Climate Change: Focusing on the Seoul Metropolitan City. KRUMA 2015, 28, 77–99. [Google Scholar]
- Wang, G.; Lee, B.; Jung, Y.; Lee, J.; Yu, S.; Noh, G.; Min, G.; Ha, T. A Study on the Regulation Establishment Plan and Policy Issue for Climate Change Corresponding Urban Regeneration; KRIHS: Sejong, Republic of Korea, 2013. [Google Scholar]
- Han, S. Disaster prevention urban planning for Busan urban regeneration area. Busan Dev. Forum 2015, 156, 107–111. [Google Scholar]
- Rosa, D.L.; Privitera, R.; Barbarossa, L.; Greca, P.L. Assessing spatial benefits of urban regeneration programs in a highly vulnerable urban context: A case study in Catania, Italy. Landsc. Urban Plan. 2017, 157, 180–192. [Google Scholar] [CrossRef]
- Michela, T.; Silvia, R.; David, V.; Vincenza, T.; Francesco, B.; Marco, D.S. Urban Policies and Planning Approaches for a Safer and Climate Friendlier Mobility in Cities: Strategies, Initiatives and Some Analysis. Sustainability 2021, 13, 1778. [Google Scholar] [CrossRef]
- Renata, V.; Louise, M.; Roberto, B.; Eduardo, C.; Carlo, D. Environmental Regeneration Integrating Soft Mobility and Green Street Networks: A Case Study in the Metropolitan Periphery of Naples. Sustainability 2021, 13, 8195. [Google Scholar] [CrossRef]
- Marianna, N.; Letizia, C.; Teodoro, G.; Emanuele, M.; Gabriele, B. Microclimate Classification of Bologna (Italy) as a Support Tool for Urban Services and Regeneration. Int. J. Environ. Res. Public Health 2021, 18, 4898. [Google Scholar] [CrossRef]
- Endreny, T.A. Strategically Growing the Urban Forest Will Improve Our World. Nat. Commun. 2018, 9, 1160. [Google Scholar] [CrossRef]
- Parker, J.; Simpson, G.D. Public Green Infrastructure Contributes to City Livability: A Systematic Quantitative Review. Land 2018, 7, 161. [Google Scholar] [CrossRef]
- State of the Environment Australia Urban Livability. Available online: https://soe.dcceew.gov.au/urban/environment/livability (accessed on 16 June 2023).
- Alistair, W.; Andrea, H.; Daniel, B.; Brenton, G.; Sotiris, V.; Neha, L.; Katrina, L.; Carmel, W. Trees, Climate Change, and Health: An Urban Planning, Greening and Implementation Perspective. Int. J. Environ. Res. Public Health 2023, 20, 6798. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Sandberg, M.; Buccolieri, R.; DiSabatino, S. The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Build. Environ. 2012, 56, 346–360. [Google Scholar] [CrossRef]
- Hong, S. The effect of the green space in roadside and building height on the mitigation of concentration of particulate matters. Korean J. Environ. Ecol. 2020, 34, 466–482. [Google Scholar] [CrossRef]
- Kim, S.; Lee, D.; Bae, C. Analysis of the effect of street green structure on PM2.5 in the walk space: Using micro climate simulation. J. Korean Environ. Res. Tech. 2021, 24, 61–75. [Google Scholar] [CrossRef]
- Barlow, J.F.; Harman, I.N.; Belcher, S.E. Scalar fluxes from urban street canyons. Part I: Laboratory simulation. Bound.-Layer Meteorol. 2004, 113, 369–385. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, K.; Jung, J.; Son, S.; Kim, E. How Vulnerable Are Urban Regeneration Sites to Climate Change in Busan, South Korea. Sustainability 2020, 12, 4032. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Microclimate development in open urban spaces: The influence of form and materials. Energy Build. 2015, 108, 156–174. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Krüger, E.; Pearlmutter, D.; Rasia, F. Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment. Appl. Energy 2010, 87, 2068–2078. [Google Scholar] [CrossRef]
- Lau, K.K.-L.; Ren, C.; Ho, J.; Ng, E. Numerical modelling of mean radiant temperature in high-density sub-tropical urban environment. Energy Build. 2016, 114, 80–86. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. A J. R. Meteorol. Soc. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Oke, T.R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Tsiros, I.; Chronopoulou-Sereli, A.; Matzarakis, A. Analysis of thermal bioclimate in various urban configurations in Athens, Greece. Urban Ecosyst. 2013, 16, 217–233. [Google Scholar] [CrossRef]
- Ahmad, K.; Khare, M.; Chaudhry, K. Wind tunnel simulation studies on dispersion at urban street canyons and intersections—A review. J. Wind Eng. Ind. Aerodyn. 2005, 93, 697–717. [Google Scholar] [CrossRef]
- Yang, F.; Qian, F.; Lau, S.S. Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai. Build. Environ. 2013, 70, 122–137. [Google Scholar] [CrossRef]
- Wang, Y.; Akbari, H. Effect of sky view factor on outdoor temperature and comfort in Montreal. Environ. Eng. Sci. 2014, 31, 272–287. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Ali-Toudert, F.; Mayer, H. Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Sol. Energy 2007, 81, 742–754. [Google Scholar] [CrossRef]
- Ouldboukhitine, S.-E.; Belarbi, R.; Sailor, D.J. Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings. Appl. Energy 2014, 114, 273–282. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build. Environ. 2016, 96, 46–61. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Dahanayake, K.K.C.; Ng, E.; Chow, C.L. Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy Build. 2017, 145, 226–237. [Google Scholar] [CrossRef]
- Forouzandeh, A. Prediction of surface temperature of building surrounding envelopes using holistic microclimate ENVI-met model. Sustain. Cities Soc. 2021, 70, 102878. [Google Scholar] [CrossRef]
- Yang, J.; Hu, X.; Feng, H.; Marvin, S. Verifying an ENVI-met simulation of the thermal environment of Yanzhong Square Park in Shanghai. Urban For. Urban Green. 2021, 66, 127384. [Google Scholar] [CrossRef]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; Van Den Dobbelsteen, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 2015, 83, 65–78. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Vanloese, Denmark, 1970. [Google Scholar]
- Höppe, P. A universal index for the assessment of the thermal environment–the physiological equivalent temperature PET. In Proceedings of the 15th International Congress of Biometeorology and International Conference on Urban Climatology, Sydney, Australia, 8–12 November 1999. [Google Scholar]
- Lin, T.P.; Matzarakis, A.; Hwang, R.L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef]
- Jendritzky, G.; De Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef]
- Binarti, F.; Pranowo, P.; Leksono, S.B. Microclimate models to predict the contribution of facade materials to the canopy layer heat island in hot-humid areas. Geogr. Tech. 2020, 15, 42–52. [Google Scholar] [CrossRef]
- Sharmin, T.; Steemers, K.; Humphreys, M. Outdoor thermal comfort and summer PET range: A field study in tropical city Dhaka. Energy Build. 2019, 198, 149–159. [Google Scholar] [CrossRef]
- Saladié, Ò.; Boqué-Ciurana, A.; Sevil, J.; Olano Pozo, J.X. Summer Thermal Comfort in Urban Squares: The Case of Human Tower Exhibitions in Catalonia. Atmosphere 2025, 16, 666. [Google Scholar] [CrossRef]
- Qin, J.; Feng, Y.; Sheng, Y.; Huang, Y.; Zhang, F.; Zhang, K. Evaluation of pedestrian-perceived comfort on urban streets using multi-source data: A case study in Nanjing, China. ISPRS Int. J. Geo-Inf. 2025, 14, 63. [Google Scholar] [CrossRef]
- Zhang, T.; Fu, X.; Qi, F.; Shen, Y.; Xu, P.; Tao, Y.; Liu, T.; Song, Y. Optimizing pedestrian thermal comfort in urban street canyons for summer and winter: Tree planting or low-albedo pavements? Sustain. Cities Soc. 2025, 120, 106143. [Google Scholar] [CrossRef]
- Lai, B.; Fu, J.M.; Guo, C.K.; Zhang, D.Y.; Wu, Z.G. Street Geometry Factors Influencing Outdoor Pedestrian Thermal Comfort in a Historic District. Buildings 2025, 15, 613. [Google Scholar] [CrossRef]
- Wang, W.; Yang, T.; Li, Y.; Xu, Y.; Chang, M.; Wang, X. Identification of pedestrian-level ventilation corridors in downtown Beijing using large-eddy simulations. Build. Environ. 2020, 182, 107169. [Google Scholar] [CrossRef]
- Baş, H.; Andrianne, T.; Reiter, S. City configurations to optimise pedestrian level ventilation and wind comfort. Sustain. Cities Soc. 2024, 114, 105745. [Google Scholar] [CrossRef]
- Zielonko-Jung, K.; Poćwierz, M.; Idem, R. Wind Conditions at Pedestrian Level in Different Types of Residential Urban Development for a High Degree of Land Use Efficiency. Sustainability 2021, 13, 13612. [Google Scholar] [CrossRef]











| Location and date | Location | Seoul, Republic of Korea (37° N, 126° W) |
| Simulation Day (DD.MM.YYYY) | 23 July 2021~24 July 2021 | |
| Simulation start time (HH:MM:SS) | 00:00:00 (48 h) | |
| Meteorological condition | Wind speed at 10 m above ground (m/s) | 1.7 m/s |
| Wind direction (°, clockwise from 0°: N) | 140 | |
| Roughness length (m) | 0.01 | |
| Atmospheric temperature (°C) | 26.90 (min), 36.30 (max) | |
| Relative humidity (%) | 38.00 (min), 75.00 (max) | |
| Built forms | Street/road paving material | Asphalt, brick (road) granite pavement, concrete (pedestrian) loamy soil (park trail) |
| Building material | Concrete | |
| Landscape elements | Tree type, height, density | As described in Figure 3 |
| Green space/water space | Grass/Deep water | |
| Simulation settings | Output interval main files (min) | 60 |
| Boundary Condition | Simple Forcing | |
| Grid size (m) | 4 × 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, G.; Kim, E.J.; Ham, K. Simulation-Integrated Climate-Adaptive Pedestrian Design Explorations for Summer Thermal Comfort: The Case of Culturally Diversified Green Way Project in Seoul, South Korea. Sustainability 2025, 17, 9910. https://doi.org/10.3390/su17219910
Bae G, Kim EJ, Ham K. Simulation-Integrated Climate-Adaptive Pedestrian Design Explorations for Summer Thermal Comfort: The Case of Culturally Diversified Green Way Project in Seoul, South Korea. Sustainability. 2025; 17(21):9910. https://doi.org/10.3390/su17219910
Chicago/Turabian StyleBae, Gawon, Eujin Julia Kim, and Kwangmin Ham. 2025. "Simulation-Integrated Climate-Adaptive Pedestrian Design Explorations for Summer Thermal Comfort: The Case of Culturally Diversified Green Way Project in Seoul, South Korea" Sustainability 17, no. 21: 9910. https://doi.org/10.3390/su17219910
APA StyleBae, G., Kim, E. J., & Ham, K. (2025). Simulation-Integrated Climate-Adaptive Pedestrian Design Explorations for Summer Thermal Comfort: The Case of Culturally Diversified Green Way Project in Seoul, South Korea. Sustainability, 17(21), 9910. https://doi.org/10.3390/su17219910

