Eco-Innovations in Biopigment Production by Bacteria—Challenges and Future Prospects
Abstract
1. Introduction
2. Extremophillic Bacteria as Pigment Producers
3. Production of Pigments by Bacteria Using Renewable Resources
4. Genetic Engineering for Bacterial Pigment Production
4.1. Genetic Modifications of Bacteria to Increase Carotenoid Production
4.2. Genetic Modifications of Bacteria to Increase Non-Carotenoid Production
5. Co-Production of Bacterial Pigments with Other Important Bioactive Compounds
6. Statistical Optimisation for Bacterial Pigment Production
6.1. Response Surface Methodology—Central Composite Design
6.2. Response Surface Methodology—Box–Behnken Design
6.3. Plackett-Burman Design and Combined Response Surface Methodology Approaches
6.4. Factorial Design and Sequential Methodologies
7. Challenges and Future Directions
8. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alegbe, E.O.; Uthman, T.O. A review of history, properties, classification, applications and challenges of natural and synthetic dyes. Heliyon 2024, 10, e33646. [Google Scholar] [CrossRef]
- Bio-Based Pigments and Dyes Market 2024 Latest Report with Forecast to 2031. (n.d.). Available online: https://www.insightaceanalytic.com/report/bio-based-pigments-and-dyes-market/2342 (accessed on 9 September 2025).
- Celedón, R.S.; Díaz, L.B. Natural pigments of bacterial origin and their possible biomedical applications. Microorganisms 2021, 9, 739. [Google Scholar] [CrossRef] [PubMed]
- Grewal, J.; Woła̧cewicz, M.; Pyter, W.; Joshi, N.; Drewniak, L.; Pranaw, K. Colorful treasure from Agro-Industrial Wastes: A sustainable chassis for microbial pigment production. Front. Microbiol. 2022, 13, 832918. [Google Scholar] [CrossRef] [PubMed]
- Nigam, P.S.; Luke, J.S. Food additives: Production of microbial pigments and their antioxidant properties. Curr. Opin. Food Sci. 2016, 7, 93–100. [Google Scholar] [CrossRef]
- Barreto De Oliveira, J.V.; Casanova, L.M.; Neves, A.; Junior Reis-Mansur, M.C.P.P.; Vermelho, A.B. Microbial pigments: Major groups and industrial applications. Microorganisms 2023, 11, 2920. [Google Scholar] [CrossRef]
- Nawaz, A.; Chaudhary, R.; Shah, Z.; Dufossé, L.; Fouillaud, M.; Mukhtar, H.; Haq, I.U. An overview on industrial and medical applications of Bio-Pigments synthesized by marine bacteria. Microorganisms 2020, 9, 11. [Google Scholar] [CrossRef]
- Mapelli-Brahm, P.; Gómez-Villegas, P.; Gonda, M.L.; León-Vaz, A.; León, R.; Mildenberger, J.; Rebours, C.; Saravia, V.; Vero, S.; Vila, E.; et al. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar. Drugs 2023, 21, 340. [Google Scholar] [CrossRef]
- Rana, B.; Bhattacharyya, M.; Patni, B.; Arya, M.; Joshi, G.K. The realm of microbial pigments in the food color market. Front. Sustain. Food Syst. 2021, 5, 603892. [Google Scholar] [CrossRef]
- Kramar, A.; Kostic, M.M. Bacterial secondary metabolites as biopigments for textile dyeing. Textiles 2022, 2, 252–264. [Google Scholar] [CrossRef]
- Devassy, E.; Rebello, S.; Puthur, S.; AN, A.; Aneesh, E.M.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Pandey, A. Bacterial pigments in food production—Associated advantages and disadvantages. Ivanian J. Sci. Res. 2024, 1, 1–5. [Google Scholar]
- Sen, T.; Barrow, C.J.; Deshmukh, S.K. Microbial Pigments in the Food Industry—Challenges and the way forward. Front. Nutr. 2019, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, D.; Jiménez, M.E.P.; dos Santos, C.; Corrêa, A.P.F.; Brandelli, A. Microbial bioconversion of feathers into antioxidant peptides and pigments and their liposome encapsulation. Biotechnol. Lett. 2021, 43, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Lopes, F.C.; Ligabue-Braun, R. Agro-Industrial residues: Eco-Friendly and inexpensive substrates for microbial pigments production. Front. Sustain. Food Syst. 2021, 5, 589414. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Jiang, X.-R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018, 50, 94–100. [Google Scholar] [CrossRef]
- Schultz, J.; Rosado, A.S. Extreme environments: A source of biosurfactants for biotechnological applications. Extremophiles 2019, 24, 189–206. [Google Scholar] [CrossRef]
- Sajjad, W.; Din, G.; Rafiq, M.; Iqbal, A.; Khan, S.; Zada, S.; Ali, B.; Kang, S. Pigment production by cold-adapted bacteria and fungi: Colorful tale of cryosphere with wide range applications. Extremophiles 2020, 24, 447–473. [Google Scholar] [CrossRef]
- Ye, J.-W.; Lin, Y.-N.; Yi, X.-Q.; Yu, Z.-X.; Liu, X.; Chen, G.-Q. Synthetic biology of extremophiles: A new wave of biomanufacturing. Trends Biotechnol. 2022, 41, 342–357. [Google Scholar] [CrossRef]
- Lyu, X.; Lyu, Y.; Yu, H.; Chen, W.; Ye, L.; Yang, R. Biotechnological advances for improving natural pigment production: A state-of-the-art review. Bioresour. Bioprocess. 2022, 9, 8. [Google Scholar] [CrossRef]
- Somayaji, A.; Dhanjal, C.R.; Lingamsetty, R.; Vinayagam, R.; Selvaraj, R.; Varadavenkatesan, T.; Govarthanan, M. An insight into the mechanisms of homeostasis in extremophiles. Microbiol. Res. 2022, 263, 127115. [Google Scholar] [CrossRef]
- Tapia, C.; López, B.; Astuya, A.; Becerra, J.; Gugliandolo, C.; Parra, B.; Martínez, M. Antiproliferative activity of carotenoid pigments produced by extremophile bacteria. Nat. Prod. Res. 2019, 35, 4638–4642. [Google Scholar] [CrossRef]
- Loveland-Curtze, J.; Miteva, V.; Brenchley, J. Novel ultramicrobacterial isolates from a deep Greenland ice core represent a proposed new species, Chryseobacterium greenlandense sp. nov. Extremophiles 2009, 14, 61–69. [Google Scholar] [CrossRef]
- Fong, N.J.C.; Burgess, M.L.; Barrow, K.D.; Glenn, D.R. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl. Microbiol. Biotechnol. 2001, 56, 750–756. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Caicedo-Paz, A.V.; Farias, F.O.; Mesquita, L.M.d.S.; Giuffrida, D.; Dufossé, L. Microbial bacterioruberin: The new C50 carotenoid player in food industries. Food Microbiol. 2024, 124, 104623. [Google Scholar] [CrossRef]
- Marín-Sanhueza, C.; Echeverría-Vega, A.; Gómez, A.; Cabrera-Barjas, G.; Romero, R.; Banerjee, A. Stress Dependent Biofilm Formation and Bioactive Melanin Pigment Production by a Thermophilic Bacillus Species from Chilean Hot Spring. Polymers 2022, 14, 680. [Google Scholar] [CrossRef]
- Anders, H.; Dunfield, P.F.; Lagutin, K.; Houghton, K.M.; Power, J.F.; MacKenzie, A.D.; Vyssotski, M.; Ryan, J.L.J.; Hanssen, E.G.; Moreau, J.W.; et al. Thermoflavifilum aggregans gen. nov., sp. nov., a thermophilic and slightly halophilic filamentous bacterium from the phylum Bacteroidetes. Int. J. Syst. Evol. Microbiol. 2014, 64, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, A. Thermozeaxanthins, New Carotenoid-glycoside-esters from Thermophilic Eubacterium Thermus thermophilus. Tetrahedron Lett. 1995, 36, 4901–4904. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, X.; Yang, R.; Zhang, Y.; Xu, Y.; Liu, G.; Zhang, B.; Wang, J.; Wang, X.; Zhang, W.; et al. Genomic Insights into the Radiation-Resistant Capability of Sphingomonas qomolangmaensis S5-59T and Sphingomonas glaciei S8-45T, Two Novel Bacteria from the North Slope of Mount Everest. Microorganisms 2022, 10, 2037. [Google Scholar] [CrossRef]
- Lemee, L.; Peuchant, E.; Clerc, M.; Brunner, M.; Pfander, H. Deinoxanthin: A new carotenoid isolated from Deinococcus radiodurans. Tetrahedron 1997, 53, 919–926. [Google Scholar] [CrossRef]
- Bindiya, E.; Ramesh, M.D.; Arya, B.; Bhat, S.G. Identification of pigmented extremophilic bacteria from mangrove soil with antibiofilm activity on food pathogens. Microbe 2024, 4, 100136. [Google Scholar] [CrossRef]
- Mohammadi, M.A.; Ahangari, H.; Mousazadeh, S.; Hosseini, S.M.; Dufossé, L. Microbial pigments as an alternative to synthetic dyes and food additives: A brief review of recent studies. Bioprocess Biosyst. Eng. 2021, 45, 1–12. [Google Scholar] [CrossRef]
- Ramesh, C.; Prasastha, V.R.; Venkatachalam, M.; Dufossé, L. Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. Fermentation 2022, 8, 460. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Nguyen, D.N.; Wang, S.-L. Microbial reclamation of chitin and protein-containing marine by-products for the production of prodigiosin and the evaluation of its bioactivities. Polymers 2020, 12, 1328. [Google Scholar] [CrossRef]
- Alzahrani, N.H.; El-Bondkly, A.A.M.; El-Gendy, M.M.A.A.; El-Bondkly, A.M. Enhancement of undecylprodigiosin production from marine endophytic recombinant strain Streptomyces sp. ALAA-R20 through low-cost induction strategy. J. Appl. Genet. 2021, 62, 165–182. [Google Scholar] [CrossRef]
- El-Fouly, M.; Sharaf, A.; Shahin, A.; El-Bialy, H.A.; Omara, A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci. 2014, 8, 36–48. [Google Scholar] [CrossRef]
- Dos Santos, R.A.; Rodríguez, D.M.; da Silva, L.A.R.; de Almeida, S.M.; de Campos-Takaki, G.M.; de Lima, M.A.B. Enhanced production of prodigiosin by Serratia marcescens UCP 1549 using agrosubstrates in solid-state fermentation. Arch. Microbiol. 2021, 203, 4091–4100. [Google Scholar] [CrossRef]
- Saejung, C.; Lomthaisong, K.; Kotthale, P. Alternative microbial-based functional ingredient source for lycopene, beta-carotene, and polyunsaturated fatty acids. Heliyon 2023, 9, e13828. [Google Scholar] [CrossRef]
- Schalchli, H.; Hormazábal, E.; Astudillo, Á.; Briceño, G.; Rubilar, O.; Diez, M.C. Bioconversion of potato solid waste into antifungals and biopigments using Streptomyces spp. PLoS ONE 2021, 16, e0252113. [Google Scholar]
- Tran, L.T.; Techato, K.; Nguyen, V.B.; Wang, S.-L.; Nguyen, A.D.; Phan, T.Q.; Doan, M.D.; Phoungthong, K. Utilization of Cassava Wastewater for Low-Cost Production of Prodigiosin via Serratia marcescens TNU01 Fermentation and Its Novel Potent α-Glucosidase Inhibitory Effect. Molecules 2021, 26, 6270. [Google Scholar] [CrossRef] [PubMed]
- Korumilli, T.; Susmita, M. Carotenoid production by Bacillus clausii using rice powder as the sole substrate: Pigment analyses and optimization of key production parameters. J. Biochem. Technol. 2014, 5, 2014. [Google Scholar] [CrossRef]
- Arivizhivendhan, K.V.; Mahesh, M.; Boopathy, R.; Swarnalatha, S.; Refgina Mary, R.; Sekaran, G. Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. J. Food Sci. Technol. 2018, 55, 2661–2670. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; Wang, S.-L.; Nguyen, D.-N.; Nguyen, A.-D.; Nguyen, T.-H.; Doan, M.-D.; Ngo, V.-A.; Doan, C.-T.; Kuo, Y.-H.; Nguyen, V.-B. Bioprocessing of marine chitinous wastes for the production of bioactive prodigiosin. Molecules 2021, 26, 3138. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, N.; Suresh, P.V.; Sakhare, P.Z.; Sachindra, N.M. Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: Optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzym. Microb. Technol. 2007, 40, 1427–1434. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Wang, S.-L.; Nguyen, A.D.; Phan, T.Q.; Techato, K.; Pradit, S. Bioproduction of Prodigiosin from Fishery Processing Waste Shrimp Heads and Evaluation of Its Potential Bioactivities. Fishes 2021, 6, 30. [Google Scholar] [CrossRef]
- Cassarini, M.; Besaury, L.; Rémond, C. Valorisation of wheat bran to produce natural pigments using selected microorganisms. J. Biotechnol. 2021, 339, 81–92. [Google Scholar] [CrossRef]
- Vasanthabharathi, V.; Lakshminarayanan, R.; Jayalakshmi, S. Melanin production from marine Streptomyces. Afr. J. Biotechnol. 2011, 10, 11224–11234. [Google Scholar] [CrossRef]
- Ahmad, W.A.; Yusof, N.Z.; Nordin, N.; Zakaria, Z.A.; Rezali, M.F. Production and Characterization of Violacein by Locally Isolated Chromobacterium violaceum Grown in Agricultural Wastes. Appl. Biochem. Biotechnol. 2012, 167, 1220–1234. [Google Scholar] [CrossRef]
- Joshi, V.K.; Attri, D.; Rana, N.S. Optimization of apple pomace based medium and fermentation conditions for pigment production by Sarcina sp. Indian J. Nat. Prod. Resour. 2011, 2, 421–427. [Google Scholar]
- Hussain, M.H.; Sajid, S.; Martuscelli, M.; Aldahmash, W.; Mohsin, M.Z.; Ashraf, K.; Guo, M.; Mohsin, A. Sustainable biosynthesis of lycopene by using evolutionary adaptive recombinant Escherichia coli from orange peel waste. Heliyon 2024, 10, e34366. [Google Scholar] [CrossRef] [PubMed]
- Elsanhoty, R.M.; Al-Turki, I.; Ramadan, M.F. Screening of medium components by Plackett–Burman design for carotenoid production using date (Phoenix dactylifera) wastes. Ind. Crop. Prod. 2012, 36, 313–320. [Google Scholar] [CrossRef]
- Aruldass, C.A.; Aziz, A.; Venil, C.K.; Khasim, A.R.; Ahmad, W.A. Utilization of agro-industrial waste for the production of yellowish-orange pigment from Chryseobacterium artocarpi CECT 8497. Int. Biodeterior. Biodegrad. 2016, 113, 342–349. [Google Scholar] [CrossRef]
- Aruldass, C.A.; Venil, C.K.; Zakaria, Z.A.; Ahmad, W.A. Brown sugar as a low-cost medium for the production of prodigiosin by locally isolated Serratia marcescens UTM1. Int. Biodeterior. Biodegrad. 2014, 95, 19–24. [Google Scholar] [CrossRef]
- Noby, N.; Khattab, S.N.; Soliman, N.A. Sustainable production of bacterioruberin carotenoid and its derivatives from Arthrobacter agilis NP20 on whey-based medium: Optimization and product characterization. Bioresour. Bioprocess. 2023, 10, 46. [Google Scholar] [CrossRef]
- Elkenawy, N.M.; Yassin, A.S.; Elhifnawy, H.N.; Amin, M.A. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnol. Rep. 2017, 14, 47–53. [Google Scholar] [CrossRef]
- Araújo, R.G.; Zavala, N.R.; Castillo-Zacarías, C.; Barocio, M.E.; Hidalgo-Vázquez, E.; Parra-Arroyo, L.; Rodríguez-Hernández, J.A.; Martínez-Prado, M.A.; Sosa-Hernández, J.E.; Martínez-Ruiz, M.; et al. Recent advances in prodigiosin as a bioactive compound in nanocomposite applications. Molecules 2022, 27, 4982. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, A.A.; Kamer, A.M.A.; Al-Monofy, K.B.; Al-Madboly, L.A. Pseudomonas aeruginosa’s greenish-blue pigment pyocyanin: Its production and biological activities. Microb. Cell Factories 2023, 22, 110. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.V.; Sambyal, K. An overview of β-carotene production: Current status and future prospects. Food Biosci. 2022, 47, 101717. [Google Scholar] [CrossRef]
- Kapała, A.; Szlendak, M.; Motacka, E. The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies. Nutrients 2022, 14, 5152. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.B.; Pathak, A.P.; Rathod, M.G.; Kamble, G.T.; Murkute, S.D.; Patil, N.P. Industrially significant biomolecules from recently discovered haloalkaliphiles, inhabitants of the coastal mangrove vegetation in Bordi, India. Microbe 2023, 1, 100005. [Google Scholar] [CrossRef]
- Lemuth, K.; Steuer, K.; Albermann, C. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb. Cell Factories 2011, 10, 29. [Google Scholar] [CrossRef]
- Henke, N.A.; Heider, S.A.E.; Hannibal, S.; Wendisch, V.F.; Peters-Wendisch, P. Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum. Front. Microbiol. 2017, 8, 633. [Google Scholar] [CrossRef]
- Lu, Q.; Bu, Y.-F.; Liu, J.-Z. Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid. Mar. Drugs 2017, 15, 296. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Binkley, R.M.; Kim, W.J.; Lee, M.H.; Lee, S.Y. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab. Eng. 2018, 49, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.; Enfissi, E.M.; Welsch, R.; Beyer, P.; Zurbriggen, M.D.; Fraser, P.D. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: A new tool for engineering ketocarotenoids. Metab. Eng. 2019, 52, 243–252. [Google Scholar] [CrossRef]
- Henke, N.A.; Heider, S.A.E.; Peters-Wendisch, P.; Wendisch, V.F. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Mar. Drugs 2016, 14, 124. [Google Scholar] [CrossRef]
- Choi, S.-K.; Matsuda, S.; Hoshino, T.; Peng, X.; Misawa, N. Characterization of bacterial β-carotene 3,3′-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli. Appl. Microbiol. Biotechnol. 2006, 72, 1238–1246. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Q.; Sun, T.; Zhu, X.; Xu, H.; Tang, J.; Zhang, X.; Ma, Y. Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab. Eng. 2013, 17, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Guo, L. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb. Cell Factories 2014, 13, 160. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Park, H.-M.; Kim, J.-E.; Lee, S.-H.; Choi, M.-S.; Kim, J.-Y.; Oh, D.-K.; Keasling, J.D.; Kim, S.-W. Increased β-Carotene Production in Recombinant Escherichia coli Harboring an Engineered Isoprenoid Precursor Pathway with Mevalonate Addition. Biotechnol. Prog. 2008, 23, 599–605. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Z.; Huang, C.; Zhang, Y.; Wang, Z.; Tang, Y.-J.; Chen, T.; Zhao, X. Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab. Eng. 2015, 31, 13–21. [Google Scholar] [CrossRef]
- Wu, T.; Ye, L.; Zhao, D.; Li, S.; Li, Q.; Zhang, B.; Bi, C.; Zhang, X. Membrane engineering—A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metab. Eng. 2017, 43, 85–91. [Google Scholar] [CrossRef]
- Yuan, L.Z.; Rouvière, P.E.; LaRossa, R.A.; Suh, W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab. Eng. 2006, 8, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Song, D.; Zhu, H. Homology-dependent recombination of large synthetic pathways into E. coli genome via λ-Red and CRISPR/Cas9 dependent selection methodology. Microb. Cell Factories 2020, 19, 108. [Google Scholar] [CrossRef]
- Wei, Y.; Mohsin, A.; Hong, Q.; Guo, M.; Fang, H. Enhanced production of biosynthesized lycopene via heterogenous MVA pathway based on chromosomal multiple position integration strategy plus plasmid systems in Escherichia coli. Bioresour. Technol. 2018, 250, 382–389. [Google Scholar] [CrossRef]
- Zhou, Y.; Nambou, K.; Wei, L.; Cao, J.; Imanaka, T.; Hua, Q. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Biotechnol. Lett. 2013, 35, 2137–2145. [Google Scholar] [CrossRef]
- Henke, N.A.; Wiebe, D.; Pérez-García, F.; Peters-Wendisch, P.; Wendisch, V.F. Coproduction of cell-bound and secreted value-added compounds: Simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum. Bioresour. Technol. 2018, 247, 744–752. [Google Scholar] [CrossRef]
- Taniguchi, H.; Henke, N.A.; Heider, S.A.; Wendisch, V.F. Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: Application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metab. Eng. Commun. 2017, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Han, G.H.; Seong, W.; Kim, H.; Kim, S.-W.; Lee, D.-H.; Lee, S.-G. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab. Eng. 2016, 38, 228–240. [Google Scholar] [CrossRef]
- Sun, T.; Miao, L.; Li, Q.; Dai, G.; Lu, F.; Liu, T.; Zhang, X.; Ma, Y. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol. Lett. 2014, 36, 1515–1522. [Google Scholar] [CrossRef]
- Heider, S.A.E.; Peters-Wendisch, P.; Netzer, R.; Stafnes, M.; Brautaset, T.; Wendisch, V.F. Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2013, 98, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Li, S.; Zhao, D.; Ye, L.; Li, Q.; Zhang, X.; Zhu, L.; Bi, C. Manipulating the position of DNA expression cassettes using location tags fused to dCas9 (Cas9-Lag) to improve metabolic pathway efficiency. Microb. Cell Factories 2020, 19, 229. [Google Scholar] [CrossRef]
- Qu, Y.; Su, A.; Li, Y.; Meng, Y.; Chen, Z. Manipulation of the regulatory genes ppsR and prrA in Rhodobacter sphaeroides enhances lycopene production. J. Agric. Food Chem. 2021, 69, 4134–4143. [Google Scholar] [CrossRef]
- Wang, Z.; Tschirhart, T.; Schultzhaus, Z.; Kelly, E.E.; Chen, A.; Oh, E.; Nag, O.; Glaser, E.R.; Kim, E.; Lloyd, P.F.; et al. Melanin Produced by the Fast-Growing Marine Bacterium Vibrio natriegens through Heterologous Biosynthesis: Characterization and Application. Appl. Environ. Microbiol. 2020, 86, e02749-19. [Google Scholar] [CrossRef]
- Cabrera-Valladares, N.; Martínez, A.; Piñero, S.; Lagunas-Muñoz, V.H.; Tinoco, R.; de Anda, R.; Vázquez-Duhalt, R.; Bolívar, F.; Gosset, G. Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli and characterization of the encoded tyrosinase. Enzym. Microb. Technol. 2006, 38, 772–779. [Google Scholar] [CrossRef]
- Park, H.; Yang, I.; Choi, M.; Jang, K.-S.; Jung, J.C.; Choi, K.-Y. Engineering of melanin biopolymer by co-expression of MelC tyrosinase with CYP102G4 monooxygenase: Structural composition understanding by 15 tesla FT-ICR MS analysis. Biochem. Eng. J. 2020, 157, 107530. [Google Scholar] [CrossRef]
- Park, S.; Yang, Y.-H.; Choi, K.-Y. One-pot production of thermostable PHB biodegradable polymer by co-producing bio-melanin pigment in engineered Escherichia coli. Biomass-Convers. Biorefinery 2022, 15, 22137–22145. [Google Scholar] [CrossRef]
- Kumar, V.; Darnal, S.; Kumar, S.; Kumar, S.; Singh, D. Bioprocess for co-production of polyhydroxybutyrate and violacein using Himalayan bacterium Iodobacter sp. PCH194. Bioresour. Technol. 2021, 319, 124235. [Google Scholar] [CrossRef]
- Jung, H.-R.; Choi, T.-R.; Han, Y.H.; Park, Y.-L.; Park, J.Y.; Song, H.-S.; Yang, S.-Y.; Bhatia, S.K.; Gurav, R.; Park, H.; et al. Production of blue-colored polyhydroxybutyrate (PHB) by one-pot production and coextraction of indigo and PHB from recombinant Escherichia coli. Dye. Pigment. 2020, 173, 107889. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, S.M.; Moayedi, V. High efficiency canthaxanthin production by a novel mutant isolated from Dietzia natronolimnaea HS-1 using central composite design analysis. Ind. Crop. Prod. 2012, 40, 345–354. [Google Scholar] [CrossRef]
- Fariq, A.; Yasmin, A.; Jamil, M. Production, characterization and antimicrobial activities of bio-pigments by Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 isolated from Khewra Salt Range, Pakistan. Extremophiles 2019, 23, 435–449. [Google Scholar] [CrossRef]
- Sudhakar, C.; Shobana, C.; Selvankumar, T.; Selvam, K. Prodigiosin production from Serratia marcescens strain CSK and their antioxidant, antibacterial, cytotoxic effect and in silico study of caspase-3 apoptotic protein. Biotechnol. Appl. Biochem. 2021, 69, 1984–1997. [Google Scholar]
- Venil, C.K.; Zakaria, Z.A.; Ahmad, W.A. Optimization of culture conditions for flexirubin production by Chryseobacterium artocarpi CECT 8497 using response surface methodology. Acta Biochim. Pol. 2015, 62, 185–190. [Google Scholar] [CrossRef]
- Miglani, K.; Singh, S.; Singh, D.P.; Krishania, M. Sustainable production of prodigiosin from rice straw derived xylose by using isolated Serratia marcescens (CMS 2): Statistical optimization, characterization, encapsulation & cost analysis. Sustain. Food Technol. 2023, 1, 837–849. [Google Scholar] [CrossRef]
- Guo, J.; Rao, Z.; Yang, T.; Man, Z.; Xu, M.; Zhang, X. High-level production of melanin by a novel isolate of Streptomyces kathirae. FEMS Microbiol. Lett. 2014, 357, 85–91. [Google Scholar] [CrossRef]
- Karuppiah, V.; Aarthi, C.; Sivakumar, K.; Kannan, L. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4. Asian Pac. J. Trop. Biomed. 2013, 3, 650–656. [Google Scholar] [CrossRef]
- El-Zawawy, N.A.; Kenawy, E.-R.; Ahmed, S.; El-Sapagh, S. Bioproduction and optimization of newly characterized melanin pigment from Streptomyces djakartensis NSS-3 with its anticancer, antimicrobial, and radioprotective properties. Microb. Cell Factories 2024, 23, 23. [Google Scholar] [CrossRef]
- Khodaiyan, F.; Razavi, S.H.; Mousavi, S.M. Optimization of canthaxanthin production by Dietzia natronolimnaea HS-1 from cheese whey using statistical experimental methods. Biochem. Eng. J. 2008, 40, 415–422. [Google Scholar] [CrossRef]
- Orlandi, V.T.; Martegani, E.; Giaroni, C.; Baj, A.; Bolognese, F. Bacterial pigments: A colorful palette reservoir for biotechnological applications. Biotechnol. Appl. Biochem. 2022, 69, 981–1001. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.; Felgueiras, H.P.; Leite, B.R.; Soares, G.M.B. Colourful Protection: Challenges and Perspectives of Antibacterial Pigments Extracted from Bacteria for Textile Applications. Antibiotics 2025, 14, 520. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.; Ramakrishnan, E.; Deka, S.; Parasar, D.P. Bacteria as a source of biopigments and their potential applications. J. Microbiol. Methods 2024, 219, 106907. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Coutinho, J.A.; Weingarten, M. Sustainable recovery of microbial-derived natural pigments using deep eutectic solvents: Advances, potential, and challenges. Sep. Purif. Technol. 2025, 361, 131413. [Google Scholar] [CrossRef]
- Agarwal, H.; Bajpai, S.; Mishra, A.; Kohli, I.; Varma, A.; Fouillaud, M.; Dufossé, L.; Joshi, N.C. Bacterial Pigments and Their Multifaceted Roles in Contemporary Biotechnology and Pharmacological Applications. Microorganisms 2023, 11, 614. [Google Scholar] [CrossRef] [PubMed]
- Dudeja, C.; Mishra, A.; Ali, A.; Singh, P.P.; Jaiswal, A.K. Microbial Genome Editing with CRISPR–Cas9: Recent Advances and Emerging Applications Across Sectors. Fermentation 2025, 11, 410. [Google Scholar] [CrossRef]
- Kristjansdottir, T.; Ron, E.Y.; Molins-Delgado, D.; Fridjonsson, O.H.; Turner, C.; Bjornsdottir, S.H.; Gudmundsson, S.; van Niel, E.W.; Karlsson, E.N.; Hreggvidsson, G.O. Engineering the carotenoid biosynthetic pathway in Rhodothermus marinus for lycopene production. Metab. Eng. Commun. 2020, 11, e00140. [Google Scholar] [CrossRef] [PubMed]
- Furubayashi, M.; Ikezumi, M.; Takaichi, S.; Maoka, T.; Hemmi, H.; Ogawa, T.; Saito, K.; Tobias, A.V.; Umeno, D. A highly selective biosynthetic pathway to non-natural C50 carotenoids assembled from moderately selective enzymes. Nat. Commun. 2015, 6, 7534. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Deng, M.-R.; Zhu, H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023, 13, 1747. [Google Scholar] [CrossRef]
- Chong, J.W.R.; Khoo, K.S.; Chew, K.W.; Ting, H.-Y.; Iwamoto, K.; Show, P.L. Digitalised prediction of blue pigment content from Spirulina platensis: Next-generation microalgae bio-molecule detection. Algal Res. 2024, 83, 103642. [Google Scholar] [CrossRef]
- Manochkumar, J.; Jonnalagadda, A.; Cherukuri, A.K.; Vannier, B.; Janjaroen, D.; Chandrasekaran, R.; Ramamoorthy, S. Machine learning-based prediction models unleash the enhanced production of fucoxanthin in Isochrysis galbana. Front. Plant Sci. 2024, 15, 1461610. [Google Scholar] [CrossRef]
- Sammaknejad, N.; Lee, J.; Austria, J.M.; Duenas, N.; Heiba, L.; Sridharan, G.; Davis, J.; Undey, C. A Scalable Deep Learning Approach for Real-Time Multivariate Monitoring of Biopharmaceutical Processes with No Prior Product-Specific History. Biotechnol. Bioeng. 2025, 122, 2333–2352. [Google Scholar] [CrossRef]
- Pouyet, E.; Miteva, T.; Rohani, N.; de Viguerie, L. Artificial Intelligence for Pigment Classification Task in the Short-Wave Infrared Range. Sensors 2021, 21, 6150. [Google Scholar] [CrossRef]
- Rajendran, P.; Somasundaram, P.; Dufossé, L. Microbial pigments: Eco-friendly extraction techniques and some industrial applications. J. Mol. Struct. 2023, 1290, 135958. [Google Scholar] [CrossRef]
- Kopp, G.; Lauritano, C. Greener Extraction Solutions for Microalgal Compounds. Mar. Drugs 2025, 23, 269. [Google Scholar] [CrossRef] [PubMed]


| Waste Substrate | Microorganism | Pigment | Concentration (mg/L or mg/g DCW *) | Reference |
|---|---|---|---|---|
| Groundnut and Oilseed Residues | ||||
| Groundnut cake | Serratia marcescens TUN02 | Prodigiosin | 6.9 | [33] |
| Streptomyces sp. ALAA-R20 | Undecylprodigiosin | 180.5 * | [34] | |
| Cotton seed meal | Pseudomonas aeruginosa R1 | Pyocyanin | 4.0 | [35] |
| Pseudomonas aeruginosa U3 | Pyocyanin | 2.2 | ||
| Soybean and Related Products | ||||
| Waste soybean oil, wheat bran | Serratia marcescens UCP1549 | Prodigiosin | 119.8 * | [36] |
| Soybean oil | Rhodopseudomonas faecalis PA2 | β-Carotene | 7.2 | [37] |
| Rhodopseudomonas faecalis PA2 | Lycopene | 5.6 | ||
| Starchy Residues | ||||
| Potato waste | Streptomyces sp. SO6 | Reddish-purple name not determined | 1.75 * | [38] |
| Cassava wastewater (CW) | Serratia marcescens TNU01 | Prodigiosin | 6.2 | [39] |
| Rice powder | Bacillus clausii | β-Carotene | 69.4 * | [40] |
| Rice bran | Serratia marcescens | Prodigiosin | 10.0 | [41] |
| Seafood Residues | ||||
| Shrimp waste | Serratia marcescens CC17 | Prodigiosin | 6.3 | [42] |
| Shrimp waste | Pediococcus acidilactici CFR2182 | Carotenoids | 42.0 * | [43] |
| Squid pen powder (SPP) | Serratia marcescens TNU01 | Prodigiosin | 3.5 | [33] |
| Demineralized shrimp shell powders | Serratia marcescens | Prodigiosin | 6.2 | [44] |
| Wheat Bran and Grain Residues | ||||
| Wheat bran | Chitinophaga pinensis | Flexirubin | 0.2 | [45] |
| Chromobacterium vaccinii | Violacein | 1.5 | ||
| Gordonia alkanivorans | Carotenoids | 0.07 | ||
| Sugarcane waste | Streptomyces sp. | Melanin | 21,100 | [46] |
| Sugarcane bagasse (with L-tryptophan) | Chromobacterium violaceum | Violacein | 820.0 | [47] |
| Fruit industry | ||||
| Apple pomace | Sarcina sp. | Carotenoids | 0.129 * | [48] |
| Orange peel waste | Escherichia coli DH416 | Lycopene | 825.3 | [49] |
| Palm date waste | Lactobacillus plantarum | Carotenoids | 0.0549 * | [50] |
| Liquid pineapple waste | Chryseobacterium artocarpi CECT 8497 | Flexirubin | 540.0 | [51] |
| Other | ||||
| Brown sugar | Serratia marcescens UTM1 | Prodigiosin | ~8.0 | [52] |
| Whey-based medium | Arthrobacter agilis NP20 | Bacterioruberin and derivatives | 5.1 | [53] |
| Peptides from chicken feathers | Chryseobacterium sp. kr6 | Flexirubin-type | 311.0 * | [13] |
| Bacterial Strain | Strategy | Gene/Pathway | Pigment | Yield | Reference |
|---|---|---|---|---|---|
| Escherichia coli BW-ASTA | Plasmid-free strain with chromosomal integration for astaxanthin production | crtEBIY, crtW148, crtZ | Astaxanthin | 1.4 mg/g DCW | [60] |
| Escherichia coli | Genes encoding enzymes for astaxanthin biosynthesis were integrated into the chromosome of a zeaxanthin-producing E. coli | crtW, crtZ | Astaxanthin | 7.4 mg/g DCW | [62] |
| Escherichia coli | Introduction of genes from Pantoea ananatis (crtE, crtY, crtI, crtB, and crtZ) and a truncated β-carotene ketolase gene (trCrBKT) from Chlamydomonas reinhardtii to construct the astaxanthin biosynthetic pathway in E. coli | crtE, crtY, crtI, crtB, crtZ, trCrBKT | Astaxanthin | 0.432 g/L | [63] |
| Escherichia coli | Creation of a fusion enzyme combining β-carotene hydroxylase (CrtZ) and β-carotene ketolase (CrtW) with flexible linkers | crtZ, crtW | Astaxanthin | 1.4-fold increase | [64] |
| Corynebacterium glutamicum | Optimisation of precursor supply and balanced heterologous expression of β-carotene ketolase and hydroxylase using combinatorial gene assembly (fine-tuning translation initiation rates for the selected enzymes) | crtY, crtW, crtZ | Astaxanthin | 0.4 mg/L/h | [65] |
| Escherichia coli | Combination of bacterial β-carotene 3,3′-hydroxylases (CrtZ) and cytochrome P450 enzymes | crtZ, CYP175A1 | Astaxanthin, Adonirubin | Not specified | [66] |
| Escherichia coli | Construction and optimisation the β-carotene biosynthetic pathway coupled with engineering central metabolic modules to enhance ATP and NADPH supply by co-expressing an optimised MEP pathway, a hybrid MVA pathway | ATP synthesis module, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, MEP pathway | β-Carotene | 2.1 g/L | [67] |
| Escherichia coli BL21(DE3) | Integration and co-expression of the native MEP pathway with a heterologous hybrid MVA pathway along with the geranyl diphosphate synthase gene (GPPS2), combined with gene deletions | dxs, fni, GPPS2, mvaE, mvaS, crtE, crtB, crtI, crtY | β-Carotene | 3.2 g/L | [68] |
| Escherichia coli DH5α | Modification of lycopene synthetic pathway using carotenoid genes from Pantoea agglomerans and Pantoea ananatis | crtE, crtB, crtI | Lycopene | 0.060 g/L (with MVA pathway) | [69] |
| Escherichia coli | CRISPR-Cas9 mediated genome editing, introduction of multiple genomic modifications, including pathway integrations and metabolic gene optimizations | 15 genetic modifications, MEP pathway, β-carotene synthetic pathway | β-Carotene | 2.0 g/L | [70] |
| Escherichia coli | Overexpression of membrane-bending proteins and enhancement of membrane lipid synthesis pathways | Almgs, MtlA, Tsr, Plsb, Plsc and Dgka | β-Carotene | 44.2 mg/g DCW | [71] |
| Escherichia coli | Replacement of native promoters of chromosomal isoprenoid pathway genes with a strong bacteriophage T5 promoter using lambda-red recombinase-mediated recombination | mvaE, mvaS | Lycopene | 25 mg/g DCW | [72] |
| Escherichia coli W3110 | λ-Red assisted homology-dependent recombination system combined with CRISPR/Cas9-dependent selection | dxs, dxr, idi, crtE, crtB, crtI | Lycopene | 9.1 mg/g DCW | [73] |
| Escherichia coli | Integration of multiple copies of a heterogeneous MVA pathway at different chromosomal positions combined with plasmid-based expression systems | MVA pathway genes, crtE, crtB, crtI | Lycopene | 0.224 g/L | [74] |
| Escherichia coli | Knockout of glucose-6-phosphate dehydrogenase gene to redirect carbon flux from the pentose phosphate pathway to the MEP pathway, combined with overexpression and amplification of rate-limiting MEP pathway genes | zwf, idi, dxs | Lycopene | 7.55 mg/g DCW | [75] |
| Corynebacterium glutamicum | Heterologous expression and optimisation of gene pathways responsible for carotenoid biosynthesis, together with native or engineered pathways for amino acid production. | crtR deletion, integration of crtE, crtB, crtI, crtY, crtW and crtZ | Astaxanthin | 0.010 g/L Astaxanthin, 48 g/L L-lysine | [76] |
| Corynebacterium glutamicum | Overexpression of sigma factor gene sigA, deletion of sigB | sigA, deletion of sigB | Lycopene, β-Carotene, Decaprenoxanthin, Bisanhydrobacterioruberin | Lycopene: 0.82 mg/g DCW, β-Carotene: 11.9 mg/g DCW, BABR: 0.52 mg/g DCW | [77] |
| Escherichia coli | CRISPR interference (CRISPRi) system to fine-tune and balance the expression of all genes within the MVA pathway | atoB, mvaS, mvaA, idi, ispA | Lycopene | Significant increase (not quantified) | [78] |
| Escherichia coli CAR001 | Deletion of genes encoding zeaxanthin glucosyltransferase and lycopene β-cyclase while modulating expression of key central metabolic genes to enhance NADPH and ATP supply, and further fine-tuning expression of MEP pathway and carotenoid biosynthesis genes via ribosome binding site libraries | crtX, crtY, dxs, idi | Lycopene | 3.52 g/L | [79] |
| Corynebacterium glutamicum | Blocking conversion to decaprenoxanthin through crtEb deletion and demonstration of functional redundancy of phytoene synthase genes | crtX, crtE, crtB, crtI, crtYe, crtYf, crtEb | Decaprenoxanthin, Sarcinaxanthin, β-Carotene, Zeaxanthin | 3–4 mg/g DCW | [80] |
| Escherichia coli | Development of a molecular device named Cas9-Lag by fusing location tags to dCas9 to physically manipulate and localise DNA expression cassettes encoding carotenoid biosynthetic enzymes | crtZ, crtW | Zeaxanthin, Astaxanthin | Zeaxanthin: 29.0% increase, Astaxanthin: 26.7% increase | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Możejko-Ciesielska, J. Eco-Innovations in Biopigment Production by Bacteria—Challenges and Future Prospects. Sustainability 2025, 17, 9897. https://doi.org/10.3390/su17219897
Możejko-Ciesielska J. Eco-Innovations in Biopigment Production by Bacteria—Challenges and Future Prospects. Sustainability. 2025; 17(21):9897. https://doi.org/10.3390/su17219897
Chicago/Turabian StyleMożejko-Ciesielska, Justyna. 2025. "Eco-Innovations in Biopigment Production by Bacteria—Challenges and Future Prospects" Sustainability 17, no. 21: 9897. https://doi.org/10.3390/su17219897
APA StyleMożejko-Ciesielska, J. (2025). Eco-Innovations in Biopigment Production by Bacteria—Challenges and Future Prospects. Sustainability, 17(21), 9897. https://doi.org/10.3390/su17219897
