Natural Hazard Resilience in the Western Mediterranean: Insights from Urban Planning in Morocco
Abstract
1. Introduction
2. Research Methodology
3. Study Area
4. Hazard Background
5. Results
5.1. Countries on the Northern Shore of the Western Mediterranean
5.2. Countries on the Southern Shore of the Western Mediterranean
5.3. The Moroccan Experience in Strengthening Territorial Resilience Through the Urbanization Suitability Map Program
6. Discussion
6.1. Urban Sprawl and Associated Economic Vulnerabilities
6.2. Reactive Awareness of NHs Following Major Disasters
6.3. The Availability of Data and Information on NHs
6.4. The Community Framework: A Means of Federating Efforts and Converging Decisions
6.5. Integration of Natural Hazard Prevention into Urban Planning as an Environmental Requirement
6.6. The Effectiveness of Natural Hazard Mapping and Legislation
6.7. Deficiencies in Maghreb Initiatives for Mapping NHs in Urban Planning
6.8. The Moroccan Experience in Resilience Through Urban Planning
- Lack of legal opposability: Although the USMs are technically designed in the manner of PPRNs, they lack a legal basis. They are supposed to be the technical basis for urban plans. The paradox is that in the majority of municipalities where USMs have been carried out, urban plans are already in use. The overlay of the USM of the city of Chefchaouen, finalized in 2017, on the urban plan, approved in 2012, reveals anomalies in the efficiency of the urban plan by revealing the existence of an area of approximately 100 ha open to urbanization but not constructible according to the USM. This area represents 10% of the areas open to urbanization in the urban plan of the city. This inefficiency of the urban planning document due to the lack of prior studies on NHs opens the possibility of granting building permits in areas unsuitable for urbanization. We consider that the only way to remedy this situation is to revise the urban plan and incorporate the USM prescriptions into a new plan. This is in order to give the USM a legal basis and regulatory opposability, since Moroccan law does not give the USM the same status as the French PPRN, which is considered a public service obligation, nor does the Spanish legislation, which stipulates that risk maps must be an integral part of the urban planning process [153].In order to give the USM the same binding scope as the PPRRN in France, it is necessary to give the Urbanization Suitability Map a real legal basis. This presupposes its submission to a public inquiry, followed by a deliberation by the municipal council concerned, and then its approval by the competent authority. In addition, a reform of urban planning legislation is necessary in order to make it mandatory to include Urbanization Suitability Maps in urban planning documents.
- Incompatibility of scales: The scale of production of the USM does not correspond to that of the urban planning documents, which are produced in the territories of the provinces, of thousands of km2. In principle, a large scale is required for the final production mapping, but the scales used for analyses are not because of the lack of precise input data. [113,135,177] made the same observation for Spanish flood hazard maps, as they are not carried out at a scale adapted to serve as a basis for urban planning. In the framework of the proposal of a specific methodology for the integration of geohazards in urban planning and its application to three European cities, [17] suggest scales of 1/5000 and 1/1000 in geological suitability studies for the needs of consideration in urban planning.
- Lack of technical, financial, and institutional arrangements: The absence of a technical, financial, and institutional framework for large-scale prevention actions complicates the coordination and pooling of the efforts of the various stakeholders and compromises the effective implementation of the USM.
- Impact of land statutes: The fragmentation of land into small parcels makes it difficult to implement preventive measures, especially those subject to strict prescriptions, due to the multiplicity of stakeholders compared with large parcels, where the number of stakeholders is limited. Sometimes, the cost of preventive interventions far exceeds the land value itself.
- Dissipation of effort: Efforts are often dispersed over vast areas (on the scale of provincial territories), with no significant elements at risk, instead of focusing on urbanized or potentially urbanizable areas. Since the spatial input data is of small to medium scale, we suggest that susceptibility maps be made for the entire regional or provincial territory to identify the geographical areas exposed to each type of hazard, and the dedication of hazard maps to high-stakes sectors, since the analysis requires a technical effort.
- Lack of data: Lack of records and archives makes it difficult to analyze the recurrence and follow-up of dangerous phenomena over periods long enough to estimate their frequency. This problem is raised by [145] in some European countries where official statistics on landslides are lacking. Moreover, updates are needed to avoid falling in the case of the Italian IFFI program which serves as a basis for the PAIs and which has not been updated since the finalization of the database in 2015 [178].
- Lack of participatory approach: The lack of a participatory approach with the population of the USM area has a negative impact on the sustainability of natural risk prevention measures [122]. This participatory approach is adopted in the process of developing the French PPRN through the submission of the document to a public inquiry before its final approval.
- Diversity of approaches to risk assessment: The responsibility of the USM program is to unify the final products throughout the national territory, but differences may remain between the USMs of contiguous provinces. This is due to differences in the analysis and evaluation approaches adopted, since operators (design firms) have not followed the same methodology or have not had the same input data available.
- Ambiguity in the assessment of geological hazards: While the institutional responsibilities for the characterization of seismic and flood hazards are clear, respectively, by the ING and the Hydraulic Basin Agencies, there is no law or state service responsible for geomorphological hazards (landslides, rockfalls, sinkholes, subsidence, or coastal erosion
s). This shortcoming leaves opinions unclear on the evaluation of these hazards, just as it hinders the standardization of the products hoped for by the Ministry of Spatial Planning, Urban Planning, Housing, and Urban Policy.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bathrellos, G.D.; Skilodimou, H.D. Land Use Planning for Natural Hazards. Land 2019, 8, 128. [Google Scholar] [CrossRef]
- Alcántara-Ayala, I. Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 2002, 47, 107–124. [Google Scholar] [CrossRef]
- Gaillard, J.C.; Wisner, B.; Benouar, D.; Cannon, T.; Creton-Cazanave, L.; Dekens, J.; Fordham, M.; Gilbert, C.; Hewitt, K.; Kelman, I.; et al. Alternatives for Sustained Disaster Risk Reduction. Hum. Geogr. 2010, 3, 66–88. [Google Scholar] [CrossRef]
- Durán Valsero, J.J.; Ayala Carcedo, F.J.; Peinado Parra, T. Riesgos Geológicos; IGME: Madrid, Spain, 1988; 333p. [Google Scholar]
- Skilodimou, H.D.; Bathrellos, G.D. Natural and Technological Hazards in Urban Areas: Assessment, Planning and Solutions. Sustainability 2021, 13, 8301. [Google Scholar] [CrossRef]
- Prashar, S.; Rahman, A. Integration of Disaster Risk Reduction into Land-use Planning: Experience of Bangladesh. In Land Use Management in Disaster Risk Reduction, Practice and Cases from a Global Perspective; Banba, M., Shaw, R., Eds.; 2017; pp. 149–175. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Ghasempour, L. A review of the necessity of a multi-layer land-use planning. Landsc. Ecol. Eng. 2024, 20, 111–127. [Google Scholar] [CrossRef]
- Terblanche, T.; de Sousa, L.O.; van Niekerk, D. Disaster resilience framework indicators for a city’s disaster resilience planning strategy. Jamba J. Disaster Risk Stud. 2022, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Der Sarkissian, R.; Al Sayah, M.J.; Abdallah, C.; Zaninetti, J.-M.; Nedjai, R. Land Use Planning to Reduce Flood Risk: Opportunities, Challenges and Uncertainties in Developing Countries. Sensors 2022, 22, 6957. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T. The role of knowledge in the prevention of natural hazards and related risks. Ital. J. Plan. Pract. 2013, 3, 46–68. [Google Scholar]
- Brunetta, G.; Ceravolo, R.; Barbieri, C.A.; Borghini, A.; de Carlo, F.; Mela, A.; Beltramo, S.; Longhi, A.; De Lucia, G.; Ferraris, S.; et al. Territorial Resilience: Toward a Proactive Meaning for Spatial Planning. Sustainability 2019, 11, 2286. [Google Scholar] [CrossRef]
- Amin, I.A.M.; Hashim, H.S. Disaster risk reduction in Malaysian urban planning. Plan. Malays. J. 2014, 12, 35–58. [Google Scholar] [CrossRef]
- Wamsler, C. Mainstreaming Risk Reduction in Urban Planning and Housing: A Challenge for International Aid Organisations. Disasters 2006, 30, 151–177. [Google Scholar] [CrossRef]
- Löwe, R.; Urich, C.; Domingo, N.S.; Mark, O.; Deletic, A.; Arnbjerg-Nielsen, K. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations—A new generation of urban planning tools. J. Hydrol. 2017, 550, 355–367. [Google Scholar] [CrossRef]
- Garrido, J.; Delgado, J.; Grindlay, A.L.; Soto, I.J.; Rodríguez, M.I. Legislation as a tool to mitigate mass movements in Spain. In Engineering Geology for Society and Territory—Volume 7: Education, Professional Ethics and Public Recognition of Engineering Geology; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 221–224. [Google Scholar] [CrossRef]
- Datola, G. Implementing urban resilience in urban planning: A comprehensive framework for urban resilience evaluation. Sustain. Cities Soc. 2023, 98, 104821. [Google Scholar] [CrossRef]
- Poyiadji, E.; Kontogianni, V.; Nikolaou, N. Integration of Geohazards in Urban Planning and Management. Adv. Eng. Forum 2017, 21, 557–563. [Google Scholar] [CrossRef]
- Cirella, G.T.; Semenzin, E.; Critto, A.; Marcomini, A. Natural Hazard Risk Assessment and Management Methodologies Review: Europe. In Sustainable Cities and Military Installations. NATO Science for Peace and Security Series C: Environmental Security; Linkov, I., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 329–358. [Google Scholar] [CrossRef]
- European Environment Agency. The European Environment State and Outlook 2010—Adapting to Climate Change; TH-31-10-694-EN-C; Publications Office of the European Union: Luxembourg, 2010; ISBN 978-92-9213-114-2. [Google Scholar] [CrossRef]
- Villevieille, A. Les risques naturels en Méditerranée, situation et perspectives. Les Fascicules du Plan Bleu, Economica, 10. 1997. ISBN 2717835156; 175p. Available online: https://nantilus.univ-nantes.fr/vufind/Record/in00000082990/Details?sid=34332295 (accessed on 28 July 2025).
- OCDE. Étude de l’OCDE sur la Gestion des Risques au Maroc; OCDE: Paris, France, 2016; 239p. [Google Scholar] [CrossRef]
- Keller, E.A.; Blodgett, R.H. Natural Hazards: Earths Processes as Hazards, Disasters, and Catastrophes; Pearson Education: London, UK; Prentice Hall: New York, NY, USA, 2006; 422p. [Google Scholar]
- Leone, F. Système d’information géographique et indicateurs de risques naturels en Méditerranée: Le projet SIG RI-NAMED. In Proceedings of the Actes Colloque «Risques naturels en Méditerranée Occidentale», Carcassonne, France, 16–21 November 2009; pp. 425–442. [Google Scholar]
- Bahar, R.; Djerbal, L. Rainfall and human interventions induced landslides in the north of Algeria. In Landslides and Engineered Slopes. Experience, Theory and Practice; CRC Press: London, UK, 2016; Volume 2, pp. 349–354. [Google Scholar] [CrossRef]
- Bourenane, H.; Bouhadad, Y. Impact of Land use Changes on Landslides Occurrence in Urban Area: The Case of the Constantine City (NE Algeria). Geotech. Geol. Eng. 2021, 39, 1–21. [Google Scholar] [CrossRef]
- El Kharim, Y.; Bounab, A.; Ilias, O.; Hilali, F.; Ahniche, M. Landslides in the urban and suburban perimeter of Chefchaouen (Rif, Northern Morocco): Inventory and case study. Nat. Hazards 2021, 107, 355–373. [Google Scholar] [CrossRef]
- El-Amrani, H.; Tribak, A. Remedial urban planning: An amplifying factor of natural risks in urban environments. The case of the Grand Nador Agglomeration, Morocco. Rev. Estud. Andal. 2023, 50–70. [Google Scholar]
- World Bank-GFDRR. Renforcement de la Résilience du Maroc, Apports pour une Stratégie de Gestion Intégrée des Risques; World Bank Publications: Washington, DC, USA, 2014; 78p. [Google Scholar]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef]
- Petrucci, O.; Llasat, M.C. Impact of Disasters in Mediterranean Regions: An Overview in the Framework of the hymex Project. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 137–143. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Murray, S.; Wheeler, D. Climate Change and the Future Impacts of Storm-Surge Disasters in Developing Countries. SSRN Electroni. J. 2009. [Google Scholar] [CrossRef]
- Wolff, C.; Vafeidis, A.T.; Muis, S.; Lincke, D.; Satta, A.; Lionello, P.; Jimenez, J.A.; Conte, D.; Hinkel, J. A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards. Sci. Data 2018, 5, 180044. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, F.; De Falco, G.; Presti, V.L.; Moretti, L.; Scardino, G.; Anzidei, M.; Bonaldo, D.; Carniel, S.; Leoni, G.; Furlani, S.; et al. Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water 2020, 12, 2173. [Google Scholar] [CrossRef]
- Agharroud, K.; Puddu, M.; Ivčević, A.; Satta, A.; Kolker, A.S.; Snoussi, M. Climate risk assessment of the Tangier-Tetouan-Al Hoceima coastal Region (Morocco). Front. Mar. Sci. 2023, 10, 1176350. [Google Scholar] [CrossRef]
- Tadibaght, A.; Agharroud, K.; Bounab, A.; El M’rIni, A.; Siame, L.; El Kharim, Y.; Bellier, O.; El Ouaty, O. Quantitative risk assessment in El-Jadida (Northern Atlantic Coast of Morocco) for a tsunami scenario equivalent to that of the 1755 Lisbon earthquake. Environ. Earth Sci. 2022, 81, 153. [Google Scholar] [CrossRef]
- Viti, M.; Mantovani, E.; Cenni, N.; Vannucchi, A. Interaction of seismic sources in the Apennine belt. Phys. Chem. Earth Parts A/B/C 2013, 63, 25–35. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, 101029. [Google Scholar] [CrossRef]
- Flaounas, E.; Drobinski, P.; Vrac, M.; Bastin, S.; Lebeaupin-Brossier, C.; Stéfanon, M.; Borga, M.; Calvet, J.-C. Precipitation and temperature space–time variability and extremes in the Mediterranean region: Evaluation of dynamical and statistical downscaling methods. Clim. Dyn. 2013, 40, 2687–2705. [Google Scholar] [CrossRef]
- Salhi, A.; Benabdelouahab, S.; Martin-Vide, J. Statistical analysis of long-term precipitation in the Maghreb reveals significant changes in timing and intensity. Theor. Appl. Clim. 2022, 150, 1369–1384. [Google Scholar] [CrossRef]
- Cavicchia, L.; Scoccimarro, E.; Gualdi, S.; Marson, P.; Ahrens, B.; Berthou, S.; Conte, D.; Dell’aQuila, A.; Drobinski, P.; Djurdjevic, V.; et al. Mediterranean extreme precipitation: A multi-model assessment. Clim. Dyn. 2018, 51, 901–913. [Google Scholar] [CrossRef]
- Rinaldi, M.; Amponsah, W.; Benvenuti, M.; Borga, M.; Comiti, F.; Lucía, A.; Marchi, L.; Nardi, L.; Righini, M.; Surian, N. An integrated approach for investigating geomorphic response to extreme events: Methodological framework and application to the October 2011 flood in the Magra River catchment, Italy. Earth Surf. Process. Landf. 2016, 41, 835–846. [Google Scholar] [CrossRef]
- Llasat, M.C.; Llasat-Botija, M.; Prat, M.A.; Porcú, F.; Price, C.; Mugnai, A.; Lagouvardos, K.; Kotroni, V.; Katsanos, D.; Michaelides, S.; et al. High-impact floods and flash floods in Mediterranean countries: The FLASH preliminary database. Adv. Geosci. 2010, 23, 47–55. [Google Scholar] [CrossRef]
- Diakakis, M. Flood seasonality in Greece and its comparison to seasonal distribution of flooding in selected areas across southern Europe. J. Flood Risk Manag. 2017, 10, 30–41. [Google Scholar] [CrossRef]
- Tramblay, Y.; El Khalki, E.M.; Khedimallah, A.; Sadaoui, M.; Benaabidate, L.; Boulmaiz, T.; Boutaghane, H.; Dakhlaoui, H.; Hanich, L.; Ludwig, W.; et al. Regional flood frequency analysis in North Africa. J. Hydrol. 2024, 630, 130678. [Google Scholar] [CrossRef]
- Boccard, N. Natural disasters over France a 35 years assessment. SSRN 2018, 22, 59–71. [Google Scholar] [CrossRef]
- Corominas, J.; Mateos, R.M.; Remondo, J. Review of landslide occurrence in Spain and its relation to climate. In Slope Safety Preparedness for Impact of Climate Change; Taylor & Francis Group: London, UK, 2017; pp. 351–378. [Google Scholar] [CrossRef]
- Thiery, Y.; Terrier, M.; Colas, B.; Fressard, M.; Maquaire, O.; Grandjean, G.; Gourdier, S. Improvement of landslide hazard assessments for regulatory zoning in France: STATE–OF–THE-ART perspectives and considerations. Int. J. Disaster Risk Reduct. 2020, 47, 101562. [Google Scholar] [CrossRef]
- de Pedraza, J.; Carrasco, R.M.; Domínguez-Villar, D. Geomorphology of La Pedriza Granitic Massif, Guadarrama Range. In Landscapes and Landforms of Spain; Gutiérrez, F., Gutiérrez, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 71–80. [Google Scholar] [CrossRef]
- Ruiz-Villanueva, V.; Bodoque, J.; Díez-Herrero, A.; Calvo, C. Triggering threshold precipitation and soil hydrological characteristics of shallow landslides in granitic landscapes. Geomorphology 2011, 133, 178–189. [Google Scholar] [CrossRef]
- Obda, O.; El Kharim, Y.; Obda, I.; Ahniche, M.; El Kouffi, A. Coastal rocky slopes instability analysis and landslide frequency-area distribution alongside the road network in west Mediterranean context (northern of Morocco). Nat. Hazards 2024, 120, 3401–3428. [Google Scholar] [CrossRef]
- Sahrane, R.; Bounab, A.; Obda, I.; Obda, O.; El Hamdouni, R.; EL Kharim, Y. Assessing the Reliability of Landslides Susceptibility Models with Limited Data: Impact of Geomorphological Diversity and Technique Selection on Model Performance in Taounate Province, Northern Morocco. Earth Syst. Environ. 2024, 9, 421–445. [Google Scholar] [CrossRef]
- Obda, I.; El Kharim, Y.; Bounab, A.; Lahrach, A.; Ahniche, M.; Mansouri, H. Multi-criteria assessment approach of slow-moving urban landslide hazard: The case of Moulay Yacoub, Morocco. Can. J. Earth Sci. 2022, 59, 300–317. [Google Scholar] [CrossRef]
- Mastere, M.; El Fellah, B.; Maquaire, O. Landslides inventory map as a first step for hazard and risk assessment: Rif mountains, Morocco. Bull. L’inst. Sci. Sect. Sci. Terre 2020, 42, 49–62. [Google Scholar]
- Machane, D.; Bouhadad, Y.; Cheikhlounis, G.; Chatelain, J.-L.; Oubaiche, E.H.; Abbes, K.; Guillier, B.; Bensalem, R. Examples of geomorphologic and geological hazards in Algeria. Nat. Hazards 2008, 45, 295–308. [Google Scholar] [CrossRef]
- Djerbal, L.; Khoudi, I.; Alimrina, N.; Melbouci, B.; Bahar, R. Assessment and mapping of earthquake-induced landslides in Tigzirt City, Algeria. Nat. Hazards 2017, 87, 1859–1879. [Google Scholar] [CrossRef]
- Amar, B.; Ahmed, S.; Youcef, B.; Abdennasser, S.; Mustafa, A.; Hamid, B. The main events of the July–August 2020 Mila (NE Algeria) seismic sequence and the triggered landslides. Arab. J. Geosci. 2021, 14, 1894. [Google Scholar] [CrossRef]
- Jones, L.D.; Jefferson, I. Expansive soils. In ICE Manual of Geotechnical Engineering. Volume 1, Geotechnical Engineering Principles, Problematic Soils and Site Investigation; Burland, J., Ed.; ICE Publishing: London, UK, 2012; pp. 413–441. [Google Scholar]
- Ayala Carcedo, F.J.; Ferrer Gijon, M.; Oteo Mazo, C.; Salinas Rodriguez, J.L. Mapa Previsor de Riesgos por Expansividad de Arcillas en España a Escala 1:1.000.000; Serie: Geologia Ambiental; IGME-Cedex: Madrid, Spain, 1986; 64p. [Google Scholar]
- Ejjaaouani, H. Interactions of Foundations and Expansive Soils: Pathology, Calculations and Experimental Studies; Engineering Sciences [physics]; Ecole des Ponts ParisTech: Paris, France, 2008; 243p. [Google Scholar]
- Chamley, H. Clay Sedimentology; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- El Kharim, Y. Sédimentologie et palynologie du Néogène du bassin de Boudinar. Implications paléogéographiques et paléoclimatiques (Rif Nord-Oriental, Maroc). Trav. Doc. Lab. Géol. Lyon 1991, 117, 153p. [Google Scholar]
- Del Campo, J.M.; Guerra, J.C.; Fernández-Ordóñez, D. Analysis of the phenomenon of material expansiveness in tunnels built in anhydrite. Outcomes and experiences. Mater. Constr. 2012, 62, 583–595. [Google Scholar] [CrossRef]
- Yenes, M.; Nespereira, J.; Blanco, J.A.; Suárez, M.; Monterrubio, S.; Iglesias, C. Shallow foundations on expansive soils: A case study of the El Viso Geotechnical Unit, Salamanca, Spain. Bull. Eng. Geol. Environ. 2010, 71, 51–59. [Google Scholar] [CrossRef]
- Athmania, D.; Benaissa, A.; Hammadi, A.; Bouassida, M. Clay and Marl Formation Susceptibility in Mila Province, Algeria. Geotech. Geol. Eng. 2010, 28, 805–813. [Google Scholar] [CrossRef]
- Medjnoun, A.; Khiatine, M.; Bahar, R. Caractérisation minéralogique et géotechnique des argiles marneuses gonflantes de la région de Médéa, Algérie. Bull. Eng. Geol. Environ. 2014, 73, 1259–1272. [Google Scholar] [CrossRef]
- Gharsalli, J.; Mzali, H. Hazard susceptibility related to clay shrinkage–swelling phenomena in north-eastern Tunisia (Grombalia area). Model. Earth Syst. Environ. 2017, 3, 963–976. [Google Scholar] [CrossRef]
- BRGM. Risques et Aménagement du Territoire: Retrait-Gonflement des Argiles; Dossier Enjeux des Géosciences, BRGM Reports; BRGM: Orléans, France, 2020.
- Barthelemy, S.; Bonan, B.; Calvet, J.-C.; Grandjean, G.; Moncoulon, D.; Kapsambelis, D.; Bernardie, S. A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: Advantages of the interactive leaf area index. Nat. Hazards Earth Syst. Sci. 2024, 24, 999–1016. [Google Scholar] [CrossRef]
- Hřebíček, J.; Jensen, S.; Steenmans, C. The framework for environmental software systems of the European environment agency. In Environmental Software Systems; Denzer, R., Argent, R.M., Schimak, G., Hřebíček, J., Eds.; Infrastructures, Services and Applications, IFIP Advances in Information and Communication Technology; Springer International Publishing: Cham, The Netherlands, 2015; pp. 44–55. [Google Scholar] [CrossRef]
- Iadanza, C.; Trigila, A.; Vittori, E.; Serva, L. Landslides in coastal areas of Italy. Geol. Soc. 2009, 322, 121–141. [Google Scholar] [CrossRef]
- Mateos, R.M.; Azañón, J.M.; Roldán, F.J.; Notti, D.; Pérez-Peña, V.; Galve, J.P.; Pérez-García, J.L.; Colomo, C.M.; Gómez-López, J.M.; Montserrat, O.; et al. The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides 2017, 14, 743–754. [Google Scholar] [CrossRef]
- Soldati, M.; Devoto, S.; Prampolini, M.; Pasuto, A. The spectacular landslide–controlled landscape of the northwestern coast of Malta. In Landscapes and Landforms of the Maltese Islands; World Geomorphological Landscapes; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 167–178. [Google Scholar] [CrossRef]
- Bounab, A.; El Kharim, Y.; El Hamdouni, R.; Hlila, R. A multidisciplinary approach to study slope instability in the Alboran Sea shoreline: Study of the Tamegaret deep-seated slow-moving landslide in Northern Morocco. J. Afr. Earth Sci. 2021, 184, 104345. [Google Scholar] [CrossRef]
- Lenôtre, N.; Thierry, P.; Batkowski, D.; Vermeersch, F. Eurosion Project; The Coastal Erosion Layer WP 2.6. BRGM Report RC-52864-FR; BRGM: Orléans, France, 2004; 102p.
- Heger, M.P.; Vashold, L. Côtes en Voie de Disparition au Maghreb: L’érosion Côtière et ses Coûts. Maghreb-Série de Notes Techniques; World Bank Group reports (WB-NOC-ESA), n°4; World Bank: Washington, DC, USA, 2021; 26p. [Google Scholar]
- El Mrini, A.; Anthony, E.; Maanan, M.; Taaouati, M.; Nachite, D. Beach-dune degradation in a Mediterranean context of strong development pressures, and the missing integrated management perspective. Ocean Coast. Manag. 2012, 69, 299–306. [Google Scholar] [CrossRef]
- Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Chang. 2009, 19, 240–247. [Google Scholar] [CrossRef]
- Malet, J.P.; Maquaire, O. Risk assessment methods of landslides. Ramsoil, Risk Assessment Methodologies for Soil Threats. Sixth Framew. Programme Proj. Rep. 2008, 2, 1–29. [Google Scholar]
- Garrido, J.; Grindlay, A.L.; Martino, S.; Prestininzi, A.; Mugnozza, G.S. Integrating natural hazards in spanish and italian land-use planning. In Engineering Geology for Society and Territory—Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 773–776. [Google Scholar] [CrossRef]
- Scolobig, A.; De Marchi, B.; Borga, M. The missing link between flood risk awareness and preparedness: Findings from case studies in an Alpine Region. Nat. Hazards 2012, 63, 499–520. [Google Scholar] [CrossRef]
- Sutanta, H.; Rajabifard, A.; Bishop, I.D. Disaster risk reduction using acceptable risk measures for spatial planning. J. Environ. Plan. Manag. 2013, 56, 761–785. [Google Scholar] [CrossRef]
- de Teran, F. El Problema Urbano; Salvat: Barcelona, Spain, 1982; ISBN 8434578808/9788434578807. 64p. [Google Scholar]
- Prenger-Berninghoff, K.; Cortes, V.J.; Sprague, T.; Aye, Z.C.; Greiving, S.; Głowacki, W.; Sterlacchini, S. The connection between long-term and short-term risk management strategies for flood and landslide hazards: Examples from land-use planning and emergency management in four European case studies. Nat. Hazards Earth Syst. Sci. 2014, 14, 3261–3278. [Google Scholar] [CrossRef]
- Garrido, J.; Saunders, W.S.A. Disaster Risk Reduction and Land-use Planning: Opportunities to Improve Practice. In IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 5, pp. 161–165. [Google Scholar] [CrossRef]
- Burby, R.J.; Deyle, R.E.; Godschalk, D.R.; Olshansky, R.B. Creating Hazard Resilient Communities through Land-Use Planning. Nat. Hazards Rev. 2000, 1, 99–106. [Google Scholar] [CrossRef]
- Solway, L. Reducing the Effect of Natural Hazards on Urban Areas. In Natural Disasters and Sustainable Development. Environmental Sciencei; Casale, R., Margottini, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 303–338. [Google Scholar] [CrossRef]
- Zoma, V.; Nakanabo, N. L’habitat Informel en Afrique; GRIN Verlag: Munich, Germany, 2022; 64p. [Google Scholar]
- Losada, I.J.; Toimil, A.; Muñoz, A.; Garcia-Fletcher, A.P.; Diaz-Simal, P. A planning strategy for the adaptation of coastal areas to climate change: The Spanish case. Ocean Coast. Manag. 2019, 182, 104983. [Google Scholar] [CrossRef]
- Alfosea, F.J.T. Vingt ans d’application de la loi Littoral en Espagne. Un bilan mitigé. 2010, 115, 9–19. [Google Scholar] [CrossRef]
- Van Lang, A. la loi littorale et la protection des espaces naturels. Rev. Jurid. L’environ. 2012, 105–116. [Google Scholar]
- Scovazzi, T. La Gestion de la Zone Côtière D’après le Droit Italien; VertogO, la revue électronique en science de l’environnement; Hors-série 5; Open Edition: Marseille, France, 2009. [Google Scholar] [CrossRef]
- Falco, E. Protection of coastal areas in Italy: Where do national landscape and urban planning legislation fail? Land Use Policy 2017, 66, 80–89. [Google Scholar] [CrossRef]
- Kacemi, M. Protection du littoral en Algérie entre gestion et législation. Le cas du pôle industriel d’Arzew (Oran, Algérie). Rev. Droit Soc. 2009, 73, 687–701. [Google Scholar]
- Roselló, M.J.P.; Prados, F.C. Particularidades de la generación del riesgo en espacios periurbanos. BAETICA 2007, 29, 145–153. [Google Scholar]
- Dodman, D.; Hardoy, J.; Satterthwaite, D. Urban Development and Intensive and Extensive Risk. Global Assessment Report on Disaster Risk Reduction; ISDR. 2009. 67p. Available online: https://www.preventionweb.net/english/hyogo/gar/2011/en/home/gar09papers.html (accessed on 28 July 2025).
- Chacón, J.; Irigaray, C.; EL Hamdouni, R.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Calvo, F.; Jiménez-Perálvarez, J.; Chacon, E.; Fernández, P.; Garrido, J.; et al. Engineering and Environmental Geology of Granada and its Metropolitan Area (Spain). Environ. Eng. Geosci. 2012, 18, 217–260. [Google Scholar] [CrossRef]
- Di Martire, D.; De Rosa, M.; Pesce, V.; Santangelo, M.A.; Calcaterra, D. Landslide hazard and land management in high-density urban areas of Campania region, Italy. Nat. Hazards Earth Syst. Sci. 2012, 12, 905–926. [Google Scholar] [CrossRef]
- Jiménes, V.; Campesino, A.-J.; Alvarado, V.; Hidalgo, R.; Borsdorf, A. Flood risk and imprudence of planning in Extremadura, Spain. Land Use Policy 2020, 95, 104092. [Google Scholar] [CrossRef]
- Sajaloli, B. Habitat précaire et populations démunies face au risque d’inondation dans le Val d’Orléans Marges et entre-deux. In Marginalisations, Résistances et Innovations dans les Franges Périurbaines; Presses Universitaires de Rennes: Rennes Cedex, France, 2021; pp. 29–46. [Google Scholar] [CrossRef]
- Douvinet, J.; Defossez, S.; Anselle, A.; Denolle, A.-S. Les maires face aux plans de prévention du risque inondation (Ppri). L’Espace Géogr. 2011, 40, 31–46. [Google Scholar] [CrossRef]
- Cantarino, I.; Carrion, M.A.; Palencia-Jimenez, J.S.; Martínez-Ibáñez, V. Landslide risk management analysis on expansive residential areas—Case study of La Marina (Alicante, Spain). Nat. Hazards Earth Syst. Sci. 2021, 21, 1847–1866. [Google Scholar] [CrossRef]
- Jiménes, V. Urbanizaciones Ilegales en Extremadura, la Proliferación de Viviendas en el Suelo no Urbanizable Durante el Periodo Democrático. Ph.D. Thesis, Universidad de Extremadura, Extremadura, Spain, 2018; 712p. [Google Scholar]
- Chouguiat Belmallem, S. L’habitat informel dans la ville de Constantine: Étalement urbain et inégalités socio-spatiales. Sci. Technol. 2014, 39, 9–19. [Google Scholar]
- Boughedir, S. Case study: Disaster risk management and climate change adaptation in Greater Algiers: Overview on a study assessing urban vulnerabilities to disaster risk and proposing measures for adaptation. Curr. Opin. Environ. Sustain. 2015, 13, 103–108. [Google Scholar] [CrossRef]
- Chouari, W.; Suarez, R.; Raynal, G.C. La gestion du risque d’inondation en Tunisie: De la gouvernance de l’information géographique à la production et la diffusion des cartes. Rev. Géographie Développement Maroc 2016, 4, 1–27. [Google Scholar]
- Tribak, A.; El Amrani, H.; Abahrour, M.; Ziane, F.Z.; Azagouagh, K.; En-Nasry, E.; Benriah, N.; El Yagoubi, S.R. Occu-pation des sites à risques en zones périurbaines: Causes, modalités et conséquences: Cas des villes de Fès et Taza (Maroc). Geo. Eco. Trop. 2019, 43, 249–258. [Google Scholar]
- Foughali, E. Évaluation de la Culture des Risques de L’habitant en vue de leur Gestion en Milieu Urbain. Ph.D. Thesis, Université de Constantine 3, Cas de Constantine, Algérie, 2023. [Google Scholar]
- Brahmi, N. Evolution de l’anthropisation des sebkhas littorales de la côte orientale de la presqu’île du Cap Bon (Tunisie nord-orientale): Approche cartographique. Dyn. Environnementales 2023, 52, 1–36. [Google Scholar] [CrossRef]
- Mateos, R.M. Geohazards Into the Land-use Planning and Urban Development Policies. Spanish Experience and Eu-ropean Overview. Geonovas 2017, 30, 11–19. [Google Scholar]
- Garrido Manrique, J. La prevención de los riesgos naturales: Marco normativo y su aplicación en el planeamiento ur-banístico. In Riesgos Naturales y Derecho: Una Perspectiva Interdisciplinar; Arana García, E., Conde Antequera, J., Garrido Manrique, J., Navarro Ortega, A., Eds.; Dykinson: Madrid, Spain, 2018; pp. 115–164. [Google Scholar]
- Cantos, J.O.; Cañizares, A.O.; Almodóvar, E.S.; Talavera, J.M.; Camacho, S.B. Cartografías para la acreditación del riesgo de inundaciones: SNCZI y PATRICOVA en la Comunidad Valenciana (España). Geofocus-Revista Int. Cienc. Tecnol. Inf. Geogr. 2021, 27, 19–53. [Google Scholar] [CrossRef]
- OECD. Boosting Disaster Prevention through Innovative Risk Governance: Insights from Austria, France and Switzerland. In OECD Reviews of Risk Management Policies; OECD: Paris, France, 2017; 254p. [Google Scholar] [CrossRef]
- Scovazzi, T. Aperçu du droit italien en matière de catastrophes naturelles, avec référence particulière aux tremblements de terre. Droit Ville 1985, 20, 73–86. [Google Scholar] [CrossRef]
- Paleari, S. Natural disasters in Italy: Do we invest enough in risk prevention and mitigation? Int. J. Environ. Stud. 2017, 75, 673–687. [Google Scholar] [CrossRef]
- Hmidi, N. Entre Normes Internationales et Pratiques Locales: Diagnostic et Propositions Pour la Gestion du Risque Inondation dans le Grand Tunis. Géographie. Ph.D. Thesis, Université Paul Valéry—Montpellier III, Montpellier, France, 2023. NNT: 2023MON30054. [Google Scholar]
- Benouar, D. Natural Hazards Governance in Algeria. In Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Gherabi, N.; Lifa, A.; Ketfi, S. Natural disasters and major risks in Algeria: Management and prevention mechanisms. Ital. J. Eng. Geol. Environ 2024, 79–91. [Google Scholar] [CrossRef]
- UNESCO. Assistance pour la Réalisation d’une Etude de Microzonation Sismique dans la Région de Chlef, Phase II, Algérie—(Mission); Résultats et Recommandations du Projet. FMR/SC/GEO/85/234(UNDP), UNDP/ALG/83/004/Rapport Final; UNESCO: Paris, France, 1985; 23p. [Google Scholar]
- JICA-CGS. Étude de Microzonage Sismique de la Wilaya d’Alger; Rapport Final, Volume III; OYO International Corporation: Gurugram, India; Nippon Koei Co., Ltd.: Tokyo, Japan, 2006; 69p. [Google Scholar]
- Loudyi, D.; Hasnaoui, M.D.; Fekri, A. Flood Risk Management Practices in Morocco: Facts and Challenges. In Wadi Flash Floods; Springer: Berlin/Heidelberg, Germany, 2022; pp. 35–94. [Google Scholar] [CrossRef]
- Llasat, M.-C.; Barriendos, M. Availability and Potential of Historical Flood Series in the Iberian Peninsula (14th–20th Centuries). In The Use of Historical Data in Natural Hazard Assessments; Springer: Berlin/Heidelberg, Germany, 2001; pp. 131–140. [Google Scholar] [CrossRef]
- Greiving, S.; Fleischhauer, M.; Wanczura, S. Management of natural hazards in Europe: The role of spatial planning in selected EU member states. J. Environ. Plan. Manag. 2006, 49, 739–757. [Google Scholar] [CrossRef]
- Bellert, F.; Fila, K.; Thoms, R.; Hagenlocher, M.; Harb, M.; Cotti, D.; Baccouche, H.; Ayed, S.; Garschagen, M. Application of Remote Sensing and GIS for Risk Assessment in Monastir, Tunisia. In Environmental Remote Sensing and GIS in Tunisia; Khebour Allouche, F., Negm, A.M., Eds.; Springer Water: Berlin/Heidelberg, Germany, 2021; pp. 191–210. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Lastoria, B.; Bussettini, M.; Barbano, A.; Dissesto idrogeologico in Italia: Pericolosità e indicatori di rischio— Edizione 2021. ISPRA, Rapporti 356/2021. 2021. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/dissesto-idrogeologico-in-italia-pericolosita-e-indicatori-di-rischio-edizione-2021 (accessed on 20 May 2024).
- Eeckhaut, M.V.D.; Hervás, J.; Montanarella, L. Landslide Databases in Europe: Analysis and Recommendations for Interoperability and Harmonisation. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 35–42. [Google Scholar] [CrossRef]
- MEDDTL. Base de Données Historiques sur les Inondations. Guide utilisateur. 2015. Available online: https://www.georisques.gouv.fr/base-de-donnees/BDHI (accessed on 16 September 2024).
- IGME. Atlas de Riesgos Naturales en la Provincia de Granada; Diputación de Granada/IGME, Área de Cooperación local y desarrollo, 190 p. + maps; IGME: Madrid, Spain, 2007. [Google Scholar]
- Vincent, M.; Plat, E.; Le Roy, S. Cartographie de l’aléa retrait-gonflement et plans de prévention des risques. Rev. Fr. Géotech. 2007, 120–121, 189–200. [Google Scholar] [CrossRef]
- Colas, B. Cartographie de L’aléa Mouvement de Terrain du Département de l’Aube, Echelle 1/50000°; Rapport Final, BRGM/RP-60688-fr; 2011; 94p. Available online: https://infoterre.brgm.fr/rapports/RP-60688-FR.pdf (accessed on 11 January 2023).
- Thuon, Y.; Leprêtre, F. Cartographie de l’aléa glissement de terrain et chute de blocs rocheux; Versants des Communes de Fontaine et Bar-Sur-Aube (10). Rapport Final. BRGM/RP-65258-FR; BRGM: Orléans, France, 2015; 74p. [Google Scholar]
- Szczyglowski, M.; Thiery, Y.; Le Goff, J.; Cartographie de L’aléa Glissement de Terrain et Chute de Blocs sur les Communes de Dolancourt et Bar-sur-Seine (10). Versant Sud-Est de Dolancourt. Interimediate report. BRGM/RP-71490-FR, 53 p. 33. 2021. Available online: https://www.aube.gouv.fr/contenu/telechargement/32041/204253/file/2022_RAPPORT_BRGM_MVT_DOLANCOURT.pdf (accessed on 28 July 2025).
- Fressard, M.; Thiery, Y.; Maquaire, O. Which data for quantitative landslide susceptibility mapping at operational scale? Case study of the Pays d’Auge plateau hillslopes (Normandy, France). Nat. Hazards Earth Syst. Sci. 2014, 14, 569–588. [Google Scholar] [CrossRef]
- Cantos, J.O.; Seguido, Á.-F.M.; Hernández, M.H. Evaluación de los riesgos naturales en las políticas de ordenación urbana de los municipios de la provincia de Alicante. Legislación y cartografía de riesgo. Cuad. Geogr. 2018, 57, 152–176. [Google Scholar] [CrossRef]
- Simón Gómez, J.L.; Soriano Jiménez, M.A.; Arlegui Crespo, L.; Caballero Burbano, J. Estudio de riesgos de hundimientos kársticos en el corredor de la carretera de Logroño. Plan General de Ordenación Urbana de Zaragoza, Memoria Informativa; University of Zaragoza: Zaragoza, Spain, 1998; Appendix 3, 59p. [Google Scholar]
- Afra, H. Le Projet de Stratégie Nationale de Prévention et de Gestion des Risques Majeurs. In Virtual Study Tour: “Prepare Better, Build Back Better: Towards a More Resilient Algeria”; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- World Bank-GFDRR. Diagnostic sur la gestion des risques climatiques et de catastrophe en Algérie; World Bank Publications: Washington, DC, USA, 2023; 136p. [Google Scholar]
- BTR1-Algeria. Submission under the United Nations Framework Convention on Climate Change (UNFCCC) and the Paris Agreement; Ministry of Environment and Quality of Life: Algiers, Algeria, 2024; 215p. [Google Scholar]
- BTR1-Morocco. Submission under the United Nations Framework Convention on Climate Change (UNFCCC) and the Paris Agreement; Ministry of Energy Transition and Sustainable Development: Rabat, Morocco, 2024; 393p. [Google Scholar]
- OCDE. Gestion des Risques au Maroc, Progrès Réalisés et Enjeux pour L’avenir; Royaume du Maroc Ministère de l’Intérieur (2019), Manuel Opérationnel du Programme (MOP), Programme de Gestion Intégrée des Risques de Catastrophes Naturelles et de la Résilience; OCDE: Paris, France, 2019. [Google Scholar]
- Marcel, R. Programs for Prevention and Management of Natural Disasters in the European Countries of The Larger Area of The Black Sea Basin. Present. Environ. Sustain. Dev. 2019, 13, 201–212. [Google Scholar] [CrossRef]
- Van Alphen, J.; Martini, F.; Loat, R.; Slomp, R.; Passchier, R. Flood risk mapping in Europe, experiences and best practices. J. Flood Risk Manag. 2009, 2, 285–292. [Google Scholar] [CrossRef]
- Dolce, M.; Bramerini, F.; Castenetto, S.; Naso, G. The italian policy for seismic microzonation. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering; CRC Press: Boca Raton, FL, USA; Balkema: Rotterdam, The Netherland, 2019; pp. 925–937. [Google Scholar]
- Mateos, R.M.; López-Vinielles, J.; Poyiadji, E.; Tsagkas, D.; Sheehy, M.; Hadjicharalambous, K.; Liscák, P.; Podolski, L.; Laskowicz, I.; Iadanza, C.; et al. Integration of landslide hazard into urban planning across Europe. Landsc. Urban Plan. 2020, 196, 103740. [Google Scholar] [CrossRef]
- Papatheodorou, K.; Klimis, N.; Margaris, B.; Ntouros, K.; Evangelidis, K.; Konstantinidis, A. an overview of the EU actions towards natural hazard prevention and management: Current status and future trends. J. Environ. Prot. Ecol. 2014, 15, 433–444. [Google Scholar]
- Peltier, A. La cartographie réglementaire des risques naturels en Suisse, en Italie et en France. In La Mise en Carte des Risques Naturels, Diversité des Approches; Géorisques; Presses Universitaires de la Méditerranée: Montpellier, France, 2008; Volume 2, pp. 61–67. [Google Scholar]
- Lai, C.G.; Bozzoni, F.; Conca, D.; Famà, A.; Özcebe, A.G.; Zuccolo, E.; Meisina, C.; Bonì, R.; Bordoni, M.; Cosentini, R.M.; et al. Technical guidelines for the assessment of earthquake induced liquefaction hazard at urban scale. Bull. Earthq. Eng. 2021, 19, 4013–4057. [Google Scholar] [CrossRef]
- Darrat, A.F.; Pennathur, A. Are the Arab Maghreb countries really integratable? Some evidence from the theory of cointegrated systems. Rev. Financ. Econ. 2002, 11, 79–90. [Google Scholar] [CrossRef]
- Arab, T.; Boubakeur, M. Regional Economic Integration in the Arab Maghreb: Success or failure for the countries of the region. J. Econ. Sci. Inst. 2020, 23, 1493–1512. [Google Scholar]
- UNISDR. pour une Algérie Résiliente, Réaliser la Réduction des Risques de Catastrophe dans les Pays Arabes: Etude Nationale sur les Bonnes Pratiques; UNISDR Reports; UNISDR: Geneva, Switzerland, 2013; 12p. [Google Scholar]
- Navarro Santa Monica, R. Urbanismo, sostenibilidad y riesgos naturales. In Mapas de Riesgos Naturales en la Ordenación Territorial y Urbanística; García, J.L.G., Ed.; Colegio Oficial de Geólogos: Madrid, Spain, 2015; pp. 25–30. [Google Scholar]
- Olcina, J.; Sauri, D.; Hernández, M.; Ribas, A. Flood policy in Spain: A review for the period 1983-2013. Disaster Prev. Manag. Int. J. 2016, 25, 41–58. [Google Scholar] [CrossRef]
- Yoshida, Y.; Banba, M. Flood Disaster Mitigation Measures Through Land-use Management in the UK and France. In Land Use Management in Disaster Risk Reduction, Practice and Cases from a Global Perspective; Banba, M., Shaw, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 405–448. [Google Scholar] [CrossRef]
- Barroca, B.; Hubert, G. Urbaniser les zones inondables, est-ce concevable? Dev. Durable Territ. 2008. [Google Scholar] [CrossRef]
- Di Giovanni, G. Cities at risk: Status of italian planning system in reducing seismic and hydrogeological risks. J. Land Use Mobil. Environ. 2016, 9, 43–62. [Google Scholar] [CrossRef]
- Colavitti, A.M.; Serra, S. Regional landscape planning and local planning. Insights from the Italian context. J. Settl. Spat. Plan. 2021, 7, 81–91. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Bouacida, R.Y.; Djeflat, A. Construction de la résilience face aux vulnérabilités liées aux risques de catastrophes naturelles et industrielles en Algérie: Un essai d’analyse à partir d’études de cas. Rev. Etudes Multidiscip. Sci. Econ. Soc. (REMSES) 2018, 3, 48–69. [Google Scholar] [CrossRef]
- MALE-UNDP. Stratégie Nationale de Réduction des Risques de Catastrophe à L’horizon 2030 et Plan d‘Action, Tunisie; MALE-UNDP: Malé, Maldives, 2021; 112p. [Google Scholar]
- World Bank-GFDRR. Des Bâtiments sûrs et Durables pour Renforcer la Résilience Urbaine, Évaluation du Cadre Régle-Mentaire Marocain pour la Prévention des Risques dans l’Aménagement du Territoire et de la Construction; World Bank Publications: Washington, DC, USA, 2020; 190p. [Google Scholar]
- CESE (2023), Pour une Gestion Efficace et Proactive des Risques des Catastrophes Naturelles: Rôles et Capacités des Acteurs Ter-Ritoriaux. Auto-saisine, Conseil Economique, Social et Environnemental. n° 74/2023.41p. Available online: https://www.cese.ma/media/2024/11/Pour-une-gestion-efficace-et-proactive-des-risques-des-catastrophes-naturelles.pdf (accessed on 10 March 2025).
- Ykhlef, B.; Belouar, A.; Boubidi, S. Plan for Prevention of Natural Hazards in Urban Areas. Case of the City of Constantine (Algeria). MATEC Web Conf. 2014, 11, 03008. [Google Scholar] [CrossRef]
- Hamma, W. Forecasting and risk management in Tlemcen: Legislation and urban master plans. Urban. Archit. Constr. 2018, 9, 5–22. [Google Scholar]
- Soumaya, A.; Khayati, H.; Ben Ayed, N.; Kadri, A. Seismotectonic and Seismic Hazards Map of Tunisia. 1:1000 000 Map Scale. Geophysical Research Abstracts. Vol. 18, EGU2016-8266. 2016. Available online: https://www.researchgate.net/publication/311740643_Seismotectonic_and_Seismic_Hazards_Map_of_Tunisia (accessed on 28 July 2025).
- Chaaraoui, A.; Chourak, M.; Peláez, J.A.; Cherif, S.-E. Seismic site effects investigation in the urban area of Nador (NE Morocco) using ambient noise measurements. Arab. J. Geosci. 2021, 14, 1937. [Google Scholar] [CrossRef]
- EL Hilali, M.; Bounab, A.; Timoulali, Y.; Messari, E.; Stitou, J.E.; Ahniche, M. Seismic site-effects assessment in a fluvial sedimentary environment: Case of Oued Martil floodplain, Northern Morocco. Nat. Hazards 2023, 118, 1235–1257. [Google Scholar] [CrossRef]
- Khadrouf, I.; El Hammoumi, O.; El Goumi, N.; Oukassou, M. Contribution of HVSR, MASW, and geotechnical investigations in seismic microzonation for safe urban extension: A case study in Ghabt Admin (Agadir), western Morocco. J. Afr. Earth Sci. 2024, 210, 105138. [Google Scholar] [CrossRef]
- Foudil, K.; Amireche, H. Villes Algériennes et Risque D’inondation: Intérêt D’élaboration des P.P.R.I. Exemples: Villes de Ghardaïa et Bejaia. Lucrări şi Rapoarte de Cercetare; Workshop Riscuri Naturale și Antropice: Orşova, Romania, 2019; Volume 1, pp. 79–86. [Google Scholar]
- Amellah, O.; El Morabiti, K.; Maftei, C.; Papatheodorou, C.; Buta, C.; Bounab, A.; Al-Djazouli, M.O. Topographic indices and two-dimensional hydrodynamic modelling for flood hazard mapping in a data-scarce plain area: A case study of Oued Laou catchment (Northern of Morocco). Geocarto Int. 2022, 37, 13596–13617. [Google Scholar] [CrossRef]
- Moutaouakil, W.; Hamida, S.; Saleh, S.; Lamrani, D.; Mahjoubi, M.A.; Cherradi, B.; Raihani, A. Enhancing flood risk assessment in northern Morocco with tuned machine learning and advanced geospatial techniques. J. Geogr. Sci. 2024, 34, 2477–2508. [Google Scholar] [CrossRef]
- Oukouak, S. Etude et Gestion des Glissements de Terrain: Aïn El Hammam et son Relief Abrupt [Connaitre, Aménager, Sauvegarder]. Master’s Thesis, Université Mouloud Mammeri de Tizi-Ouzou, Tizi-Ouzou, Algeria, 2016. [Google Scholar]
- Kab, A. Évaluation de la Susceptibilité et des Conséquences des Glissements de Terrain Basées sur une Approche SIG: Cas de la Willaya de Tizi-Ouzou. Ph.D. Thesis, Université Houari Boumediene, Faculté des Sciences, Algiers, Algeria, 2023. [Google Scholar]
- Boughouas, S. La gestion du risque dans une perspective de développement urbain durable cas de Constantine. Ph.D. Thesis, Université Salah Boubnider, Constantine, Algerie, 2018. [Google Scholar]
- Fraser, A.; Leck, H.; Parnell, S.; Pelling, M. Africa’s urban risk and resilience. Int. J. Disaster Risk Reduct. 2017, 26, 1–6. [Google Scholar] [CrossRef]
- Ghomian, Z.; Yousefian, S. Natural Disasters in the Middle-East and North Africa With a Focus on Iran: 1900 to 2015. Heal. Emergencies Disasters Q. 2017, 2, 53–62. [Google Scholar] [CrossRef]
- Vargas, J.; Olcina, J.; Paneque, P. Cartografía de riesgo de inundación en la planificación territorial para la gestión del riesgo de desastre. Escalas de Trab. y Estud. de Casos en España 2022, 48, 1–25. [Google Scholar] [CrossRef]
- Costanzo, D.; Irigaray, C. Comparing Forward Conditional Analysis and Forward Logistic Regression Methods in a Landslide Susceptibility Assessment: A Case Study in Sicily. Hydrology 2020, 7, 37. [Google Scholar] [CrossRef]




| Country | PD (in 2021)/UR (in 2022) | Ratio UA/TNS 1 | Number of Major Disasters Since 1900 (After EM-DAT Data 2) | Main NH Exposure and INFORM Risk Index 3 |
|---|---|---|---|---|
| Spain | 94.88/81.30 | 0.030 | Floods (39) Earthquakes (3) Landslides (1) | Flood–Coastal Flood–Tsunami–Earthquake 3.8 |
| France | 123.76/81.51 | 0.041 | Floods (63) Earthquakes (5) Landslides and Rockfalls (13) | Flood–Coastal Flood–Earthquake–Tsunami 3.9 |
| Italy | 199.97/71.66 | 0.070 | Floods (55) Earthquake (50) Landslides and Rockfalls (18) | Earthquake–Flood–Coastal Flood–Tsunami 5 |
| Tunisia | 78.93/70.21 | 0.017 | Floods (20) Earthquakes (1) | Coastal Flood–Tsunami–Earthquake–Flood 4.1 |
| Algeria | 18.55/74.77 | 0.004 | Floods (55) Earthquakes/Tsunamis (20) Landslides (1) | Flood–Coastal Flood–Earthquake–Tsunami 3.2 |
| Morocco | 83.08/64.60 | 0.006 | Floods (35) Landslides and Rockfalls (9) Earthquakes/Tsunamis (4) | Flood–Coastal Flood–Earthquake–Tsunami 4.3 |
| Countries | Texts of Laws in Urban Planning Documents Referring to NHs | Risk Prevention Legislation Referring to Urban Planning |
|---|---|---|
| Spain | Law on Land and Urban Rehabilitation Decree 7/2015: Articles 20, 21, and 22 Legislative Decree 1/2023, approving the Law on Spatial Planning and Urban Planning: Articles 50, 51, and 55 | Law 21/2013 of 9 December 2013 on Environmental Assessment, Articles 6 and 45 Coastal Law 22/1988 of 28 July, as amended by Law 2/2013 of 29 May on the Protection and Sustainable Use of the Coast, Article 23 |
| France | Urban Planning Code (2024), Articles L.300-6-1, L.443-2, R.151.53, and R.462-7 | The Environmental Code (2023), Article L. 562-2 Law No. 86-2 of 3 January 1986 on the development, protection, and enhancement of the coastline, Article L.121-16 of the Urban Planning Code (Former Article 12 of the Coastal Law of 1986) |
| Italy | Urban Planning Law (L.765/1967), Article 5 | Legislative Decree of 3 April 2006, n. 152 (Environmental Code), Articles 57 and 65 |
| Tunisia | Articles 5 and 12 of the Spatial Planning and Urban Planning Code (published in 2011) | Article 67 of the Draft Environmental Code |
| Algeria | Law No. 04/2005, relating to spatial and urban planning, Article 11 Executive Decree No. 05-318, Article 18 | Article 16, Law 20/2004 on Risk Prevention Law No. 02-02 of 5 February 2002, on coastal protection and enhancement, Article 45 of amended Law 90-29 (04-05) on urban planning and development |
| Morocco | Articles 4 and 19 of Law 12-90 (published in 1990) | Law 36-15 on water, Articles 118-119 Decree No. 2.23.80/2023 on the prevention of flood risks The National Charter for Environment and Sustainable Development, promulgated in 2012, Article 8 Law 81-12 on the coastline promulgated in 2015, Article 15 |
| Flood | Earthquake | Landslides and Other Geomorphologic Hazards | ||
|---|---|---|---|---|
| NH prevention tools | Spain | Flood risk management plans | Seismic construction standard: NCSE-02 (General and Building) and NCSP-07 (Bridges) Territorial plans and special plans | Territorial and special plans |
| France | PPRN | Seismic regulations for buildings, 2011 PPRN | PPRN specifics for different geomorphic hazards (Landslides, rockfalls, and subsidence/collapses; swelling soils) | |
| Italy | PAI | National seismological map Seismic microzoning | PAI | |
| Tunisia | National and regional plans to combat calamities | Tunisian seismic rules, 1997 (in the process of being updated) | National and regional plans to combat calamities | |
| Algeria | General plan for the prevention of flood risks (not yet realized) | RPA24 General Earthquake Prevention Plan (not yet realized) | General plan for the prevention of geological risks (not yet realized) | |
| Morocco | PPRI (in progress in 12 regions) | RPS 2000, version 2011 | ||
| Legal basis for the obligation of NH prevention tools in the UP | Spain | Land Law Civil Protection Regulations | Royal Decree 997/2002 of 27 September. | Land Law Civil Protection Regulations |
| France | Order approving the flood risk prevention plan | Decrees No. 2010-1254 and No. 2010-1255 Order approving the seismic risk prevention plan | Order approving the landslide risk prevention plan | |
| Italy | Special Law on Flood Risk BD and mapping NHs according to Articles 55 and 60 of Legislative Decree 152/2006 (Environmental Code) | OPCM of 13 November 2010. | Law of 3 August 1998, No. 267 on landslides. BD and mapping NHs according to Articles 55 and 60 of Legislative Decree 152/2006 (Environmental Code) | |
| Tunisia | Law specific to the fight against calamities | |||
| Algeria | Decree approving the general flood risk prevention plan | Order Approving RPA 24 Decree approving the general plan for the protection of seismic risks | Decree approving the general Landslide Prevention Plan | |
| Morocco | Water law for the PPRI | Decree No. 2-02-177 of 22 February 2002 for the RPS 2000. | ||
| Country | Flooding | Earthquake | Ground Movement |
|---|---|---|---|
| Spain |
|
|
IGME |
| France |
|
|
|
| Italy |
ISPRA |
National Institute of Geophysics and Volcanology. ISPRA |
|
| Tunisia |
|
ONM | |
| Algeria |
|
| |
| Morocco |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Kouffi, A.; El Kharim, Y. Natural Hazard Resilience in the Western Mediterranean: Insights from Urban Planning in Morocco. Sustainability 2025, 17, 9881. https://doi.org/10.3390/su17219881
El Kouffi A, El Kharim Y. Natural Hazard Resilience in the Western Mediterranean: Insights from Urban Planning in Morocco. Sustainability. 2025; 17(21):9881. https://doi.org/10.3390/su17219881
Chicago/Turabian StyleEl Kouffi, Abdelaaziz, and Younes El Kharim. 2025. "Natural Hazard Resilience in the Western Mediterranean: Insights from Urban Planning in Morocco" Sustainability 17, no. 21: 9881. https://doi.org/10.3390/su17219881
APA StyleEl Kouffi, A., & El Kharim, Y. (2025). Natural Hazard Resilience in the Western Mediterranean: Insights from Urban Planning in Morocco. Sustainability, 17(21), 9881. https://doi.org/10.3390/su17219881

