The Nexus Between Indoor and Outdoor Environmental Conditions and Teacher Perceptions in Naturally Ventilated Primary School Classrooms, in Ireland
Abstract
1. Introduction
2. Methodology
2.1. Sample Selection
2.2. Data Acquisition
2.2.1. CO2 & Hygrothermal Monitoring
2.2.2. NO2 Monitoring
2.2.3. Participant Surveys
2.3. Data Cleaning
2.4. Statistical Analysis
2.4.1. Descriptive
2.4.2. Inferential and Statistical Analysis
2.5. Calculation of Ventilation Rates
2.5.1. Occupied Period Ventilation Rates
- ;
- Tocc = Total occupied time;
- T1 = End time;
- T0 = Start time;
- = Occupant averaged individual CO2 generation rate;
- Cx = measured mean excess CO2.
- W = Density of CO2 levels (kg/m3);
- MW = Molecular weight;
- t = Temperature.
2.5.2. Unoccupied Period Ventilation Rate
- T = Decay period (in seconds);
- C0 = CO2 inside initial;
- CR0 = CO2 outside initial;
- C1 = CO2 inside final;
- CR1 = CO2 outside final.

2.5.3. Estimation of User-Influenced Ventilation Rates
3. Results
3.1. CO2 Levels
3.1.1. CO2 Concentration Profiles in Classrooms
3.1.2. Descriptive Statistics & Compliance with HSA Guidelines
3.1.3. CO2 Build-Up Rates
3.1.4. CO2 Decay Rates
3.2. Determinants of Classroom CO2 Levels
3.2.1. Ventilation Rates
3.2.2. User-Influenced Ventilation Rates
3.2.3. Occupancy Generation Rates & Class Duration
3.2.4. Self-Reported Window Opening
3.3. Thermal Comfort Parameters
3.3.1. Temperature
3.3.2. Relative Humidity
3.4. Nitrogen Dioxide (NO2) Levels
3.5. Alignment of Teacher Perceptions with Measured Data
4. Discussion
4.1. CO2 Concentrations and Determinants
4.2. Relationship Between Teacher Perceptions and Measured Data
4.3. Outdoor Pollutants and Ventilation Trade-Offs
4.4. Effects on Thermal Comfort
4.5. Implications for Ventilation Management and Policy
- Enhanced teacher training on IAQ, thermal comfort and ventilation principles with a specific focus on the physiological needs of primary school children.
- CO2 and hygrothermal monitoring and alerting systems for real-time pre-emptive ventilation management.
- Provision of adequate background ventilation.
- Implementation of ventilation protocols, including break-time and end-of-day purge ventilation, supported by schedules that take cognisance of local noise and outdoor air quality variations.
- Occupancy management to prevent sustained overcapacity.
4.6. Limitations
4.7. Considerations for Future Research
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef]
- Sadrizadeh, S.; Yao, R.; Yuan, F.; Awbi, H.; Bahnfleth, W.; Bi, Y.; Cao, G.; Croitoru, C.; de Dear, R.; Haghighat, F.; et al. Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. J. Build. Eng. 2022, 57, 104908. [Google Scholar] [CrossRef]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef]
- Wargocki, P.; Porras-Salazar, J.A.; Contreras-Espinoza, S.; Bahnfleth, W. The relationships between classroom air quality and children’s performance in school. Build. Environ. 2020, 173, 106749. [Google Scholar] [CrossRef]
- Salvi, S. Health effects of ambient air pollution in children. Paediatr. Respir. Rev. 2007, 8, 275–280. [Google Scholar] [CrossRef]
- Pollozhani, F.; McLeod, R.S.; Schwarzbauer, C.; Hopfe, C.J. Assessing school ventilation strategies from the perspective of health, environment, and energy. Appl. Energy 2024, 353, 121961. [Google Scholar] [CrossRef]
- Chatzidiakou, L.; Mumovic, D.; Summerfield, A. Is CO2 a good proxy for indoor air quality in classrooms? Part 1: The interrelationships between thermal conditions, CO2 levels, ventilation rates and selected indoor pollutants. Build. Serv. Eng. Res. Technol. 2015, 36, 129–161. [Google Scholar] [CrossRef]
- Chatzidiakou, L.; Mumovic, D.; Summerfield, A. Is CO2 a good proxy for indoor air quality in classrooms? Part 2: Health outcomes and perceived indoor air quality in relation to classroom exposure and building characteristics. Build. Serv. Eng. Res. Technol. 2015, 36, 162–181. [Google Scholar] [CrossRef]
- Department of Education and Skills. TGD-020 General Design Guidelines for Schools (Primary & Post Primary), 1st ed.; Planning & Building Unit Department of Education and Skills: Dublin, Ireland, 2017.
- Gil-Baez, M.; Barrios-Padura, Á.; Molina-Huelva, M.; Chacartegui, R. Natural ventilation systems in 21st-century for near zero energy school buildings. Energy 2017, 137, 1186–1200. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Asssimakopoulos, M.; Livada, I.; Pavlou, K.; Papaglastra, M.; Gaitani, N.; Kolokotsa, D.; Assimakopoulos, V. Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation. Energy Build. 2008, 40, 1833–1843. [Google Scholar] [CrossRef]
- Griffiths, M.; Eftekhari, M. Control of CO2 in a naturally ventilated classroom. Energy Build. 2008, 40, 556–560. [Google Scholar] [CrossRef]
- Chatzidiakou LMumovic, D.; Summerfield, A.J. What do we know about indoor air quality in school classrooms? A critical review of the literature. Intell. Build. Int. 2012, 4, 228–259. [Google Scholar] [CrossRef]
- Mohamed, S.; Rodrigues, L.; Omer, S.; Calautit, J. Overheating and indoor air quality in primary schools in the UK. Energy Build. 2021, 250, 111291. [Google Scholar] [CrossRef]
- Canha, N.; Canha, N.; Mandin, C.; Ramalho, O.; Wyart, G.; Ribéron, J.; Dassonville, C.; Hänninen, O.; Almeida, S.; Derbez, M. Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France. Indoor Air 2016, 26, 350–365. [Google Scholar] [CrossRef] [PubMed]
- EN 16798-1:2019; Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. CEN: Brussels, Belgium, 2019.
- HSA Code of Practice for IAQ published in Iris Oifigiúil on 6th June 2023. Available online: https://www.hsa.ie/eng/publications_and_forms/publications/codes_of_practice/code_of_practice_for_indoor_air_quality.pdf (accessed on 6 March 2024).
- Honan, D.; Gallagher, J.; Garvey, J.; Littlewood, J. Indoor Air Quality in Naturally Ventilated Primary Schools: A Systematic Review of the Assessment & Impacts of CO2 Levels. Buildings 2024, 14, 4003. [Google Scholar] [CrossRef]
- Honan, D.; Littlewood, J.R.; Garvey, J. Enhancing Indoor Air Quality in Naturally Ventilated Classrooms in Ireland: A Systematic Review Protocol and Future Research Agenda. In International Conference on Sustainability in Energy and Buildings; Springer Nature: Singapore, 2024; pp. 23–33. [Google Scholar]
- Ramalho, O.; Wyart, G.; Mandin, C.; Blondeau, P.; Cabanes, P.-A.; Leclerc, N.; Mullot, J.-U.; Boulanger, G.; Redaelli, M. Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values. Build. Environ. 2015, 93, 115–124. [Google Scholar] [CrossRef]
- Chatzidiakou, L.; Mumovic, D.; Summerfield, A.J.; Hong, S.M.; Altamirano-Medina, H. A Victorian school and a low carbon designed school: Comparison of indoor air quality, energy performance, and student health. Indoor Built Environ. 2014, 23, 417–432. [Google Scholar] [CrossRef]
- Simoni, M.; Annesi-Maesano, I.; Sigsgaard, T.; Norback, D.; Wieslander, G.; Nystad, W.; Canciani, M.; Sestini, P.; Viegi, G. School air quality related to dry cough, rhinitis and nasal patency in children. Eur. Respir. J. 2010, 35, 742. [Google Scholar] [CrossRef]
- Gaihre, S.; Semple, S.; Miller, J.; Fielding, S.; Turner, S. Classroom carbon dioxide concentration, school attendance, and educational attainment. J. Sch. Health 2014, 84, 569–574. [Google Scholar] [CrossRef]
- Shendell, D.G.; Prill, R.; Fisk, W.J.; Apte, M.G.; Blake, D.; Faulkner, D. Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. Indoor Air 2004, 14, 333–341. [Google Scholar] [CrossRef]
- Pegas, P.N.; Alves, C.A.; Evtyugina, M.G.; Nunes, T.; Cerqueira, M.; Franchi, M.; Pio, C.A.; Almeida, S.M.; Freitas, M.C. Indoor air quality in elementary schools of Lisbon in spring. Environ. Geochem. Health 2011, 33, 455. [Google Scholar] [CrossRef]
- Moshammer, H.; Poteser, M.; Kundi, M.; Lemmerer, K.; Weitensfelder, L.; Wallner, P.; Hutter, H.P. Nitrogen-dioxide remains a valid air quality indicator. Int. J. Environ. Res. Public Health 2020, 17, 3733. [Google Scholar] [CrossRef]
- Demirel, G.; Özden, Ö.; Döğeroğlu, T.; Gaga, E.O. Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Sci. Total Environ. 2014, 473, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Department of the Environment Climate and Communications. Clean Air Strategy for Ireland; Government of Ireland: Dublin, Ireland, 2023.
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Washington, DC, USA, 2021. [Google Scholar]
- Norbäck, D.; Hashim, J.H.; Hashim, Z.; Ali, F. Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue. Sci. Total Environ. 2017, 592, 153. [Google Scholar] [CrossRef] [PubMed]
- Belanger, K.; Holford, T.R.; Gent, J.F.; Hill, M.E.; Kezik, J.M.; Leaderer, B.P. Household levels of nitrogen dioxide and pediatric asthma severity. Epidemiology 2013, 24, 320. [Google Scholar] [CrossRef] [PubMed]
- Kvisgaard, B.; Collet, P.F. The User’s Influence on Air Change. Air Change Rate and Airtightness in Buildings; ASTM International: West Conshohocken, PA, USA, 1990. [Google Scholar]
- Iwashita, G.; Akasaka, H. The effects of human behavior on natural ventilation rate and indoor air environment in summer—A field study in southern Japan. Energy Build. 1997, 25, 195. [Google Scholar] [CrossRef]
- Dutton, S.; Shao, L. Window opening behaviour in a naturally ventilated school. Proc. SimBuild 2010, 4, 260–268. [Google Scholar]
- Stazi, F.; Naspi, F.; D’Orazio, M. Modelling window status in school classrooms. Results from a case study in Italy. Build. Environ. 2017, 111, 24. [Google Scholar] [CrossRef]
- Montazami, A.; Wilson, M.; Nicol, F. Aircraft noise, overheating and poor air quality in classrooms in London primary schools. Build. Environ. 2012, 52, 129. [Google Scholar] [CrossRef]
- Fabi, V.; Andersen, R.V.; Corgnati, S.; Olesen, B.W. Occupants’ window opening behaviour: A literature review of factors influencing occupant behaviour and models. Build. Environ. 2012, 58, 188. [Google Scholar] [CrossRef]
- Korsavi, S.S.; Jones, R.V.; Fuertes, A. Operations on windows and external doors in UK primary schools and their effects on indoor environmental quality. Build. Environ. 2022, 207, 108416. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P. Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Build. Environ. 2017, 112, 359. [Google Scholar] [CrossRef]
- Wargocki, P.; Porras-Salazar, J.A.; Contreras-Espinoza, S. The relationship between classroom temperature and children’s performance in school. Build. Environ. 2019, 157, 197. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, D.; Liu, Y.; Xu, Y.; Liu, J. A study on pupils’ learning performance and thermal comfort of primary schools in China. Build. Environ. 2018, 134, 102. [Google Scholar] [CrossRef]
- Korsavi, S.S.; Montazami, A. Children’s thermal comfort and adaptive behaviours; UK primary schools during non-heating and heating seasons. Energy Build. 2020, 214, 109857. [Google Scholar]
- Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D. Indirect health effects of relative humidity in indoor environments. Environ. Health Perspect. 1986, 65, 351. [Google Scholar] [PubMed]
- Fischer, J.C.; Bayer, C.W. Humidity control in school facilities. Energy 2003, 30, 606. [Google Scholar]
- Fisk, W.J.; Eliseeva, E.A.; Mendell, M.J. Association of residential dampness and mold with respiratory tract infections and bronchitis: A meta-analysis. Environ. Health 2010, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Fanger, P.; Melikov, A.; Hanzawa, H.; Ring, J. Air turbulence and sensation of draught. Energy Build. 1988, 12, 21–39. [Google Scholar] [CrossRef]
- Miao, S.; Gangolells, M.; Tejedor, B. A Comprehensive Assessment of Indoor Air Quality and Thermal Comfort in Educational Buildings in the Mediterranean Climate. Indoor Air 2023, 2023, 6649829. [Google Scholar] [CrossRef]
- Sánchez-Fernández, A.; Coll-Aliaga, E.; Lerma-Arce, V.; Lorenzo-Sáez, E. Evaluation of Different Natural Ventilation Strategies by Monitoring the Indoor Air Quality Using CO2 Sensors. Int. J. Environ. Res. Public Health 2023, 20, 6757. [Google Scholar] [CrossRef]
- Vassella, C.C.; Koch, J.; Henzi, A.; Jordan, A.; Waeber, R.; Iannaccone, R.; Charrière, R. From spontaneous to strategic natural window ventilation: Improving indoor air quality in Swiss schools. Int. J. Hyg. Environ. Health 2021, 234, 113746. [Google Scholar]
- Wargocki, P.; Silva, N. Use of visual CO2 feedback as a retrofit solution for improving classroom air quality. Indoor Air 2015, 25, 105–114. [Google Scholar] [CrossRef]
- Avella, F.; Gupta, A.; Peretti, C.; Fulici, G.; Verdi, L.; Belleri, A.; Babich, F. Low-Invasive CO2-based visual alerting systems to manage natural ventilation and improve IAQ in historic school buildings. Heritage 2021, 4, 3442–3468. [Google Scholar] [CrossRef]
- Geelen, L.M.J.; Huijbregts, M.A.J.; Ragas, A.M.J.; Bretveld, R.W.; Jans, H.W.A.; van Doorn, W.J.; Evertz, S.J.C.J.; van der Zijden, A. Comparing the effectiveness of interventions to improve ventilation behavior in primary schools. Indoor Air 2008, 18, 416–424. [Google Scholar] [CrossRef]
- Aguilar, A.J.; de la Hoz-Torres, M.L.; Oltra-Nieto, L.; Ruiz, D.P.; Martínez-Aires, M.D. Impact of COVID-19 protocols on IEQ and students’ perception within educational buildings in Southern Spain. Build. Res. Inf. 2022, 50, 755–770. [Google Scholar] [CrossRef]
- Quang, T.N.; He, C.; Knibbs, L.D.; De Dear, R.; Morawska, L. Co-optimisation of indoor environmental quality and energy consumption within urban office buildings. Energy Build. 2014, 85, 225–234. [Google Scholar] [CrossRef]
- Clean Ari Together. Available online: https://www.cleanairtogether.ie (accessed on 5 June 2025).
- Aranet. Aranet4 Datasheet. Downloads: Aranet4 Datasheet. [Online]. 2024. Available online: https://aranet.com/attachment/46/Aranet4_datasheet_WEB.pdf (accessed on 26 November 2024).
- Zhang, D.; Ding, E.; Bluyssen, P.M. Guidance to assess ventilation performance of a classroom based on CO2 monitoring. Indoor Built Environ. 2022, 31, 1107–1126. [Google Scholar] [CrossRef]
- EN ISO 16000-26:2012; Part 26: Sampling Strategy for Carbon Dioxide (CO2). International Organization for Standardization: Geneva, Switzerland, 2012.
- Aranet. Aranet4 User Manual. Downloads: Aranet4 User Manual. [Online]. 2024. Available online: https://pro.aranet.com/uploads/2022/04/aranet4_user_manual_v25_web.pdf (accessed on 26 November 2024).
- Villanueva, F.; Jiménez, E.; Felisi, J.M.; Garrido, T.; Jiménez, J.L.; Ródenas, M.; Muñoz, A. Guide about Affordable CO2 detectors for COVID-19 Prevention [Internet]. 2021. Available online: https://docs.google.com/document/d/1K6gqMH4UXl6ljObtWooTJSyFskCkQFx3CXFtkNGBsDs/edit?tab=t.0 (accessed on 15 October 2025).
- Gradko International. Nitrogen Dioxide Diffusion Tubes. Downloads: Nitrogen Dioxide Technical Data Sheet. [Online]. 2024. Available online: https://www.gradko.com/environmental/environmental-resources/technical-resources/technicaldata-sheets/nitrogen-dioxide-technical-data-sheet.pdf (accessed on 26 November 2024).
- Department for Environment Food and Rural Affairs, Defra. Diffusion Tubes for Ambient NO2 Monitoring: Practical Guidance for Laboratories and Users; AEA Energy & Environment: Didcot, UK, 2008. [Google Scholar]
- Gradko International. Nitrogen Dioxide Diffusion Tubes. Downloads: Nitrogen Dioxide Instruction Sheet. [Online]. 2024. Available online: https://www.gradko.com/environmental/environmental-resources/technical-resources/samplinginstructions/nitrogen-dioxide-instruction-sheet.pdf (accessed on 26 November 2024).
- Subirana, M.; Sunyer, J.; Colom-Cadena, A.; Bordas, A.; Casabona, J.; Gascon, M. Monitoring and assessment of CO2 and NO2 in schools within the Sentinel Schools Network of Catalonia during the COVID-19 era. Chemosphere 2024, 362, 142575. [Google Scholar] [CrossRef]
- Kalimeri, K.K.; Bartzis, J.G.; Sakellaris, I.A.; de Oliveira Fernandes, E. Investigation of the PM2.5, NO2 and O3 I/O ratios for office and school microenvironments. Environ. Res. 2019, 179, 108791. [Google Scholar] [CrossRef] [PubMed]
- Peugh, J.L. A practical guide to multilevel modeling. J. Sch. Psychol. 2010, 48, 85–112. [Google Scholar] [CrossRef]
- Korsavi, S.S.; Montazami, A.; Mumovic, D. Indoor air quality (IAQ) in naturally-ventilated primary schools in the UK: Occu-pant-related factors. Build. Environ. 2020, 180, 106992. [Google Scholar] [CrossRef]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69. [Google Scholar]
- Finneran, J.; Burridge, H.C. Inferring ventilation rates with quantified uncertainty in operational rooms using point measurements of carbon dioxide: Classrooms as a case study. Build. Environ. 2024, 254, 111309. [Google Scholar] [CrossRef]
- Batterman, S. Review and extension of CO2-based methods to determine ventilation rates with application to school classrooms. Int. J. Environ. Res. Public Health 2017, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- ASTM. Standard Guide for Using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Korsavi, S.S.; Montazami, A.; Mumovic, D. Ventilation rates in naturally ventilated primary schools in the UK.; Contextual, Occupant and Building-related (COB) factors. Build. Environ. 2020, 181, 107061. [Google Scholar] [CrossRef]
- Tahsildoost, M.; Zomorodian, Z.S. Indoor environment quality assessment in classrooms: An integrated approach. J. Build. Phys. 2018, 42, 336. [Google Scholar] [CrossRef]
- van der Zee, S.C.; Strak, M.; Dijkema, M.B.; Brunekreef, B.; Janssen, N.A. The impact of particle filtration on indoor air quality in a classroom near a highway. Indoor Air 2017, 27, 291. [Google Scholar] [PubMed]
- Ghita, S.A.; Catalina, T. Energy Efficiency versus Indoor Environmental Quality in Different Romanian Countryside Schools. Energy Build. 2015, 92, 140–154. [Google Scholar] [CrossRef]

| Classroom | Year Built | Ventilation | Floor Area (m2) | Room Height (m) | No. of Pupils | Pupil Age | No. of Adults | Occupied Period |
|---|---|---|---|---|---|---|---|---|
| A1 | 2019 | N&E Windows only | 68 | 3.1 | 19 | 5 | 1 | 09:00–13:40 |
| A2 | 1990 | S Window only | 72 | 3.2 | 30 | 9 | 1 | 09:00–14:40 |
| B1 | 1979 | E Window & 1 Wall Vent | 71 | 3.1 | 23 | 10 | 1 | 09:00–14:30 |
| B2 | 1979 | W Window only | 68 | 3.5 | 27 | 8 | 1 | 09:00–14:30 |
| C1 | 1950 | SE Window & Wall Vent (closed) | 51 | 3.8 | 23 | 5 | 2 | 09:00–13:40 |
| C2 | 1950 | SE Window & 2 Wall Vents | 43 | 3.7 | 27 | 8 | 2.5 | 09:00–14:40 |
| D1 | 2000 | S&E Window & Wall Vent | 76 | 2.8 | 28 | 11 | 1 | 09:00–14:45 |
| D2 | 2000 | N&W Window | 76 | 2.8 | 24 | 12 | 1.5 | 09:00–14:45 |
| Classroom | A1 | A2 | B1 | B2 | C1 | C2 | D1 | D2 |
|---|---|---|---|---|---|---|---|---|
| MAE (ppm) | 15 | −23 | 1 | 9 | 0 | −4 | 0 | 2 |
| <−30 ppm − 3% | 0 | 76 | 0 | 0 | 0 | 0 | 0 | 0 |
| >+30 ppm + 3% | 3 | 0 | 0 | 14 | 0 | 0 | 0 | 0 |
| Classroom | CO2 Level (Occupied Period) | Percentage of Time CO2 (in ppm) Above a Given Threshold | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | Max | Min | IQR | St. Dev. | 1000 | 1400 | 1500 | 3000 | |
| A1 | 1074 | 1704 | 505 | 522 | 305 | 55% | 18% | 11% | 0% |
| A2 | 1414 | 2587 | 467 | 673 | 497 | 79% | 50% | 42% | 0% |
| B1 | 2469 | 5414 | 715 | 1636 | 1111 | 87% | 81% | 78% | 34% |
| B2 | 1891 | 3684 | 637 | 981 | 670 | 89% | 73% | 69% | 5% |
| C1 | 796 | 1401 | 464 | 293 | 197 | 18% | 0% | 0% | 0% |
| C2 | 1535 | 2712 | 572 | 699 | 507 | 84% | 56% | 48% | 0% |
| D1 | 1633 | 2874 | 648 | 796 | 518 | 87% | 64% | 61% | 0% |
| D2 | 1857 | 3276 | 585 | 1129 | 676 | 86% | 70% | 65% | 3% |
| Classroom | Average | Max | Min | Average | ||||
|---|---|---|---|---|---|---|---|---|
| VRocc | VRun | VRocc | VRun | VRocc | VRun | L/p/s | %VRUI | |
| A1 | 45.6 | 3.7 | 65.6 | 4.6 | 35.5 | 3.1 | 2.3 | 92% |
| A2 | 61.9 | 9.8 | 83.3 | 12.8 | 44.1 | 6.4 | 2.0 | 84% |
| B1 | 27.9 | 3.9 | 51.8 | 5.9 | 15.1 | 2.4 | 1.2 | 86% |
| B2 | 33.6 | 4.8 | 45.4 | 6.7 | 24.5 | 0.8 | 1.2 | 86% |
| C1 | 102.8 | 3.6 | 153.4 | 5.8 | 74.7 | −0.5 | 4.1 | 96% |
| C2 | 51.2 | 4.2 | 66.1 | 6.1 | 34.4 | 1.0 | 1.7 | 92% |
| D1 | 57.8 | 5.3 | 97.1 | 7.0 | 36.4 | 3.6 | 2.0 | 91% |
| D2 | 50.2 | 7.4 | 83.9 | 11.0 | 29.3 | 4.5 | 2.0 | 85% |
| Classroom (Occupied Period) | Temperature | Relative Humidity | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mean | Max | Min | Mean (Ti-To) | <16 °C | Mean | Max | Min | >60% | >70% | |
| A1 | 19.4 | 20.5 | 17.8 | 5.4 | 0% | 65 | 73 | 60 | 93% | 19% |
| A2 | 19.6 | 20.9 | 17.8 | 5.5 | 0% | 63 | 72 | 56 | 81% | 7% |
| B1 | 18.7 | 21.1 | 16.4 | 4.6 | 0% | 71 | 78 | 65 | 100% | 60% |
| B2 | 17.6 | 19.3 | 15.1 | 3.5 | 3% | 73 | 78 | 69 | 100% | 98% |
| C1 | 18.6 | 22.7 | 16.6 | 4.6 | 0% | 63 | 75 | 53 | 62% | 13% |
| C2 | 21.4 | 22.8 | 19.7 | 7.4 | 0% | 64 | 74 | 55 | 92% | 6% |
| D1 | 19.8 | 20.7 | 16.8 | 5.8 | 0% | 68 | 78 | 61 | 100% | 24% |
| D2 | 20.5 | 22.3 | 18.3 | 6.6 | 0% | 66 | 74 | 60 | 99% | 12% |
| Outdoor Samples | A | B | C | D | ||||
| µg/m3 NO2 | 7.1 | 12 | 10.1 | 13.6 | ||||
| Distance from Road | 18.5 | 35.6 | 34.9 | 0.9 | ||||
| Road location | Northeast | East | South | Southeast | ||||
| Indoor Samples | A1 | A2 | B1 | B2 | C1 | C2 | D1 | D2 |
| µg/m3 NO2 | 3.9 | 4.5 | 4.8 | 4.5 | 7.2 | 5.8 | 4.2 | 3.4 |
| I/O Ratio | 0.55 | 0.63 | 0.4 | 0.38 | 0.72 | 0.57 | 0.31 | 0.25 |
| Distance from Road | 16 | 81 | 41 | 83 | 26 | 65 | 20 | 65 |
| Classroom | Temperature a | RH b | Stuffiness c | Odour d | Draft Sensation e | External Noise f | Windows Open g |
|---|---|---|---|---|---|---|---|
| A1 | 4 | 4 | 2 | 2 | 2 | 3 | 75% |
| A2 | 4 | 3 | 2 | 1 | 2 | 3 | 100% |
| B1 | 4 | 3 | 3 | 3 | 2 | 1 | 50% |
| B2 | 3 | 3 | 4 | 4 | 2 | 1 | 25% |
| C1 | 2 | 2 | 2 | 1 | 3 | 3 | 100% |
| C2 | 4 | 3 | 3 | 4 | 3 | 2 | 75% |
| D1 | 3 | 3 | 4 | 4 | 3 | 4 | 75% |
| D2 | 5 | 3 | 1 | 2 | 1 | 3 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honan, D.; Garvey, J.; Littlewood, J.; Horrigan, M.; Gallagher, J. The Nexus Between Indoor and Outdoor Environmental Conditions and Teacher Perceptions in Naturally Ventilated Primary School Classrooms, in Ireland. Sustainability 2025, 17, 9873. https://doi.org/10.3390/su17219873
Honan D, Garvey J, Littlewood J, Horrigan M, Gallagher J. The Nexus Between Indoor and Outdoor Environmental Conditions and Teacher Perceptions in Naturally Ventilated Primary School Classrooms, in Ireland. Sustainability. 2025; 17(21):9873. https://doi.org/10.3390/su17219873
Chicago/Turabian StyleHonan, David, John Garvey, John Littlewood, Matthew Horrigan, and John Gallagher. 2025. "The Nexus Between Indoor and Outdoor Environmental Conditions and Teacher Perceptions in Naturally Ventilated Primary School Classrooms, in Ireland" Sustainability 17, no. 21: 9873. https://doi.org/10.3390/su17219873
APA StyleHonan, D., Garvey, J., Littlewood, J., Horrigan, M., & Gallagher, J. (2025). The Nexus Between Indoor and Outdoor Environmental Conditions and Teacher Perceptions in Naturally Ventilated Primary School Classrooms, in Ireland. Sustainability, 17(21), 9873. https://doi.org/10.3390/su17219873

