Water Supply on Grafted Stone Pine: Effects on Growth and Mating
Abstract
1. Introduction
2. Materials and Methods
2.1. Planting Site and Plant Material
2.2. Plot Management and Trial Design
2.3. Recorded Data and Sample Handling
2.4. Statistical Analysis
3. Results
3.1. Amount of Water
3.2. Growth Versus Amount of Water
3.3. Production Versus Amount of Water
3.4. Water Supply Effect on Mating
3.5. Expected Production of Pinus pinea
4. Discussion
4.1. Constraints in the Mediterranean Area
4.2. The Use of Aleppo Pine Rootstock
4.3. Growth Versus the Water Supply
4.4. Production Versus Water Supply
4.5. Tree Growth Versus Production
4.6. Water Versus Mating
4.7. Stone Pine as a Nut Tree
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mutke, S.; Vendramin, G.G.; Fady, B.; Bagnoli, F.; González-Martínez, S.C. Molecular and Quantitative Genetics of Stone Pine (Pinus pinea). In Genetic Diversity in Horticultural Plants; Nandwani, D., Ed.; Sustainable Development and Biodiversity; Springer: New York, NY, USA, 2019; Volume 22, pp. 61–84. [Google Scholar] [CrossRef]
- Mutke, S.; Calama, R.; González-Martínez, S.; Montero, G.; Gordo, F.J.; Bono, D.; Gil, L. Mediterranean Stone Pine: Botany and Horticulture. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012; Volume 39, pp. 153–201. [Google Scholar]
- Evaristo, I.; Batista, D.; Correia, I.; Correia, P.; Costa, R. Chemical profiling of Portuguese Pinus pinea L. nuts and comparative analysis with Pinus koraiensis Sieb. & Zucc. comercial kernels. Options Mediterr. Mediterr. Stone Pine Agrofor. 2013, 105, 99–104. [Google Scholar]
- INC. Global Statistical Review; Crop Progress Report; Nutfruit Magazine: Tarragona, Spain, 2021. [Google Scholar]
- INC. Nut & Dried Fruits Statistical Yearbook; International Nut and Dried Fruit Council: Tarragona, Spain, 2023; pp. 39–41. [Google Scholar]
- Guàrdia, M.; Teixidó, A.; Sanchez-Bragado, R.; Aletà, N. An agronomic approach to pine nut production by grafting stone pine on two rootstocks. Agriculture 2021, 11, 1034. [Google Scholar] [CrossRef]
- Calama, R.; Mutke, S.; Tomé, J.A.; Gordo, F.J.; Montero, G.; Tomé, M. Modelling spatial and temporal variability in a zero-inflated variable: The case of stone pine (Pinus pinea L.) cone production. Ecol. Model. 2011, 222, 606–618. [Google Scholar] [CrossRef]
- Loewe, V.; Delard, C.; Balzarinib, M.; Álvarez, A.; Navarro-Cerrillo, R. Impact of climate and management variables on stone pine (Pinus pinea L.) growing in Chile. Agric. For. Meteorol. 2015, 214–215, 106–116. [Google Scholar] [CrossRef]
- Hassan, S. Le-Pin-Pignon: Une Espèce de Choix Dans le Contexte des Changements Climatiques; Haut-Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification; Centre de Recherche Forestière: Rabat-Agdal, Marocco, 2016; p. 74. [Google Scholar]
- Abad Vinas, R.; Caudullo, G.; Oliveira, S.; de Rigo, D. Pinus pinea in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; p. e01b4fc. [Google Scholar]
- Kattar, S.; Abou Rjeily, K.; Souidi, Z.; Aoun, G.; Moukarzel, R.; Kallas, G. Evaluation of Land Suitability for Stone Pine (Pinus pinea) plantation in Lebanon. Int. J. Environ. Agric. Biotechnol. (IJEAB) 2017, 2, 563–583. [Google Scholar] [CrossRef]
- Bonari, G.; Chytry, K.; Çoban, S.; Chytry, M. Natural forests of Pinus pinea in western Turkey: A priority for conservation. Biodivers. Conserv. 2020, 29, 3877–3898. [Google Scholar] [CrossRef]
- Beltrán, M.; Pallarés, M.; Coello, J.; Busquets, E.; Piqué, M. Gestió de les Masses i Plantacions de pi Pinyer a Catalunya i els Pirineus Orientals Viabilitat de la Producció de Pinyó; Centre de Ciència i Tecnologia Forestal de Catalunya: Lleida, Spain, 2022; p. 50. [Google Scholar]
- Simões, A.S.B.; Borges, M.M.; Grazina, L.; Nunes, J. Stone Pine (Pinus pinea L.) High-AddedValue Genetics: An Overview. Genes 2024, 15, 84. [Google Scholar] [CrossRef]
- Pardos, M.; Ruiz del Castillo, J.; Cañellas, I.; Montero, G. Ecophysiology of natural regeneration of forest stands in Spain. Investig. Agrar. Sist. Rec. For. 2005, 14, 434–445. [Google Scholar] [CrossRef]
- Rodrigues, A.; Silva, G.L.; Casquilho, M.; Freire, J.; Carrasquinho, I.; Tomé, M. Linear mixed modelling of cone production for Stone pine in Portugal. Silvae Lusit. 2014, 22, 1–27. [Google Scholar]
- Loewe, V.; Delard, C. Producción de Piñón mediterráneo (P. pinea L.); INFOR: New York, NY, USA, 2016; Volume 48, p. 107. [Google Scholar]
- Wahbi, J.; Moodi, A.; Kaouther, M.; Souheila, N. Silviculture of Pinus pinea L. in North Africa and The Mediterranean Areas: Current Potentiality and Economic Value. J. Sustain. For. 2020, 40, 656–674. [Google Scholar] [CrossRef]
- UNECE. Standard DDP-12conserning the Marketing and Commercial Quality of Pine Nut Kernels; United Nations: New York, NY, USA; Geneva, Switzerland, 2013; p. 7.
- FAO; Plan Blue. Drivers of degradation and other threats. In State of the Mediterranean Forest; Food and Agriculture Organization of the United Nations: Rome, Italy; Plan Bleu: Marseille, France, 2018; pp. 72–89. Available online: https://www.fao.org/publications/en (accessed on 1 May 2024).
- Piraino, S. Assessing Pinus pinea L. resilience to three consecutive droughts in central-western Italian Peninsula. iForest 2020, 13, 246–250. [Google Scholar] [CrossRef]
- Portoghesi, L.; Tomao, A.; Bollati, S.; Mattioli, W.; Angelini, A.; Agrimi, M. Planning coastal Mediterranean stone pine (Pinus pinea L.) reforestations as a green infrastructure: Combining GIS techniques and statistical analysis to identify management options. Ann. For. Res. 2022, 65, 31–46. [Google Scholar] [CrossRef]
- Shestakova, T.A.; Mutke, S.; Gordo, J.; Camarero, J.; Sin, E.; Pemán, J.; Voltas, J. Weather as main driver for masting and stem growth variation in stone pine supports compatible timber and nut co-production. Agric. For. Meteorol. 2021, 298–299, 108287. [Google Scholar] [CrossRef]
- de la Mata, R.; Teixidó, A.; Aletà, N.; Torrell, A.; Ros, L.; Segarra, M. La producció de pinyons en plantacions empeltades: Resultats dels assaigs instal·lats a l’IRTA. In Experiences Exchange in the Forest; Tusell, J.M., Beltrán, M., Eds.; XXXVI Jornades Tècniques Silvícoles Emili Garolera; Consorci Forestal de Catalunya: Santa Coloma de Farners, Spain, 2019; pp. 6–13. [Google Scholar]
- Loewe-Muñoz, V.; Delard, C.; del Río, R.; Balzarini, M. Recommendations for increasing the yield of the edible Pinus pinea L. pine nuts. PLoS ONE 2024, 19, e0300008. [Google Scholar] [CrossRef]
- Castro-García, S.; Blanco-Roldán, G.L.; Gil-Ribes, J.A. Vibrational and operational parameters in mechanical cone harvesting of stone pine (Pinus pinea L.). Biosyst. Eng. 2012, 112, 352–358. [Google Scholar] [CrossRef]
- Mutke, S.; Iglesias, S.; Gil, L. Selección de clones de pino piñonero sobresalientes en la producción de piña. Investig. Agrar. Sist. Recur. For. 2007, 16, 39–51. [Google Scholar]
- Mutke, S.; Guadaño, C.; Iglesias, S.; León, D.; Arribas, S.; Gordo, J.; Gil, L. Selection and identification of Spanish elite clones for Mediterranean pine nut as orchard crop. Mediterr. Pine Nuts For. Plant. 2017, 122, 71–75. [Google Scholar]
- Carrasquinho, I.; Freire, J.; Rodrigues, A.; Tomé, M. Selection of Pinus pinea L. plus tree candidates for cone production. Ann. For. Sci. 2010, 67, 814. [Google Scholar] [CrossRef]
- Segarra, M.; Aletà, N. Forestal Catalana’s Stone Pine Grafting Program in Catalonia. Production of Grafted Plant in Nursery. Silva Lusit. 2024, 32, 89–105. [Google Scholar] [CrossRef]
- Mutke, S.; Calama, R.; Guadaño, C.; León, D.; Gordo, J.; Montero, G. Efecto de la poda sobre la producción de piña en pino piñonero injertado. In Proceedings of the SECF Congress, Plasencia, Spain, 26–30 June 2017. [Google Scholar]
- Loewe-Muñoz, V.; del Rio Millar, R.; Delard-Rodriguez, C.; Balzarini, M. Irrigation and fertilization as tools to boost growth stability of stone pine (Pinus pinea L.) plantations. For. Ecol. Manag. 2020, 463, 118017. [Google Scholar] [CrossRef]
- Loewe-Muñoz, V.; del Rio Millar, R.; Delard-Rodriguez, C.; Balzarini, M. Effects of fertilization on radial growth of Pinus pinea explored hourly using dendrometers. Ecol. Process. 2024, 3, 2. [Google Scholar] [CrossRef]
- Correia, A.C.; Farinha, A.; Silva, J.E.P.; Nuno, A.; Marcelo, C.M.E.; Sarmento, A.; Tomé, M.; Soares, J.; Fontes, L. Fertirrigation in grafted Pinus pinea L. trees: Denser crowns but no effect on cone production or masting cicles. For. Ecol. Manag. 2024, 569, 122164. [Google Scholar] [CrossRef]
- Aletà, N.; Abel, J.; Teixidó, A.; de la Mata, R.; Torrell, A. Danys del Leptoglossus occidentalis sobre el pi pinyer. Catalunya For. Prod. No Fustaners 2018, 137, 19–21. [Google Scholar]
- Farinha, A.O.; Carvalho, C.; Correia, A.C.; Branco, M. Impact assessment of Leptoglossus occidentalis in Pinus pinea: Integrating population density and seed loss. For. Ecol. Manag. 2021, 496, 119422. [Google Scholar] [CrossRef]
- Loewe-Muñoz, V.; del Rio Millar, R.; Delard Rodriguez, C.; Balzarini, M. Western conifer seed bug (Leptoglossus occidentalis) challenging stone pine cropping in the Southern Hemisphere. For. Ecol. Manag. 2021, 496, 119434. [Google Scholar] [CrossRef]
- Bellot, M.; Teixidó, A.; Torrell, A.; Aletà, N.; Gómez-Canela, C. Residues of Deltamethrin in Pine Needles and Pine Nuts of Catalonia (Spain). Molecules 2023, 28, 8050. [Google Scholar] [CrossRef] [PubMed]
- Mutke, S.; Gordo, J.; Gil, L. Variability of Mediterranean Stone Pinecone Production: Yield Loss as Response to Climate Change. Agric. For. Meteorol. 2005, 13, 2263–2272. [Google Scholar]
- Freire, J.A.; Rodrigues, G.C.; Tomé, M. Climate Change Impacts on Pinus pinea L. Silvicultural System for Cone Production and Ways to Contour Those Impacts: A Review Complemented with Data from Permanent Plots. Forests 2019, 10, 169. [Google Scholar] [CrossRef]
- 41 Loewe-Muñoz, V.; Balzarini, M.; Álvarez-Contreras, A.; Delbard-Rodríguez, C.; Navarro-Cerrillo, R. Fruit productivity of stone pine (Pinus pinea L.) along a climatic gradient in Chile. Agric. For. Meteorol. 2016, 223, 203–216. [Google Scholar] [CrossRef]
- Valdivieso, T.; Pimpao, M.; Trindado, C.S.; Valera, M.C. Reproductive phenology of P. pinea. Mediterr. Pine Nuts For. Plant. 2017, 122, 63–68. [Google Scholar]
- Sánchez-Bragado, R.; Teixidó, A.; Voltas, J.; Araus, J.L.; Aletà, N. Papel fuente-sumidero de las piñas de tercer año en Pinus pinea. In Proceedings of the 8th SECF Congress Lleida, Lleida, Spain, 27 June–1 July 2022. [Google Scholar]
- Gijón, M.C.; Guerrero, J.; Couceiro, J.F.; Moriana, A. Deficit irrigation without reducing yield or nut splitting in pistachio (Pistacia vera L. cv. Kerman on P. terebinthus L.). Agric. Water Manag. 2009, 96, 12–22. [Google Scholar] [CrossRef]
- Stewart, W.L.; Fulton, A.E.; Krueger, W.H.; Lampinen, B.D.; Shackel, K.A. Regulated deficit irrigation reduces water use of almonds without affecting yield. Calif. Agric. 2011, 65, 90–95. [Google Scholar] [CrossRef]
- Calvo, F.E.; Silvente, S.T.; Trentacoste, E.R. A mini review of the impacts of deficit irrigation strategies for walnut (Juglans regia L.) production in semiarid conditions. Irrig. Sci. 2023, 41, 501–509. [Google Scholar] [CrossRef]
- Alía, R.; García del Barrio, J.M.; Iglesias, S.; Mancha, J.A.; De Miguel, J.; Nicolás, J.L.; Pérez-Martin, F.; Sánchez-Ron, D. Regiones de Procedencia de Especies Forestales en España; Organismo Autónomo Parques Nacionales: Madrid, Spain, 2009.
- Soler, M. Requeriments hídrics en Ametller. In Estrategies de Reg Deficitari; Oficina del Regant, DARP: Santa Coloma de Cervelló, Spain, 2023; p. 22. [Google Scholar]
- Soler, M.; Laboreo, P. Requeriments hídrics en Noguer. In Estrategies de Reg Deficitari; Oficina del Regant, DARP: Santa Coloma de Cervelló, Spain, 2023; p. 30. [Google Scholar]
- Andivia, E.; Zuccarini, P.; Grau, B.; de Herralde, F.; Villar-Salvador, P.; Savé, R. Rooting big and deep rapidly: The ecological roots of pine species distribution in southern Europe. Trees 2019, 33, 293–303. [Google Scholar] [CrossRef]
- Veuillen, L.; Prévosto, B.; Alfaro-Sánchez, R.; Badeau, V.; Battipaglia, G.; Beguería, S.; Bravo, F.; Boivin, T.; Camarero, J.J.; Čufar, K.; et al. Pre-and post-drought conditions drive resilience of Pinus halepensis across its distribution range. Agric. For. Meteorol. 2023, 339, 109577. [Google Scholar] [CrossRef]
- Voltas, J.; Chambel, M.R.; Prada, M.A.; Ferrio, J.P. Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees 2008, 22, 759–769. [Google Scholar] [CrossRef]
- Bono, D.; Othmani, H.; Ammari, Y.; Piqué, M.; Aletà, N. Characterization of Pinus pinea L. and P. halepensis Mill. Provenances from Spain and Tunisia related to their rootstock use. In Mediterranean Stone Pine for Agroforestry; Mutke, S., Piqué, M., Calama, R., Eds.; Options Méditerranéennes. Série A: Méditerranéennes Séminaires 2013—No. 105; CIHEAM: Paris, France, 2013; pp. 81–88. [Google Scholar]
- Piqué, M.; Coello, J.; Ammari, Y.; Aletà, N.; Sghaier, T.; Mutke, S. Grafted Stone Pine Plantations for Cone Production: Trials on Pinus pinea and Pinus halepensis Rootstocks from Tunisia and Spain; Carrasquinho, I., Correia, A.C., Mutke, S., Eds.; Mediterranean Pine Nuts from Forests & Plantations. Options Méditerranéennes. Série A: Méditerranéennes Séminaires 2017—No. 122; CIHEAM: Paris, France, 2013; pp. 17–23. [Google Scholar]
- Maseyk, K.; Hemming, D.; Angert, A.; Leavitt, S.W.; Yakir, D. Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years. Oecologia 2011, 167, 573–585. [Google Scholar] [CrossRef]
- Akyol1, A.; Örücü, Ö.K.; Arslan, E.S. Habitat suitability mapping of stone pine (Pinus pinea L.) under the effects of climate Change. Biologia 2020, 75, 2175–2187. [Google Scholar] [CrossRef]
- Gordo, J.; Mutke, S.; Gil, L. La relevancia de la especie patrón portainjerto para el desarrollo de la copa y la producción de piña del pino piñonero injertado. In Proceedings of the 6th SECF Congress Vitoria-Gasteiz, Vitoria, Spain, 10–14 June 2013. [Google Scholar]
- Rovira, J. Les Plantacions de pi Pinyer Empeltat en Zones Poc Productives com a Alternativa de Conreu. Catalunya Forestal: Productes No Fustaners. 2021, Project Interreg-POCTEFA. Available online: https://ctfc.cat/docs/pdf%20pctefa%20quality_pinea.pdf (accessed on 29 October 2025).
- Loewe, V.; Alvarez, A.; Balzarini, M.; Delard, C.; Navarro-Cerrillo, R. Mineral fertilization and irrigation effects on fruiting and growth in stone pine (Pinus pinea L.) crop. Fruits 2017, 72, 281–287. [Google Scholar] [CrossRef]
- Calama, R.; Gordo, J.; Madrigal, G.; Mutke, S.; Conde, M.; Montero, G.; Pardos, M. Enhanced tools for predicting annual stone pine (Pinus pinea L.) cone production at tree and forest scale in Inner Spain. For. Syst. 2016, 25, 3. [Google Scholar] [CrossRef]



| Localization | Annual Climate Data (Average 2009–2023) | Soil Data | |||||
|---|---|---|---|---|---|---|---|
| UTM | msl | Tm °C | P mm | Description | pH | % OM | Texture |
| 31N: 431,204; 4,607,394 | 163 | 14 | 664 | Mediterranean climate. Field at 20 km from the sea | 8.3 | 1.3 | Sandy loam |
| Year | Rainfall (mm) | Irrigation Support (mm) | |||
|---|---|---|---|---|---|
| Annual | January to April | April to September (T0) | T1 | T2 | |
| 2015 * | 387 | 82 | 190 | 72 | 24 |
| 2016 | 488 | 91 | 233 | 72 | 45 |
| 2017 | 478 | 193 | 189 | 100 | 45 |
| 2018 | 754 | 239 | 259 | 131 | 52 |
| 2019 | 506 | 13 | 284 | 140 | 52 |
| 2020 | 810 | 391 | 391 | 180 | 67 |
| 2021 | 336 | 187 | 188 | 236 | 125 |
| 2022 | 392 | 246 | 246 | 253 | 131 |
| 2023 | 280 | 230 | 230 | 218 | 126 |
| Mean | 492 | 186 | 245 | 156 | 74 |
| (a) | |||||||
| df | 1 Bs | 1 HT | 1 FWP | 2 WRC | 2 WPN | 3 WFPN | |
| Treatment | 2 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.0023 | p < 0.0001 | p < 0.0001 |
| Year | 8 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
| Treatment × Year | 16 | p < 0.0001 | p = 0.594 | p < 0.0001 | p < 0.0001 | p = 0.0003 | p = 0.0004 |
| (b) | |||||||
| Year | 1 Bs | 1 HT | 1 FWP | 2 WRC | 2 WPN | 2,3 WFPN | |
| 2015 | p < 0.001 | p < 0.001 | ns | ns | ND | ND | |
| 2016 | p < 0.001 | p < 0.001 | ns | ns | ns | ns | |
| 2017 | p < 0.001 | p < 0.001 | ND | ND | ND | ND | |
| 2018 | p < 0.001 | p < 0.001 | ns | ns | ns | ns | |
| 2019 | p < 0.001 | p < 0.001 | ns | ns | ns | ns | |
| 2020 | p < 0.001 | p < 0.001 | p < 0.001 | ns | ns | ns | |
| 2021 | p < 0.001 | p < 0.001 | ns | ns | ns | ns | |
| 2022 | p < 0.001 | p < 0.001 | ns | ns | p < 0.001 | ns | |
| 2023 | p < 0.001 | p < 0.001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.001 | |
| Year | Water Supply | N | Bs (cm2) | HT (cm) | FWP 1 (g) | WRC 1 (g) | WPN 2 (g) | WFPN 3 (g) |
|---|---|---|---|---|---|---|---|---|
| 2015 | T0 | 24 | 181 ± 9 b | 350 ± 9 b | 747.5 ± 230.6 | 331 ± 19 | - | - |
| T1 | 35 | 241 ± 8 a | 388 ± 8 a | 1069.1 ± 260.0 | 351 ± 17 | - | - | |
| T2 | 36 | 233 ± 8 ab | 374 ± 7 a | 1640 ± 373.7 | 362 ± 13 | - | - | |
| 2016 | T0 | 24 | 235 ± 13 c | 382 ± 11 b | 1432.7 ± 380.9 | 462 ± 30 | 77.98 ± 6.14 | 62.09 ± 7.27 |
| T1 | 35 | 340 ± 12 a | 433 ± 8 a | 2287.7 ± 438.2 | 472 ± 22 | 82.22 ± 4.25 | 66.51 ± 5.04 | |
| T2 | 36 | 322 ± 11 b | 421 ± 9 a | 1641.7 ± 401.4 | 466 ± 18 | 78.23 ± 4.64 | 65.01 ± 5.49 | |
| 2017 | T0 | 24 | 293 ± 15 c | 409 ± 9 b | - | - | - | - |
| T1 | 35 | 428 ± 15 a | 454 ± 8 a | - | - | - | - | |
| T2 | 36 | 406 ± 14 b | 446 ± 9 a | - | - | - | - | |
| 2018 | T0 | 24 | 358 ± 20 c | 437 ± 10 b | 4638.0 ± 1058.8 | 532 ± 9 | 98.76 ± 3.50 | 87.03 ± 4.43 |
| T1 | 35 | 526 ± 17 a | 480 ± 10 a | 5261.3 ± 724.4 | 502 ± 11 | 90.40 ± 2.83 | 75.35 ± 3.59 | |
| T2 | 36 | 481 ± 15 b | 473 ± 10 a | 5354.5 ± 682.1 | 522 ± 11 | 96.70 ± 2.79 | 78.08 ± 3.53 | |
| 2019 | T0 | 24 | 403 ± 21 c | 477 ± 10 b | 13,314.2 ± 1677.2 | 458 ± 12 | 92.97 ± 3.42 | 77.86 ± 3.92 |
| T1 | 35 | 602 ± 22 a | 536 ± 10 a | 15,493.7 ± 1586.7 | 475 ± 17 | 94.67 ± 2.85 | 72.94 ± 3.27 | |
| T2 | 36 | 556 ± 18 b | 517 ± 10 a | 16,933.9 ± 1298.2 | 461 ± 9 | 95.26 ± 2.77 | 75.47 ± 3.17 | |
| 2020 | T0 | 24 | 497 ± 25 c | 503 ± 11 b | 16,952.5 ± 1855.4 b | 526 ± 24 | 108.63 ± 3.05 | 93.78 ± 3.22 |
| T1 | 35 | 732 ± 23 a | 570 ± 10 a | 28,085.9 ± 2721.0 a | 447 ± 14 | 95.54 ± 3.11 | 80.40 ± 3.36 | |
| T2 | 36 | 662 ± 20 b | 544 ± 11 a | 25,373.6 ± 1892.0 a | 490 ± 14 | 105.75 ± 2.82 | 87.70 ± 2.98 | |
| 2021 | T0 | 24 | 543 ± 26 c | 535 ± 11 c | 7108.8 ± 1074.8 | 349 ± 20 | 58.20 ± 3.00 | 41.08 ± 2.94 |
| T1 | 35 | 807 ± 24 a | 617 ± 10 a | 8367.9 ± 1119.1 | 336 ± 10 | 50.55 ± 2.52 | 34.05 ± 2.74 | |
| T2 | 36 | 724 ± 22 b | 577 ± 12 b | 7386.9 ± 889.8 | 374 ± 10 | 59.44 ± 2.52 | 44.20 ± 2.47 | |
| 2022 | T0 | 23 | 575 ± 35 c | 565 ± 10 c | 4090 ± 659 | 372 ± 10 | 58.47 ± 2.96 a | 48.06 ± 2.95 |
| T1 | 34 | 855 ± 25 a | 649 ± 9 a | 5220 ± 842 | 337 ± 10 | 46.42 ± 2.38 b | 37.50 ± 2.37 | |
| T2 | 36 | 759 ± 22 b | 617 ± 11 b | 4877.2 ± 649.6 | 387 ± 10 | 57.92 ± 2.37 a | 46.66 ± 2.34 | |
| 2023 | T0 | 23 | 675 ± 42 c | 584 ± 19 c | 6077 ± 862 b | 289 ± 10 b | 56.90 ± 2.67 b | 41.90 ± 3.25 b |
| T1 | 34 | 910 ± 33 a | 679 ± 14 a | 14,187 ± 1542 a | 339 ± 8 a | 70.86 ± 2.23 a | 55.02 ± 2.71 a | |
| T2 | 36 | 761 ± 22 b | 657 ± 13 b | 11088.3 ± 1261.9 a | 377 ± 12 a | 75.91 ± 2.13 a | 57.90 ± 2.59 a |
| Water Supply | N | Num. P1 | Num. P2 | Num. P3 | P1 + P2 + P3 July |
|---|---|---|---|---|---|
| T0 | 262 | 24.5 ± 1.2 c | 18.7 ± 1.0 b | 13.4 ± 0.9 b | 56.6 ± 2.2 c |
| T1 | 383 | 36.1 ± 1.4 a | 25.4 ± 1.2 a | 19.3 ± 1.2 a | 80.4 ± 2.8 a |
| T2 | 396 | 29.5 ± 1.0 b | 22.0 ± 1.0 ab | 16.9 ± 1.0 ab | 68.1 ± 2.1 b |
| Treatment | p < 0.0001 | p = 0.0003 | p = 0.0012 | p < 0.0001 |
| Cohort | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
|---|---|---|---|---|---|---|---|
| T0 | 19.8 | 38.4 | 81.8 | 73.7 | 60.6 | 46.9 | 67.4 |
| T1 | 22.2 | 43.1 | 67.0 | 78.3 | 47.2 | 41.8 | 72.3 |
| T2 | 16.3 | 42.7 | 77.1 | 83.2 | 51.4 | 47.0 | 66.4 |
| Treatment | ns | ||||||
| P2 n2 | P3 n3 | |
|---|---|---|
| P1 n1 | R = 0.88; p < 0.0001 | R = 0.83; p < 0.0001 |
| P2 n2 | - | R = 0.94; p < 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aletà, N.; Teixidó, A.; Abel, J.; Segarra, M.; Sánchez-Bragado, R. Water Supply on Grafted Stone Pine: Effects on Growth and Mating. Sustainability 2025, 17, 9854. https://doi.org/10.3390/su17219854
Aletà N, Teixidó A, Abel J, Segarra M, Sánchez-Bragado R. Water Supply on Grafted Stone Pine: Effects on Growth and Mating. Sustainability. 2025; 17(21):9854. https://doi.org/10.3390/su17219854
Chicago/Turabian StyleAletà, Neus, Anna Teixidó, Joan Abel, Miquel Segarra, and Ruth Sánchez-Bragado. 2025. "Water Supply on Grafted Stone Pine: Effects on Growth and Mating" Sustainability 17, no. 21: 9854. https://doi.org/10.3390/su17219854
APA StyleAletà, N., Teixidó, A., Abel, J., Segarra, M., & Sánchez-Bragado, R. (2025). Water Supply on Grafted Stone Pine: Effects on Growth and Mating. Sustainability, 17(21), 9854. https://doi.org/10.3390/su17219854

