Optimalization of Nitrogen and Sulfur Fertilization of Hypoallergenic Winter Wheat Lines
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Scheme of Experiment
2.3. Climatic Conditions
2.4. Wheat Grain Chemical Analyses
2.5. Vegetation Indices
2.6. Calculations
- YD—yield at nitrogen fertilization dose;
- Y0—yield at unfertilized plots;
- D—N application rate.
2.7. Statistical Analyses
3. Results
3.1. Wheat Grain Yield
3.2. Nitrogen Agronomic Efficiency
3.3. Results of Vegetation Indices
3.4. Content of Protein in Winter Wheat Grain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Curtis, T.; Halford, N.G. Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014, 164, 354–372. [Google Scholar] [CrossRef]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.; Girousse, C.; Motzo, R.; Giunta, F.; Babar, M.A.; et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 2019, 25, 155–173. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global Trends in Wheat Production, Consumption and Trade; Springer International Publishing: Cham, Switzerland, 2022; pp. 47–66. [Google Scholar]
- FAOSTAT. Agricultural Production Statistics 2000–2022; FAOSTAT Analytical Brief 79; FAOSTAT: Rome, Italy, 2023. [Google Scholar]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Peña-Bautista, R.J.; Hernandez-Espinosa, N.; Jones, J.M.; Guzman, C.G.; Braun, H.J. CIMMYT series on carbohydrates, wheat, grains, and health: Wheat-based foods: Their global and regional importance in the food supply, nutrition, and health. Cereal Foods World 2017, 62, 231–249. [Google Scholar] [CrossRef]
- Bailey, C.H. A translation of Beccari’s lecture “Concerning grains” (1728). Cereal Chem. 1941, 18, 555–561. [Google Scholar]
- Wrigley, C.W.; Bietz, J.A. Proteins and Amino Acids. In Wheat: Chemistry and Technology; Pomeranz, Y., Ed.; AACC: Saint Paul, MN, USA, 1988; pp. 159–275. [Google Scholar]
- Seilmeier, W.; Belitz, H.D.; Wieser, H. Separation and quantitative determination of high-molecular-weight subunits of glutenin from different wheat varieties and genetic variants of the variety. Z. Lebensm. Unters. Forsch. 1991, 192, 124–129. [Google Scholar] [CrossRef]
- Sapone, A.; Bai, J.C.; Ciacci, C.; Dolinsek, J.; Green, P.; Hadjivassiliou, M.; Kaukinen, K.; Rostami, K.; Sanders, D.S.; Schumann, M.; et al. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Med. 2012, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Piboonpocanun, S.; Thongngarm, T.; Wongsa, C.H.; Pacharn, P.; Reamtong, O. Omega-5 and Gamma Gliadin are the Major Allergens in Adult-Onset IgE-Mediated Wheat Allergy: Results from Thai Cohort with Oral Food Challenge. J. Asthma Allergy 2021, 14, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Wing-Kin Wong, G. Food allergies around the world. Front. Nutr. 2024, 11, 1373110. [Google Scholar] [CrossRef]
- Brouns, F.; Geisslitz, S.; Guzman, C.; Ikeda, T.M.; Arzani, A.; Latella, G.; Simsek, S.; Colomba, M.; Gregorini, A.; Zevallos, V.; et al. Do ancient wheats contain less gluten than modern bread wheat, in favour of better health? Nutr. Bull. 2022, 47, 157–167. [Google Scholar] [CrossRef]
- Herman, E.M.; Helm, R.M.; Jung, R.; Kinney, A.J. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 2003, 132, 36–43. [Google Scholar] [CrossRef]
- Rogers, W.J.; Sayers, E.J.; Ru, K.L. Deficiency of individual high molecular glutenin subunits affords flexibility in breeding strategies for bread-making quality in wheat Triticum aestivum L. Euphytica 2001, 117, 99–109. [Google Scholar] [CrossRef]
- Waga, J.; Skoczowski, A. Development and characteristics of ω-gliadin-free wheat genotypes. Euphytica 2014, 195, 105–116. [Google Scholar] [CrossRef]
- Skoczowski, A.; Obtułowicz, K.; Czarnobilska, E.; Dyga, W.; Mazur, M.; Stawoska, I.; Waga, J. Antibody reactivity in patients with IgE-mediated wheat allergy to various subunits and fractions of gluten and non-gluten proteins from omega-gliadin-free wheat genotypes. Ann. Agric. Environ. Med. 2017, 24, 29–236. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef]
- Carvalho, J.M.G.; Bonfim-Silva, E.M.; Da Silva, T.J.A.; Sousa, H.H.D.F.; Guimarães, S.L.; Pacheco, A.B. Nitrogen and potassium in production, nutrition and water use efficiency in wheat plants. Cienc. Investig. Agrar. 2016, 43, 442–451. [Google Scholar] [CrossRef]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic effect of sulfur and nitrogen in the organic and mineral fertilization of durum wheat: Grain yield and quality traits in the mediterranean environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef]
- Tabak, M.; Lepiarczyk, A.; Filipek-Mazur, B.; Lisowska, A. Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization. Agronomy 2020, 10, 1304. [Google Scholar] [CrossRef]
- Tabak, M.; Filipek-Mazur, B. Influence of sulfur and iron fertilization on nutrient utilization by plants. Infrastrukt. Ekol. Teren. Wiej. 2019, II/1, 53–65. [Google Scholar] [CrossRef]
- Engardt, M.; Simpson, D.; Schwikowski, M.; Granat, L. Deposition of sulphur and nitrogen in Europe 1900-2015. Model calculations and comparison to historicl observations. Tellus B Chem. Phys. Meteorol. 2017, 69, 1328945. [Google Scholar] [CrossRef]
- Pompa, M.; Giuliani, M.M.; Giuzio, L.; Gagliardi, A.; Di Fonzo, N.; Flagella, Z. Effect of Sulphur Fertilization on Grain Quality and Protein Composition of Durum Wheat (Triticum durum Desf.). Ital. J. Agron. 2009, 4, 159–170. [Google Scholar] [CrossRef]
- Dostálová, Y.; Hřivna, L.; Kotková, B.; Buresova, I.; Janeçková, M.; Šottníková, V. Effect of nitrogen and sulphur fertilization on the quality of barley protein. Plant Soil Environ. 2015, 61, 399–404. [Google Scholar] [CrossRef]
- Lisowska, A.; Tabak, M.; Filipek-Mazur, B.; Gorczyca, O. Effect of sulfur-containing fertilizers on the quantity and quality of spring oilseed rape and winter wheat yield. J. Elem. 2019, 24, 1383–1394. [Google Scholar] [CrossRef]
- Litke, L.; Gaile, Z.; Ruža, A. Effect of nitrogen fertilization on winter wheat yield and yield quality. Agron. Res. 2018, 16, 500–509. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Leeuwen, W.V. Modis Vegetation Index (MOD 13) Algorithm Theoretical Basis Document Version 3; EOS Project Office: Singapore, 1999; Version-3. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (accessed on 20 August 2025).
- Zhou, X.; Haikarainen, I.; Haikarainen, I.P.; Mäkelä, P.; Mõttus, M.; Pellikka, P. Effects of Crop Leaf Angle on LAI-Sensitive Narrow-Band Vegetation Indices Derived from Imaging Spectroscopy. Appl. Sci. 2018, 8, 1435. [Google Scholar] [CrossRef]
- Tian, X.; Jia, X.; Da, Y.; Liu, J.; Ge, W. Evaluating the sensitivity of vegetation indices to leaf area index variability at individual tree level using multispectral drone acquisitions. Agric. For. Meteorol. 2025, 364, 110441. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014, Update 2015; World Soil Resources Reports; FAO: Rome, Italy, 2015; p. 1006. ISBN 978-92-5-108370-3. [Google Scholar]
- ISO10390; Soil Quality—Determination of pH. ISO: Geneva, Switzerland, 2005. Available online: https://www.iso.org/standard/40879.html (accessed on 8 September 2022).
- Egnér, H. Neue Beiträge zur chemischen Bodenuntersuchung unter besonderer Berücksichtigung der Laktatmethode. Landwirtsch. Forsch. 1954, 6, 28–32. [Google Scholar]
- ISO 11261; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. ISO: Geneva, Switzerland, 1995. Available online: https://www.iso.org/standard/19239.html (accessed on 8 September 2022).
- Mebius, L.J. A rapid method for the determination of organic carbon in soil. Anal. Chim. Acta 1960, 22, 120–124. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L.; Nieuwoudt, H.; Cronje, P.J.R.; Saeys, W.; Nicolaï, B. NIR Spectroscopy Applications for Internal and External QualityAnalysis of Citrus Fruit—A Review. Food Bioprocess Technol. 2012, 5, 425–444. [Google Scholar] [CrossRef]
- Klimek-Kopyra, A.; Zając, T.; Oleksy, A.; Kulig, B.; Ślizowska, A. The value of different vegetative indices (NDVI, GAI) for the assessment of yield potential of pea (Pisum sativum L.) at different growth stages and under varying management practices. Acta Agrobot. 2018, 71, 1733. [Google Scholar] [CrossRef]
- Cuong, T.X.; Ullah, H.; Datta, A.; Hanh, T.C. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Sci. 2017, 24, 283–290. [Google Scholar] [CrossRef]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification, 1st ed.; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; International Fertilizer Industry Association (IFA): Paris, France; International Water Management Institute (IWMI): Colombo, Sri Lanka; International Plant Nutrition Institute (IPNI): Peachtree Corners, GA, USA; International Potash Institute (IPI): Basel, Switzerland, 2015; pp. 8–38. ISBN 979-10-92366-02-0. [Google Scholar]
- Walsh, O.S.; Shafian, S.; Christiaens, R.J. Nitrogen fertilizer management in dryland wheat cropping systems. Plants 2018, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Jahan, M.; Amiri, M.B. Optimizing application rate of nitrogen, phosphorus and cattle manure in wheat production: An approach to determine optimum scenario using response-surface methodology. J. Soil Sci. Plant Nutr. 2018, 18, 13–26. [Google Scholar] [CrossRef]
- Pan, W.L.; Kidwell, K.K.; McCracken, V.A.; Bolton, R.P.; Allen, M. Economically optimal wheat yield, protein and nitrogen use component responses to varying N supply and genotype. Front. Plant Sci. 2020, 10, 1790. [Google Scholar] [CrossRef]
- Hřivna, L.; Kotková, B.; Burešová, I. Effect of sulphur fertilization on yield and quality of wheat grain. Cereal Res. Commun. 2015, 43, 344–352. [Google Scholar] [CrossRef]
- Klikocka, H.; Cybulska, M.; Nowak, A. Efficiency of fertilization and utilization of nitrogen and sulphur by spring wheat. Pol. J. Environ. Stud. 2017, 26, 2029–2036. [Google Scholar] [CrossRef]
- Podleśna, A. Studies on role of sulfur at forming of mineral management and height and quality of chosen crops yield. In Monografie i Rozprawy Naukowe—Rozprawa Habilitacyjna; Wyd. IUNG-Puławy: Kraków, Poland, 2013; p. 141. ISBN 978-83-7562-133-4. (In Polish + Summary in English). [Google Scholar]
- Zhao, F.J.; Hawkesford, M.J.; McGrath, S.P. Sulphur assimilation and effects on yield and quality of wheat. J. Cereal Sci. 1999, 30, 1–17. [Google Scholar] [CrossRef]
- He, P.; Li, S.; Jin, J.; Wang, H.; Li, C.; Wang, Y.; Cui, R. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-Central China. Agron. J. 2009, 101, 1489–1496. [Google Scholar] [CrossRef]
- Jin, L.; Cui, H.; Li, B.; Zhang, J.; Dong, S.; Liu, P. Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crops Res. 2012, 134, 30–35. [Google Scholar] [CrossRef]
- Montemurro, F.; Diacono, M. Towards a Better Understanding of Agronomic Efficiency of Nitrogen: Assessment and Improvement Strategies. Agronomy 2016, 6, 31. [Google Scholar] [CrossRef]
- Saudy, H.S.; Abd El–Momen, W.R.; El–Khouly, N.S. Diversified nitrogen rates influence nitrogen agronomic efficiency and seed yield response index of sesame (Sesamum indicum L.) cultivars. Commun. Soil Sci. Plant Anal. 2018, 49, 2387–2395. [Google Scholar] [CrossRef]
- Zavattaro, L.; Costamagna, C.; Grignani, C.; Bechini, L.; Spiegel, A.; Lehtinen, T.; Guzman, G.; Krüger, J.; D’Pose, T.; Pecio, A.; et al. Long-term effects of best management practices on crop yield nitrogen surplus. Ital. J. Agron. 2015, 10, 47–50. [Google Scholar] [CrossRef]
- Liang, G.; Sun, P.; Waring, B.G. Nitrogen agronomic efficiency under nitrogen fertilization does not change over time in the long term: Evidence from 477 global studies. Soil Tillage Res. 2022, 223, 105468. [Google Scholar] [CrossRef]
- Guo, J.; Zeng, X.; Ma, Q.; Yuan, Y.; Zhang, N.; Lin, Z.; Yin, P.; Yang, H.; Liu, X.; Zhang, F. UAV-Based Yield Prediction Based on LAI Estimation in Winter Wheat (Triticum aestivum L.) Under Different Nitrogen Fertilizer Types and Rates. Plants 2025, 14, 1986. [Google Scholar] [CrossRef]
- Ram, A.; Kumar, D.; Shivay, Y.S.; Anand, A.; Singh, N.; Dev, I. Effect of sulphur on growth, productivity, and economics of wheat (Triticum aestivum) and residual soil fertility under aerobic rice (Oryza sativa)–wheat cropping system in Inceptisols. Indian J. Agron. 2024, 63, 271–277. [Google Scholar] [CrossRef]
- Tuoku, L.; Wu, Z.; Men, B. Impacts of climate factors and human activities on NDVI change in China. Ecol. Inform. 2024, 81, 102555. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T.; Cammarano, D.; Sartori, L. A strategic and tactical management approach to select optimal N fertilizer rates for wheat in a spatially variable field. Eur. J. Agron. 2011, 35, 215–222. [Google Scholar] [CrossRef]
- Fabbri, C.; Mancini, M.; dalla Marta, A.; Orlandini, S.; Napoli, M. Integrating satellite data with a Nitrogen Nutrition Curve for precision top-dress fertilization of durum wheat. Eur. J. Agron. 2020, 120, 126148. [Google Scholar] [CrossRef]
- Bronson, K.F.; White, J.W.; Conley, M.M.; Hunsaker, D.J.; Thorp, K.R.; French, A.N.; Mackey, B.E.; Holland, K.H. Active optical sensors in irrigated durum wheat, nitrogen and water effects. Agron. J. 2017, 109, 1060–1071. [Google Scholar] [CrossRef]
- Poutanen, K.S.; Kårlund, A.O.; Gómez-Gallego, C.; Johansson, D.P.; Scheers, N.M.; Marklinder, I.M.; Eriksen, A.K.; Silventoinen, P.C.; Nordlund, E.; Sozer, N.; et al. Grains—A major source of sustainable protein for health. Nutr. Rev. 2022, 80, 1648–1663. [Google Scholar] [CrossRef]
- Ooms, N.; Delcour, J.A. How to Impact Gluten Protein Network Formation during Wheat Flour Dough Making. Curr. Opin. Food Sci. 2019, 25, 88–97. [Google Scholar] [CrossRef]
- Wang, Y.F.; Jiang, D.; Yu, Z.W.; Cao, W.X. Effects of nitrogen rates on grain yield and protein content of wheat and its physiological basis. Sci. Agric. Sin. 2003, 36, 513–520, (In Chinese with English abstract). [Google Scholar]
- Delcour, J.A.; Joye, I.J.; Pereyt, B.; Wilderjans, E.; Brijs, K.; Lagrain, B. Wheat gluten functionality as a quality determinant in cereal-based food products. Annu. Rev. Food Sci. Technol. 2012, 3, 469–492. [Google Scholar] [CrossRef]
- Wang, C.; Qi, Z.M.; Zhao, J.C.; Gao, Z.Z.; Zhao, J.; Chen, F.; Chu, Q.Q. Sustainable water and nitrogen optimization to adapt to different temperature variations and rainfall patterns for a trade-off between winter wheat yield and N2O emissions. Sci. Total Environ. 2022, 854, 158822. [Google Scholar] [CrossRef]
- Podleśna, A.; Cacak-Pietrzak, G. Effects of fertilization with sulfur on quality of winter wheat. In Sulfur Assimilation and Abiotic Stress in Plants; Khan, A.N., Singh, S., Umar, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 355–365. [Google Scholar]
- Habtegebrial, K.; Singh, B.R. Response of wheat cultivars to nitrogen and sulfur for crop yield, nitrogen use efficiency, and protein quality in the semiarid region. J. Plant Nutr. 2009, 32, 1768–1787. [Google Scholar] [CrossRef]





| PK and S Fertilization | |||||||
|---|---|---|---|---|---|---|---|
| Factor | Phosphorus | Potassium | Sulfur | ||||
| P | triple superphosphate (17% P) | K | potassium salt (50% K) | potassium sulphate (42% K) | S | potassium sulphate (18% S) | |
| [kg ha−1] | |||||||
| S1 | 46 | 263 | 91 | 184 | 0 | 0 | 0 |
| S2 | 46 | 263 | 91 | 91 | 111 | 20 | 111 |
| S3 | 46 | 263 | 91 | 0 | 222 | 40 | 222 |
| Nitrogen fertilization | |||||||
| Factor | N | Nitrogen dose | Ammonium nitrate (34% N) | ||||
| starting vegetation | shooting | fertilizer | starting vegetation | shooting | |||
| [kg ha−1] | |||||||
| N0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| N1 | 40 | 40 | 0 | 118 | 118 | 0 | |
| N2 | 60 | 30 | 30 | 176 | 88 | 88 | |
| N3 | 80 | 40 | 40 | 236 | 118 | 118 | |
| N4 | 100 | 50 | 50 | 294 | 147 | 147 | |
| N5 | 120 | 60 | 60 | 352 | 176 | 176 | |
| Source of Variation (S.O.V.) | Grain Yield and Protein | NDVI and LAI | ||||
|---|---|---|---|---|---|---|
| d.f. | Grain Yield Mg ha−1 | Protein g kg−1 | d.f. | NDVI | LAI m2 m−2 | |
| Years (Y) | 1 | 0.057 | 295.344 | 1 | 0.150 | 2.695 |
| Lines (A) | 1 | 9.931 ** | 0.617 | 1 | 0.027 | 0.491 |
| Y × A | 1 | 0.000 | 0.063 | 1 | 0.014 | 0.254 |
| Error | 4 | 0.214 | 0.266 | 3 | 0.003 | 0.062 |
| Sulphur (B) | 2 | 0.221 | 0.178 | 2 | 0.000 * | 0.008 * |
| A × B | 2 | 0.151 | 0.200 | 2 | 0.001 ** | 0.017 ** |
| Y × B | 2 | 0.000 | 0.010 | 2 | 0.000 | 0.001 |
| Y × A × B | 2 | 0.000 | 0.199 | 2 | 0.001 ** | 0.017 ** |
| Error | 16 | 0.362 | 0.502 | 12 | 0.000 | 0.002 |
| Nitrogen (C) | 5 | 1.364 ** | 3.437 ** | 5 | 0.011 ** | 0.192 ** |
| A × C | 5 | 0.123 | 0.044 | 5 | 0.000 * | 0.008 * |
| B × C | 10 | 0.146 | 0.158 | 10 | 0.000 * | 0.008 * |
| A × B × C | 10 | 0.252 * | 0.161 | 10 | 0.000 | 0.002 |
| Y × C | 5 | 0.000 | 0.196 | 5 | 0.000 | 0.007 |
| Y × A × C | 5 | 0.000 | 0.029 | 5 | 0.001 ** | 0.018 ** |
| Y × B × C | 10 | 0.000 | 0.123 | 10 | 0.000 * | 0.009 * |
| Y × A × B × C | 10 | 0.000 | 0.100 | 10 | 0.000 | 0.002 |
| Error | 120 | 0.113 | 0.109 | 90 | 0.000 | 0.004 |
| Line/Nitrogen (kg N ha−1) | Sulfur (kg ha−1) | Average for Nitrogen | ||
|---|---|---|---|---|
| 0 | 20 | 40 | ||
| 0 | 4.68 ± 0.15 NS * | 5.08 ± 0.13 NS | 4.74 ± 0.21 NS | 4.83 ± 0.10 NS |
| 40 | 4.89 ± 0.05 NS | 4.79 ± 0.32 NS | 5.10 ± 0.26 NS | 4.93 ± 0.13 NS |
| 60 | 5.36 ± 0.20 NS | 5.72 ± 0.25 NS | 5.30 ± 0.27 NS | 5.46 ± 0.14 NS |
| 80 | 5.33 ± 0.31 NS | 5.36 ± 0.44 NS | 5.84 ± 0.28 NS | 5.51 ± 0.20 NS |
| 100 | 5.74 ± 0.27 NS | 6.08 ± 0.19 NS | 5.07 ± 0.27 NS | 5.63 ± 0.17 NS |
| 120 | 4.78 ± 0.33 NS | 5.39 ± 0.30 NS | 5.58 ± 0.23 NS | 5.25 ± 0.18 NS |
| V1 (mean) | 5.13 ± 0.11 NS | 5.40 ± 0.13 NS | 5.27 ± 0.11 NS | 5.27 ± 0.07 a |
| 0 | 3.92 ± 0.37 NS | 4.30 ± 0.10 NS | 3.86 ± 0.11 NS | 4.03 ± 0.13 NS |
| 40 | 4.20 ± 0.12 NS | 4.23 ± 0.34 NS | 3.90 ± 0.07 NS | 4.11 ± 0.12 NS |
| 60 | 4.81 ± 0.09 NS | 4.77 ± 0.03 NS | 4.79 ± 0.25 NS | 4.79 ± 0.08 NS |
| 80 | 5.49 ± 0.41 NS | 4.70 ± 0.16 NS | 4.72 ± 0.17 NS | 4.97 ± 0.17 NS |
| 100 | 4.04 ± 0.34 NS | 4.92 ± 0.05 NS | 4.67 ± 0.10 NS | 4.54 ± 0.14 NS |
| 120 | 4.89 ± 0.12 NS | 4.74 ± 0.09 NS | 4.43 ± 0.50 NS | 4.69 ± 0.17 NS |
| V2 (mean) | 4.56 ± 0.14 NS | 4.61 ± 0.08 NS | 4.40 ± 0.11 NS | 4.52 ± 0.07 b |
| Mean for nitrogen fertilization | ||||
| 0 | 4.30 ± 0.22 NS | 4.69 ± 0.14 NS | 4.30 ± 0.17 NS | 4.43 ± 0.11 c |
| 40 | 4.55 ± 0.12 NS | 4.51 ± 0.24 NS | 4.50 ± 0.22 NS | 4.52 ± 0.11 bc |
| 60 | 5.08 ± 0.13 NS | 5.25 ± 0.19 NS | 5.05 ± 0.19 NS | 5.13 ± 0.10 ab |
| 80 | 5.41 ± 0.25 NS | 5.03 ± 0.24 NS | 5.28 ± 0.23 NS | 5.24 ± 0.14 a |
| 100 | 4.89 ± 0.33 NS | 5.50 ± 0.20 NS | 4.87 ± 0.15 NS | 5.09 ± 0.14 ab |
| 120 | 4.84 ± 0.17 NS | 5.07 ± 0.18 NS | 5.01 ± 0.31 NS | 4.97 ± 0.13 ab |
| Average for sulfur | 4.84 ± 0.09 NS | 5.01 ± 0.09 NS | 4.83 ± 0.09 NS | 4.89 |
| Nitrogen | Sulfur (kg ha−1) | Average | ||
|---|---|---|---|---|
| (kg ha−1) | 0 | 20 | 40 | |
| Line V1 | ||||
| 40 | 5.4 | −7.3 | 8.8 | 2.3 |
| 60 | 11.3 | 10.7 | 9.4 | 10.5 |
| 80 | 8.1 | 3.5 | 13.7 | 8.4 |
| 100 | 10.6 | 10.0 | 3.3 | 8.0 |
| 120 | 0.8 | 2.6 | 7.0 | 3.5 |
| Line V2 | ||||
| 40 | 7.0 | −1.7 | 0.9 | 2.1 |
| 60 | 14.9 | 7.9 | 15.5 | 12.8 |
| 80 | 19.6 | 5.1 | 10.8 | 11.8 |
| 100 | 1.2 | 6.3 | 8.1 | 5.2 |
| 120 | 8.1 | 3.7 | 4.8 | 5.5 |
| Line | Nitrogen Dose (kg ha−1) | Sulfur Dose (kg ha−1) | Average for Nitrogen | ||
|---|---|---|---|---|---|
| 0 | 20 | 40 | |||
| V1 | 0 | 1.62 ± 0.25 NS * | 1.63 ± 0.18 NS | 1.60 ± 0.35 NS | 1.62 ± 0.12 e |
| 40 | 1.77 ± 0.33 NS | 1.82 ± 0.30 NS | 1.77 ± 0.40 NS | 1.79 ± 0.16 cd | |
| 60 | 1.85 ± 0.31 NS | 1.96 ± 0.22 NS | 1.88 ± 0.29 NS | 1.90 ± 0.12 ab | |
| 80 | 1.99 ± 0.20 NS | 1.95 ± 0.20 NS | 2.00 ± 0.21 NS | 1.98 ± 0.09 a | |
| 100 | 1.97 ± 0.17 NS | 1.96 ± 0.20 NS | 1.88 ± 0.29 NS | 1.94 ± 0.10 ab | |
| 120 | 2.01 ± 0.15 NS | 1.92 ± 0.30 NS | 1.98 ± 0.19 NS | 1.97 ± 0.10 a | |
| Average | 1.87 ± 0.09 a | 1.87 ± 0.08 a | 1.85 ± 0.10 a | 1.86 ± 0.05 NS | |
| V2 | 0 | 1.38 ± 0.24 NS | 1.47 ± 0.18 NS | 1.57 ± 0.18 NS | 1.47 ± 0.10 f |
| 40 | 1.67 ± 0.12 NS | 1.66 ± 0.10 NS | 1.74 ± 0.03 NS | 1.69 ± 0.04 de | |
| 60 | 1.69 ± 0.18 NS | 1.84 ± 0.04 NS | 1.69 ± 0.13 NS | 1.74 ± 0.07 cd | |
| 80 | 1.73 ± 0.14 NS | 1.73 ± 0.18 NS | 1.87 ± 0.08 NS | 1.77 ± 0.07 bc | |
| 100 | 1.78 ± 0.10 NS | 1.78 ± 0.16 NS | 1.81 ± 0.14 NS | 1.79 ± 0.06 bc | |
| 120 | 1.69 ± 0.15 NS | 1.69 ± 0.18 NS | 1.79 ± 0.08 NS | 1.72 ± 0.07 cd | |
| Average | 1.66 ± 0.06 c | 1.70 ± 0.06 bc | 1.74 ± 0.05 ab | 1.70 ± 0.03 NS | |
| 0 | 1.50 ± 0.16 NS | 1.55 ± 0.11 NS | 1.58 ± 0.16 NS | 1.54 ± 0.08 e | |
| 40 | 1.72 ± 0.15 NS | 1.74 ± 0.14 NS | 1.76 ± 0.16 NS | 1.74 ± 0.08 d | |
| 60 | 1.77 ± 0.15 NS | 1.90 ± 0.10 NS | 1.79 ± 0.14 NS | 1.82 ± 0.07 bc | |
| 80 | 1.86 ± 0.13 NS | 1.84 ± 0.13 NS | 1.94 ± 0.10 NS | 1.88 ± 0.06 a | |
| 100 | 1.87 ± 0.10 NS | 1.87 ± 0.12 NS | 1.84 ± 0.13 NS | 1.86 ± 0.06 ab | |
| 120 | 1.85 ± 0.13 NS | 1.80 ± 0.16 NS | 1.88 ± 0.10 NS | 1.85 ± 0.07 abc | |
| Average for sulfur | 1.76 ± 0.06 b | 1.78 ± 0.05 ab | 1.80 ± 0.05 a | 1.78 | |
| Line | Nitrogen Dose (kg ha−1) | Sulfur Dose (kg ha−1) | Average for Nitrogen | ||
|---|---|---|---|---|---|
| 0 | 20 | 40 | |||
| V1 | 0 | 131.0 ± 9.47 NS * | 131.9 ± 9.61 NS | 131.2 ± 9.04 NS | 131.4 ± 5.09 NS |
| 40 | 133.1 ± 9.63 NS | 132.9 ± 10.26 NS | 132.7 ± 11.43 NS | 132.9 ± 5.68 NS | |
| 60 | 134.7 ± 9.12 NS | 136.5 ± 8.94 NS | 137.6 ± 11.42 NS | 136.3 ± 5.37 NS | |
| 80 | 139.9 ± 9.49 NS | 138.4 ± 9.24 NS | 140.1 ± 8.95 NS | 139.5 ± 5.01 NS | |
| 100 | 143.5 ± 9.65 NS | 142.1 ± 8.15 NS | 142.9 ± 9.07 NS | 142.8 ± 4.87 NS | |
| 120 | 145.1 ± 9.31 NS | 149.3 ± 8.52 NS | 142.3 ± 8.43 NS | 145.6 ± 4.80 NS | |
| Average | 137.9 ± 3.68 NS | 138.5 ± 3.60 NS | 137.8 ± 3.78 NS | 138.1 ± 2.11 NS | |
| V2 | 0 | 132.1 ± 8.69 NS | 132.9 ± 9.20 NS | 132.4 ± 8.34 NS | 132.5 ± 4.75 NS |
| 40 | 134.7 ± 10.41 NS | 131.9 ± 10.85 NS | 139.4 ± 9.51 NS | 135.3 ± 5.62 NS | |
| 60 | 135.1 ± 10.10 NS | 147.2 ± 8.76 NS | 136.8 ± 9.83 NS | 139.7 ± 5.36 NS | |
| 80 | 139.9 ± 9.38 NS | 141.0 ± 10.75 NS | 145.9 ± 9.49 NS | 142.3 ± 5.40 NS | |
| 100 | 142.2 ± 8.94 NS | 140.8 ± 10.51 NS | 147.3 ± 9.98 NS | 143.4 ± 5.37 NS | |
| 120 | 145.3 ± 7.58 NS | 145.1 ± 9.19 NS | 148.3 ± 9.28 NS | 146.3 ± 4.74 NS | |
| Average | 138.2 ± 3.58 NS | 139.8 ± 3.87 NS | 141.7 ± 3.70 NS | 139.9 ± 2.13 NS | |
| 0 | 131.6 ± 6.13 NS | 132.4 ± 6.34 NS | 131.8 ± 5.87 NS | 131.9 ± 3.43 d | |
| 40 | 133.9 ± 6.77 NS | 132.4 ± 7.12 NS | 136.1 ± 7.16 NS | 134.1 ± 3.94 cd | |
| 60 | 134.9 ± 6.49 NS | 141.9 ± 6.18 NS | 137.2 ± 7.19 NS | 138.0 ± 3.75 bc | |
| 80 | 139.9 ± 6.36 NS | 139.7 ± 6.77 NS | 143.0 ± 6.28 NS | 140.9 ± 3.64 ab | |
| 100 | 142.8 ± 6.28 NS | 141.5 ± 6.34 NS | 145.1 ± 6.46 NS | 143.1 ± 3.57 a | |
| 120 | 145.2 ± 5.72 NS | 147.2 ± 6.01 NS | 145.3 ± 6.04 NS | 145.9 ± 3.33 a | |
| Average for sulfur | 138.1 ± 2.55 NS | 139.2 ± 2.62 NS | 139.7 ± 2.64 NS | 139.0 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulig, B.; Oleksy, A.; Rapacz, M.; Klimek-Kopyra, A.; Lepiarczyk, A.; Filipek-Mazur, B. Optimalization of Nitrogen and Sulfur Fertilization of Hypoallergenic Winter Wheat Lines. Sustainability 2025, 17, 9844. https://doi.org/10.3390/su17219844
Kulig B, Oleksy A, Rapacz M, Klimek-Kopyra A, Lepiarczyk A, Filipek-Mazur B. Optimalization of Nitrogen and Sulfur Fertilization of Hypoallergenic Winter Wheat Lines. Sustainability. 2025; 17(21):9844. https://doi.org/10.3390/su17219844
Chicago/Turabian StyleKulig, Bogdan, Andrzej Oleksy, Marcin Rapacz, Agnieszka Klimek-Kopyra, Andrzej Lepiarczyk, and Barbara Filipek-Mazur. 2025. "Optimalization of Nitrogen and Sulfur Fertilization of Hypoallergenic Winter Wheat Lines" Sustainability 17, no. 21: 9844. https://doi.org/10.3390/su17219844
APA StyleKulig, B., Oleksy, A., Rapacz, M., Klimek-Kopyra, A., Lepiarczyk, A., & Filipek-Mazur, B. (2025). Optimalization of Nitrogen and Sulfur Fertilization of Hypoallergenic Winter Wheat Lines. Sustainability, 17(21), 9844. https://doi.org/10.3390/su17219844

