Multi-Scale Analysis of Changes in Ecosystem Service Values Driven by Land Use Transformation: A Case Study of the Zhengzhou Metropolitan Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Pre-Processing
2.3. Research Methodology
2.3.1. Research Approach
2.3.2. Analysis of the Spatial and Temporal Dynamics of Land-Use Change
2.3.3. Accounting for the Value of Ecosystem Services
2.3.4. Sensitivity Analysis of the Value of Ecosystem Services
2.3.5. Geodetector
2.3.6. Driver Selection
3. Results and Analysis
3.1. Spatio-Temporal Dynamic Analysis of LULC
3.2. ESV Spatiotemporal Evolution Characteristics
3.2.1. ESV Time Variation
3.2.2. ESV Spatial Variation
3.3. Sensitivity Testing
3.4. Analysis of Factors Influencing the Value of Ecosystem Services
3.4.1. Factor Detection Results
3.4.2. Interactive Detection Results
4. Discussion
4.1. Factors Influencing Land-Use Change
4.2. Impact of Land-Use Change on the Value of Ecosystem Services
4.3. Analysis of the Effect of Driving Factors on ESV at Different Grid Scales
4.4. Limitations and Directions for Future Research
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Zhang, F. Spatial and Temporal Evolution and Impact Factors Analysis of Ecosystem Service Value in the Liaohe River Delta over the Past 30 Years. Huanjing Kexue 2024, 45, 228–238. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, C.X. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Rao, Y.; Zhou, M.; Ou, G.; Dai, D.; Zhang, L.; Zhang, Z.; Nie, X.; Yang, C. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean. Prod. 2018, 186, 662–672. [Google Scholar] [CrossRef]
- Baró, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Haase, D.; Gómez-Baggethun, E. Mapping ecosystem service capacity, flow and demand for landscape and urban planning: A case study in the Barcelona metropolitan region. Land Use Policy 2016, 57, 405–417. [Google Scholar] [CrossRef]
- He, S.; Su, Y.; Shahtahmassebi, A.R.; Huang, L.; Zhou, M.; Gan, M.; Deng, J.; Zhao, G.; Wang, K.E. Assessing and mapping cultural ecosystem services supply, demand and flow of farmlands in the Hangzhou metropolitan area, China-ScienceDirect. Sci. Total Environ. 2019, 692, 756–768. [Google Scholar] [CrossRef]
- Shi, Y.; Shi, D.; Zhou, L.; Fang, R. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai. Ecol. Indic. 2020, 115, 106418. [Google Scholar] [CrossRef]
- Sun, X.; Crittenden, J.C.; Li, F.; Lu, Z.; Dou, X. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci. Total Environ. 2018, 622–623, 974. [Google Scholar] [CrossRef] [PubMed]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Yang, R.; Ren, F.; Xu, W.; Ma, X.; Zhang, H.; He, W. China’s ecosystem service value in 1992–2018: Pattern and anthropogenic driving factors detection using Bayesian spatiotemporal hierarchy model-ScienceDirect. J. Environ. Manag. 2022, 302, 114089. [Google Scholar] [CrossRef]
- Lin, Q.; Su, H.; Sammonds, P.; Xu, M.; Yan, C.; Zhu, Z. Evaluation and Prediction of Ecosystem Services Value in Urban Agglomerations Using Land Use/Cover Change Analysis: Case Study of Wuhan in China. Land 2024, 13, 1154. [Google Scholar] [CrossRef]
- Tribot, A.S.; Deter, J.; Mouquet, N. Integrating the aesthetic value of landscapes and biological diversity. Proc. R. Soc. Biol. Sci. 2018, 285, 20180971. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, T.; Fu, B. The value of ecosystem services in China: A systematic review for twenty years. Ecosyst. Serv. 2021, 52, 101365. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Huang, J.; Shi, Q.; Li, Y. A Revisit to the Impacts of Land Use Changes on the Human Wellbeing via Altering the Ecosystem Provisioning Services. Adv. Meteorol. 2013, 2013, 183–186. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Hu, F.; Chen, Y.; Zhang, C.C.; Hu, G.H. Spatial and temporal evolution and prediction of ecosystem service value in Taihang Mountains based on MCCA land use scenario modeling. Environ. Sci. 2024, 45, 5912–5923. [Google Scholar]
- An, Y.; Zhao, W.; Li, C.; Ferreira, C.S.S. Temporal changes on soil conservation services in large basins across the world. Catena 2022, 209, 105793. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X. Synergistic relationships of ecosystem service trade-offs and their spatial and temporal heterogeneity in the Yellow River Basin. Environ. Sci. 2025, 46, 972–989. [Google Scholar]
- Li, Y.Q.; Han, L.; Zhu, H.L.; Zhao, Y.H.; Liu, Z.; Chen, R. Change of ecological service value before and after returning farmland to forest based on land use in Yan’an City. J. Northwest For. Univ. 2020, 35, 203–211. [Google Scholar]
- Chen, J.; Huang, Y. Spatiotemporal evolution of ecosystem service value and its driving force in Ningxia Hui Autonomous Region. Res. Soil Water Conserv. 2021, 28, 382–389. [Google Scholar]
- Yu, Y.Y.; Li, J.; Zhou, Z.X.; Ma, X.P.; Zhang, C. Expression of ecosystem service tradeoff synergistic relationship based on multi-scale in Qinba Mountain area. Acta Ecol. Sin. 2020, 40, 5465–5477. [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region:A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Hu, B.; Kang, F.; Han, H.; Cheng, X.; Li, Z. Exploring drivers of ecosystem services variation from a geospatial perspective: Insights from China’s Shanxi Province. Ecol. Indic. 2021, 131, 108188. [Google Scholar] [CrossRef]
- Deng, L.; Yang, J.; Yin, X.; Jia, K.; Sun, J.; Shu, S.; Huang, A. Supply and demand of ecosystem services and their responses to urbanization at multiple spatial scales in the Greater Bay Area of Guangdong, Hong Kong and Macao. J. Ecol. 2024, 44, 9094–9107. [Google Scholar]
- Zhang, J.; Yang, W.; Li, J.; Shen, S.; Ma, L.; Chen, L. Spatial and temporal changes in the value of ecosystem services and their driving forces in Beijing. J. Ecol. 2025, 45, 306–318. [Google Scholar]
- Zhu, L.; Zhao, M.; Li, Y.; Fan, Y.; Wang, J. Spatial and temporal relationship between ecosystem service value and human activity intensity in Xi’an metropolitan area. J. Ecol. Rural Environ. 2024, 40, 325–334. [Google Scholar]
- Zhang, X.; Luo, J.; Shi, P.; Zhou, L. Spatial and temporal evolution of ecosystem service value and topographic gradient differentiation characteristics in Zhangye at grid scale. J. Appl. Ecol. 2020, 31, 543–553. [Google Scholar]
- Kourtit, K.; Nijkamp, P.; Suzuki, S. Are global cities sustainability champions? A double delinking analysis of environmental performance of urban agglomerations. Sci. Total Environ. 2020, 709, 134963. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.; Weng, Q.; Weaver, R. A Geographically Weighted Regression Analysis of the Underlying Factors Related to the Surface Urban Heat Island Phenomenon. Remote Sens. 2018, 10, 1428. [Google Scholar] [CrossRef]
- Zhang, Y.; She, J.; Long, X.; Zhang, M. Spatio-temporal evolution and driving factors of eco-environmental quality based on RSEI in Chang-Zhu-Tan metropolitan circle, central China. circle, central China. Ecol. Indic. 2022, 144, 109436. [Google Scholar] [CrossRef]
- Sang, X.; Guo, Q.Z.; Pan, Y.Y.; Fu, Y. Research on land use dynamic change and prediction in Lucheng City of Shanxi Province based on the results of a study on the impacts of land use change and prediction in Lucheng City. on TM and OLI. Remote Sens. Land Resour. 2018, 30, 125–131. [Google Scholar]
- Wang, R.S.; Pan, H.Y.; Liu, Y.H.; Tang, Y.P.; Zhang, Z.F.; Ma, H.J. Evolution and driving force of ecosystem service value based on dynamic equivalent in Leshan City. Acta Ecol. Sin. 2022, 42, 76–90. [Google Scholar] [CrossRef]
- Gaodi, X.; Caixia, Z.; Lin Zab, L.Z. Dynamic changes in the value of China’s ecosystem services-ScienceDirect. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar]
- Wu, H.Z.; Guo, A.; Sun, Z.Y. Impacts of land use change on ecological services value in Duolun County of Inner Mongolia based on RS and GIS. Sci. Geogr. Sin. 2011, 31, 110–116. [Google Scholar]
- Huang, M.Y.; Fang, B.; Yue, W.Z.; Feng, S.R. Spatial differentiation of ecosystem service values and its geographical detection in Chaohu Basin during 1995–2017. Geogr. Res. 2019, 38, 2790–2803. [Google Scholar]
- Xu, Y.; Yang, D.; Tang, L.; Qiao, Z.; Ma, L.; Chen, M. Exploring the Impact of Grain-for-Green Program on Trade-Offs and Synergies among Ecosystem Services in West Liao River Basin, China. Remote Sens. 2023, 15, 2490. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Yang, X.; Liang, T.; Zhang, Q.; Liao, X.; White, J.R.; Rinklebe, J. Interactive influences of meteorological and socioeconomic factors on ecosystem service values in a river basin with Interactive influences of meteorological and socioeconomic factors on ecosystem service values in a river basin with different geomorphic features. Sci. Total Environ. 2022, 829, 154595. [Google Scholar]
- Hu, M.; Li, Z.; Wang, Y.; Jiao, M.; Li, M.; Xia, B. Spatio-temporal changes in ecosystem service value in response to land-use/cover changes in the Pearl River Delta. Resour. Conserv. Recycl. 2019, 149, 106–114. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Shi, W.; Zhu, X. Impact of land use land cover changes on ecosystem service value-A case study of Guangdong, Hong Kong, and Macao in South China. PLoS ONE 2020, 15, e0231259. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Pickett, S.T.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, S.; Yu, Y.; Tong, G.; Mo, L.; Yan, D.; Li, F. Spatiotemporal interaction between ecosystem services and urbanization: Case study of Nanjing City, China. Ecol. Indic. 2018, 95, 917–929. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Wei, Y.D. Effect of land-use change and optimization on the ecosystem service values of Jiangsu province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Chen, Y.; Fang, C. Factors influencing ecosystem services in the Pearl River Delta, China: Spatiotemporal differentiation and varying importance. Resour. Conserv. Recycl. 2021, 168, 105477. [Google Scholar] [CrossRef]
- Han, X.; Yu, J.; Shi, L.N.; Zhao, X.; Wang, J. Spatiotemporal evolution of ecosystem service values in an area dominated by vegetation restoration: Quantification and mechanisms. Ecol. Indic. 2021, 131, 108191. [Google Scholar] [CrossRef]
- Gao, W.; Li, X.Y.; Zhang, Y.; Chen, Y. Evolution and prediction of ecosystem service values of the Yangtze River Basin. Acta Ecol. Sin. 2023, 43, 6203–6211. [Google Scholar]
- Huang, M.; Yue, W.; Fang, B.; Feng, S. 1970–2015 Characteristics of ecological service value scale response and geodetection mechanism in Dabie mountain area. J. Geogr. 2019, 74, 1904–1920. [Google Scholar]
- Yu, H.; Wang, Y. Spatial and temporal evolution of ecosystem service value and spatial differentiation mechanism in Dongjiang Basin. J. Appl. Ecol. 2023, 34, 2498–2506. [Google Scholar]
- Grêt-Regamey, A.; Brunner, S.H.; Altwegg, J.; Bebi, P. Facing uncertainty in ecosystem services-based resource management. J. Environ. Manag. 2013, 127, S145–S154. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Jin, X.; Zhang, X.; Liu, J.; Zhou, Y. Ecosystem services to support sustainable development: The modifiable areal unit problem in the transition between evaluation and management units. Sustain. Dev. 2024, 32, 6253–6273. [Google Scholar] [CrossRef]
- Dallimer, M.; Davies, Z.G.; Diaz-Porras, D.F.; Irvine, K.N.; Maltby, L.; Warren, P.H.; Armsworth, P.R.; Gaston, K.J. Historical influences on the current provision of multiple ecosystem services. Glob. Environ. Change 2015, 31, 307–317. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Liu, L.; Wang, W. Dynamic Analysis of Supply and Demand Coupling of Ecosystem Services in Loess Hilly Region: A Case Study of Lanzhou, China. Chin. Geogr. Sci. 2021, 31, 276–296. [Google Scholar] [CrossRef]






| Level 1 Type | Secondary Type | Farmland | Forest | Grassland | Water | Unutilized Land |
|---|---|---|---|---|---|---|
| Provisioning service | Food production | 1724.81 | 512.37 | 771.09 | 1623.35 | 20.29 |
| Raw materials production | 811.67 | 1176.93 | 1136.34 | 466.71 | 60.88 | |
| Water production | 40.58 | 608.76 | 629.05 | 16,821.96 | 40.58 | |
| Regulating service | Gas production | 1359.56 | 3870.67 | 3997.50 | 1562.47 | 223.21 |
| Climate production | 730.51 | 11,581.58 | 10,572.06 | 4646.84 | 202.92 | |
| Purify environment | 202.92 | 3393.81 | 3490.20 | 11,261.99 | 629.05 | |
| Hydrological regulation | 547.88 | 7579.01 | 7751.49 | 207,464.05 | 426.13 | |
| Supporting service | Soil conservation | 2090.06 | 4712.79 | 4870.05 | 1887.14 | 263.79 |
| Maintenance nutrient circulation | 243.50 | 360.18 | 365.25 | 142.04 | 20.29 | |
| biodiversity | 263.79 | 4291.73 | 4423.63 | 5174.43 | 243.50 | |
| Cultural service | Aesthetic landscape | 121.75 | 1882.07 | 1948.02 | 3835.16 | 101.46 |
| Total | 8137.04 | 39,969.91 | 39,954.69 | 254,886.15 | 2232.11 |
| Basis of Judgement | Interaction |
|---|---|
| q(A ∩ B) < Min(q(A),q(B)) | Nonlinear weakening |
| Min(q(A),q(B)) < q(A ∩ B) < Max(q(A),q(B)) | Single factor non-linear weakening |
| q(A ∩ B) > Max(q(A),q(B)) | Two-factor enhancement |
| q(A ∩ B) = q(A) + q(B) | Independent |
| q(A ∩ B) > q(A) + q(B) | Nonlinear enhancement |
| Land Use Types | Rate of Change | ||
|---|---|---|---|
| 2010~2015 | 2015~2020 | 2020~2022 | |
| Farmland | −0.65 | −0.41 | −0.25 |
| Forest | 0.07 | 0.50 | 0.39 |
| Grassland | 0.49 | −6.76 | −11.09 |
| Water | −1.46 | 1.29 | 0.83 |
| Built-up land | 3.00 | 1.85 | 1.29 |
| Unused land | −11.55 | −8.45 | 5.14 |
| Year | Land Use Types | 2022 | |||||
|---|---|---|---|---|---|---|---|
| Farmland | Forest | Grassland | Water | Built-Up Land | Unused Land | ||
| 2010 | Farmland | 35,301.30 | 660.92 | 139.41 | 112.32 | 2397.00 | 0.20 |
| Forest | 501.86 | 9470.39 | 12.70 | 0.50 | 14.71 | 0.01 | |
| Grassland | 439.62 | 237.20 | 460.28 | 2.72 | 22.44 | 0.11 | |
| Water | 137.57 | 0.84 | 0.49 | 477.63 | 52.91 | 0.14 | |
| Built-up land | 14.18 | 0.01 | 0.24 | 77.99 | 8196.55 | 0.09 | |
| Unused land | 0.37 | 0.00 | 0.12 | 0.66 | 0.93 | 0.03 | |
| Level 1 Type | Secondary Type | 2010 | 2015 | 2020 | 2022 | ||||
|---|---|---|---|---|---|---|---|---|---|
| Provisioning service | Food production | 73.70 | 138.10 | 71.49 | 134.09 | 70.05 | 132.41 | 69.65 | 131.88 |
| Raw materials production | 44.74 | 43.77 | 43.00 | 42.76 | |||||
| Water production | 19.65 | 18.82 | 19.36 | 19.48 | |||||
| Regulating service | Gas production | 96.89 | 554.56 | 95.36 | 541.70 | 93.74 | 544.80 | 93.12 | 544.35 |
| Climate production | 159.42 | 159.00 | 157.29 | 156.29 | |||||
| Purify environment | 53.37 | 52.79 | 52.54 | 52.28 | |||||
| Hydrological regulation | 244.87 | 234.55 | 241.23 | 242.66 | |||||
| Supporting service | Soil conservation | 134.75 | 209.99 | 132.34 | 206.98 | 130.03 | 203.74 | 129.19 | 202.40 |
| Maintenance nutrient circulation | 13.52 | 13.23 | 13.00 | 12.92 | |||||
| biodiversity | 61.71 | 61.41 | 60.71 | 60.29 | |||||
| Cultural service | Aesthetic landscape | 28.35 | 28.35 | 28.14 | 28.14 | 27.89 | 27.89 | 27.72 | 27.72 |
| Total | 930.99 | 930.99 | 910.90 | 910.90 | 908.84 | 908.84 | 906.35 | 906.35 | |
| Land Use Type | 2010 | 2015 | 2020 | 2022 |
|---|---|---|---|---|
| Farmland | 0.112 | 0.334 | 0.328 | 0.109 |
| Forest | 0.143 | 0.440 | 0.453 | 0.152 |
| Grassland | 0.017 | 0.052 | 0.035 | 0.009 |
| Water | 0.061 | 0.174 | 0.185 | 0.063 |
| Unused land | 0.000 | 0.000 | 0.000 | 0.000 |
| Factor Influence Factors | 1500 m Grid | 2000 m Grid | 2500 m Grid | 3000 m Grid | ||||
|---|---|---|---|---|---|---|---|---|
| q Statistic | p | q Statistic | p | q Statistic | p | q Statistic | p | |
| GDP (X1) | 0.494 | 0 | 0.493 | 0 | 0.494 | 0 | 0.493 | 0 |
| Temperatures (X2) | 0.237 | 0 | 0.239 | 0 | 0.236 | 0 | 0.239 | 0 |
| DEM (X3) | 0.575 | 0 | 0.571 | 0 | 0.571 | 0 | 0.571 | 0 |
| Slope degree (X4) | 0.585 | 0 | 0.582 | 0 | 0.581 | 0 | 0.582 | 0 |
| NDVI (X5) | 0.110 | 0 | 0.111 | 0 | 0.109 | 0 | 0.111 | 0 |
| FVC (X6) | 0.635 | 0 | 0.632 | 0 | 0.632 | 0 | 0.632 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Jiao, J.; Wang, A.; Xu, C. Multi-Scale Analysis of Changes in Ecosystem Service Values Driven by Land Use Transformation: A Case Study of the Zhengzhou Metropolitan Area. Sustainability 2025, 17, 9842. https://doi.org/10.3390/su17219842
Wang S, Jiao J, Wang A, Xu C. Multi-Scale Analysis of Changes in Ecosystem Service Values Driven by Land Use Transformation: A Case Study of the Zhengzhou Metropolitan Area. Sustainability. 2025; 17(21):9842. https://doi.org/10.3390/su17219842
Chicago/Turabian StyleWang, Shunsheng, Jing Jiao, Aili Wang, and Cundong Xu. 2025. "Multi-Scale Analysis of Changes in Ecosystem Service Values Driven by Land Use Transformation: A Case Study of the Zhengzhou Metropolitan Area" Sustainability 17, no. 21: 9842. https://doi.org/10.3390/su17219842
APA StyleWang, S., Jiao, J., Wang, A., & Xu, C. (2025). Multi-Scale Analysis of Changes in Ecosystem Service Values Driven by Land Use Transformation: A Case Study of the Zhengzhou Metropolitan Area. Sustainability, 17(21), 9842. https://doi.org/10.3390/su17219842
