Source Apportionment of Soil Heavy Metals in Urban Agglomerations Based on the APCS-MLR Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Processing
2.3. Source Apportionment Method (APCS-MLR Model)
2.4. Statistical Analyses
3. Results
3.1. Characteristics of Soil Heavy Metal Contents
3.2. Characteristics of Soil Heavy Metal Contents in Different Land Use Types
3.3. Source Apportionment of Soil Heavy Metals Under Different Land Use Types
3.3.1. Source Identification
- (1)
- Urban Green Space soils
- (2)
- Cropland Soils
- (3)
- Vegetable fields/orchards soils
3.3.2. Source Apportionment of Soil Heavy Metals Using the APCS-MLR Model
4. Discussion
4.1. Relationship Between Soil Heavy Metal Sources and Land Use Types
4.2. Strengths and Limitations of the Study
5. Conclusions
- The mean contents of As, Cr, and Ni in the study area were either below or close to their background values, with most coefficient of variation (CV) values ≤ 0.3, indicating minimal anthropogenic influence. In contrast, Cd, Cu, Pb, and Zn exhibited mean contents 1.19–2.1 times their background values, accompanied by moderate to high variability (CV: 0.57–1.55), demonstrating significant exogenous inputs.
- Distinct differences in heavy metal contents were observed among different land use types. Vegetable soils showed the highest average heavy metal contents, while urban green spaces and croplands exhibited comparable mean values. Urban green spaces displayed strong spatial heterogeneity in heavy metal distribution, reflecting pronounced urbanization impacts, whereas cropland soils maintained relatively homogeneous patterns.
- APCS-MLR analysis revealed that natural sources dominated contributions to As, Cr, and Ni (32.62–70.26%), except for Cr in urban green spaces. Combined traffic emissions and coal combustion constituted primary sources for Cu and Pb in urban green spaces (40.28–66.26%). Agricultural activities contributed similarly to Cd accumulation in cropland and vegetable fields/orchards soils (34.29–41.68%). Notably higher agricultural contributions to Cu and Zn were observed in vegetable fields/orchards soils (31.18–55.33%) versus conventional cropland soils (9.21–13.40%), reflecting differential fertilizer application intensities.
- At the urban agglomeration scale, significant disparities exist in predominant pollution sources and their respective contribution levels across different land use types. Urbanization and traffic emissions constitute the primary drivers of heavy metal accumulation in urban green spaces, whereas the degree of heavy metal accumulation in cropland soils demonstrates close correlation with cultivation types and intensity levels. The establishment of land use-specific heavy metal input inventories, coupled with the implementation of differentiated management strategies, offers a scientifically grounded pathway to address the complex challenges of coordinated soil pollution control in evolving urban landscapes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, P.W.; Wang, S.; Lei, M.; Guo, G.H.; Yang, J.; Wei, Y.; Gou, Y.L.; Li, P.Z.; Zhang, Z.G. Influencing factors identification and the nested structure analysis of heavy metals in soils in entire city and surrounding the multiple pollution sources. J. Hazard. Mater. 2023, 449, 130961. [Google Scholar] [CrossRef]
- Guo, G.H.; Li, K.; Zhang, D.G.; Lei, M. Quantitative source apportionment and associated driving factor identification for soil potential toxicity elements via combining receptor models, SOM, and geo-detector method. Sci. Total Environ. 2022, 830, 154721. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Weng, L.P.; Ma, J.; Wu, X.J.; Li, Y.T. Review on the last ten years of research on source identification of heavy metal pollution in soils. J. Agro-Environ. Sci. 2019, 38, 2219–2238. [Google Scholar] [CrossRef]
- Micó, C.; Recatalá, L.; Peris, A.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.Z.; He, L.; Wang, R.; Li, Z.J.; Hu, Z.W.; Wu, G.F. Digital mapping of heavy metals in urban soils: A review and research challenges. Catena 2023, 228, 107183. [Google Scholar] [CrossRef]
- Sofowote, U.M.; McCarry, B.E.; Marvin, C.H. Source apportionment of PAH in Hamilton Harbour suspended sediments: Comparison of two factor analysis methods. Environ. Sci. Technol. 2008, 42, 6007–6014. [Google Scholar] [CrossRef]
- Cai, S.; Chen, D.Y.; Pan, J.; Luo, H.J.; Ding, P.; Li, X.; Dang, Y.; Zhang, L.Y.; Hu, G.C. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Soils of Urban Parks in Guangzhou. Asian J. Ecotoxicol. 2025, 20, 344–355. [Google Scholar] [CrossRef]
- Xu, L.; Lin, Y.; Ge, S.X.; Ping, Z.X.; Jian, F.; Zhong, W.X.; Ran, X. Current Pollution Status, Health Risk Assessment and Source Apportionment of Heavy Metals in Vegetable Soil in Tongliang District, Chongqin. Environ. Sci. 2024, 46, 6037–6045. [Google Scholar] [CrossRef]
- Jin, G.Q.; Fang, W.; Shafi, M.; Wu, D.T.; Li, Y.Q.; Zhong, B.; Ma, J.W.; Liu, D. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang, China. Ecotoxicol. Environ. Saf. 2019, 184, 109495. [Google Scholar] [CrossRef]
- Shetaia, S.A.; Li, M.; Chen, J.; Wang, Y.; Elhebiry, M.S.; Abdelaal, A.; Su, H.; Chen, Z.; Salem, A. Comprehensive assessment of remarkable heavy metals contamination in road dust in Greater Cairo: Priority control factors based on source apportionment and risk assessment. J. Environ. Manag. 2025, 394, 127607. [Google Scholar] [CrossRef]
- Sun, L.; Carey, M.; Yang, L.; Chen, L.D.; Li, S.J.; Zhao, F.K.; Zhu, Y.G.; Meharg, C.; Meharg, A.A. Source Identification of Trace Elements in Peri-urban Soils in Eastern China. Expo. Health 2019, 11, 195–207. [Google Scholar] [CrossRef]
- Zhao, H.A.; Zang, L.; Zhang, G.J.; Zhu, Y.M. Soil Heavy Metal Pollution Characteristics and Source Apportionment at County Scale-Take Zhaoxian County as an Example. Chin. J. Soil Sci. 2018, 49, 710–719. [Google Scholar] [CrossRef]
- Peng, Y.; Yu, G.I. Assessment of heavy metal pollution on agricultural land in Chengdu city under different anthropogenic pressures based on APCS-MLR modelling. Ecol. Indic. 2024, 165, 112183. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, X.R. Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. J. Clean. Prod. 2019, 230, 1–10. [Google Scholar] [CrossRef]
- Chen, L.D.; Sun, R.H.; Sun, T.; Yang, L. Eco-security pattern building in urban agglomeration: Conceptual and theoretical thinking. Acta Ecol. Sin. 2021, 41, 4251–4258. [Google Scholar] [CrossRef]
- Koupaie, E.H.; Eskicioglu, C. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis. J. Hazard. Mater. 2015, 300, 855–865. [Google Scholar] [CrossRef]
- Kadi, M.W. “Soil Pollution Hazardous to Environment”: A case study on the chemical composition and correlation to automobile traffic of the roadside soil of Jeddah city, Saudi Arabia. J. Hazard. Mater. 2009, 168, 1280–1283. [Google Scholar] [CrossRef]
- Qu, M.K.; Chen, J.; Huang, B.; Zhao, Y.C. Source apportionment of soil heavy metals using robust spatial receptor model with categorical land-use types and RGWR-corrected in-situ FPXRF data. Environ. Pollut. 2021, 270, 116220. [Google Scholar] [CrossRef]
- GBW07408a/GSS-8a; Soil Standard Substance. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences: Langfang, China, 2017.
- GBW07427/GSS-13; Soil Composition Analysis Standard Substance. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences: Langfang, Hebei, China, 2015.
- Ma, J.W.; Lanwang, K.; Liao, S.Y.; Zhong, B.; Chen, Z.H.; Ye, Z.Q.; Liu, D. Source Apportionment and Model Applicability of Heavy Metal Pollution in Farmland Soil Based on Three Receptor Models. Toxics 2023, 11, 265. [Google Scholar] [CrossRef]
- Li, S.; Yang, J.N.; Su, G.J.; Li, Q.Q.; Meng, J.; Shi, B. Analysis of heavy metal pollution characteristics and influencing factors in China’s typical agricultural areas based on Catboost algorithm. Environ. Chem. 2024, 43, 3377–3387. Available online: https://link.cnki.net/urlid/11.1844.X.20240123.1344.032 (accessed on 28 October 2025).
- Pan, H.Y.; Lu, X.W.; Lei, K. A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Sci. Total Environ. 2017, 609, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Li, L.F.; Zhu, C.X.; Zeng, X.B.; Li, H.N.; Ye, J.; Li, F.; Wu, C.X. Accumulation Characteristics of Heavy Metals in Greenhouse Soil and Vegetables in Siping City, Jilin Province. Environ. Sci. 2018, 39, 2936–2943. [Google Scholar] [CrossRef]
- Fu, C.C.; Wang, W.Y.; Pan, J.J.; Wang, H.Q.; Yin, Z.Y. Spatial-temporal Variation and Source Apportionment of Soil Heavy Metals in Peri-urban Area—A Case Study of Zhetang Town, Nanjing. Acta Pedol. Sin. 2014, 51, 1066–1077. [Google Scholar] [CrossRef]
- He, K.W.; Han, R.X.; Wang, Z.; Xiao, Z.F.; Hao, Y.L.; Dong, Z.Z.; Xu, Q.; Li, G. Soil source, not the degree of urbanization determines soil physicochemical properties and bacterial composition in Ningbo urban green spaces. Sci. Total Environ. 2024, 930, 172550. [Google Scholar] [CrossRef]
- Shen, C.; Wang, W.J.; Sha, C.Y.; Xie, Y.Q.; Wang, M.; Wu, J. Distribution Characteristics, Source Analysis and Ecological Risk Assessment of Heavy Metals in the Typical Industry Reclaimed Soil. Environ. Sci. 2024, 45, 1769–1780. [Google Scholar] [CrossRef]
- Trujillo-González, J.M.; Torres-Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jiménez-Ballesta, R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [CrossRef]
- Hong, N.; Guan, Y.J.; Yang, B.; Zhong, J.; Zhu, P.F.; Ok, Y.S.; Hou, D.Y.; Tsang, D.C.W.; Guan, Y.T.; Liu, A. Quantitative source tracking of heavy metals contained in urban road deposited sediments. J. Hazard. Mater. 2020, 393, 122362. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Wu, L.; Fang, X.Z.; Wu, L.P.; Zhang, Y.J.; Mao, H.J. Particle size distribution and health risk assessment of heavy metals in PM_(2.5) in typical road environment in Tianjin. Environ. Pollut. Control. 2019, 41, 1202–1206. [Google Scholar]
- Lu, J.S.; He, H.C. Identifying the Origins and Spatial Distributions of Heavy Metals in the Soils of the Jiangsu Coast. Environ. Sci. 2018, 39, 2853–2864. [Google Scholar] [CrossRef]
- Donado, E.P.; Oliveira, M.L.S.; Goncalves, J.O.; Dotto, G.L.; Silva, L.F.O. Soil contamination in Colombian playgrounds: Effects of vehicles, construction, and traffic. Environ. Sci. Pollut. Res. 2021, 28, 166–176. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wu, D.; Wang, C.X.; Fu, X.; Wu, G. Impact of coal power generation on the characteristics and risk of heavy metal pollution in nearby soil. Ecosyst. Health Sustain. 2020, 6, 1787092. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, T.; Zhang, Y.K.; Zhang, B.H.; Bi, S.Q.; Zhou, X.; Zhang, W.; Cao, H.B.; Han, Z.Y. Source Apportionment and Pollution Assessment of Soil Heavy Metal Pollution Using PMF and RF Model: A Case Study of a Typical Industrial Park in Northwest China. Environ. Sci. 2023, 44, 3488–3499. [Google Scholar] [CrossRef]
- Wang, K.; Hua, S.B.; Tian, H.Z.; Zhu, C.Y.; Gao, J.J.; Wang, Y.; Zhou, J.R.; Zhu, J.X. Atmospheric emission inventory of typical heavy metals from iron and steel industry in China, 2011. China Environ. Sci. 2015, 35, 2934–2938. [Google Scholar] [CrossRef]
- Liu, H.; Ding, L.; Wu, Z.; Liu, J.; Wang, F.H. Temporal and spatial differences of heavy metal sources and ecological risks in street dust in the city: A case of Shijiazhuang City. Chin. J. Eco-Agric. 2024, 32, 2117–2128. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.F.; Hou, H.; Shangguan, Y.X.; Li, F.S. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci. Total Environ. 2014, 468–469, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Han, P.P.; Xie, J.; Wang, J.; Qiang, X.P.; Ai, L.; Shi, Z.H. Source apportionment of heavy metals in farmland soil from new submerged area in Danjiangkou Reservoir. China Environ. Sci. 2016, 36, 2437–2443. [Google Scholar] [CrossRef]
- Tang, R.; Cai, B.; Wang, H.J.; Huang, X.M.; Song, X.Y.; Han, Z.L.; Zhao, M.L.; Sun, J.; Huang, H.H.; Huang, J.; et al. Human activities contributing to the accumulation of high-risk trace metal(loid)s in soils of China’s five major urban agglomerations. Sci. Total Environ. 2023, 905, 167218. [Google Scholar] [CrossRef]
- Sonoda, K.; Hashimoto, Y.; Wang, S.L.; Ban, T. Copper and zinc in vineyard and orchard soils at millimeter vertical resolution. Sci. Total Environ. 2019, 689, 958–962. [Google Scholar] [CrossRef]
- Peng, H.; Chen, Y.L.; Weng, L.P.; Ma, J.; Ma, Y.L.; Li, Y.T.; Islam, M.S. Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Sci. Total Environ. 2019, 660, 776–786. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Huang, Y.X.; Carvalho, R.; Choudhary, M.; Da Silva, S.; Colee, J.; Huerta, A.; Vallad, G.E.; Freeman, J.H.; Jones, J.B.; et al. Magnesium Oxide Nanomaterial, an Alternative for Commercial Copper Bactericides: Field-Scale Tomato Bacterial Spot Disease Management and Total and Bioavailable Metal Accumulation in Soil. Environ. Sci. Technol. 2021, 55, 13561–13570. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, E.F.; Yang, X.M.; Wang, B.L.; Lin, J.K.; Yan, M.X.; Bi, S.J. Critical Review on Heavy Metal Contamination in Urban Soil and Surface Dust. Environ. Sci. 2024, 45, 2926–2938. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Cao, Z.W.; Zhi, J.Q.; Zhang, L.L.; Luo, Y.M.; Sun, Y. Contents of various components in manure at intensive livestock farms in Beijing. Anim. Husb. Vet. Med. 2023, 55, 41–49. Available online: https://kns.cnki.net/kcms2/article/abstract?v=-NKfxA6wmaFB1L7AzSSaV_oLvTUdDky-doFN4iLjdvLRVGF9Y2_pL14CsK-tea2VBfu5e6jhLPo_9hdUxbzjkjhzbpqMNpLA0V6MSPYnTD_imbO6kjgeLsXYS0qIsa002rLCJl_fy3qX-4mTYwMxlmt_U3v01tw8XZFKI_O3m-TnFAHur5zpxw==&uniplatform=NZKPT&language=CHS (accessed on 28 October 2025).




| Category | As | Cr | Cd | Cu | Ni | Pb | Zn | |
|---|---|---|---|---|---|---|---|---|
| All Samples (n = 182) | min | 5.42 | 39.8 | 0.06 | 14.01 | 17.99 | 12.85 | 45.54 |
| max | 17.11 | 300.53 | 4.47 | 201.83 | 53.11 | 173.81 | 552.35 | |
| mean | 9.65 | 63.43 | 0.21 | 29.86 | 30.56 | 30.31 | 97.08 | |
| CV | 0.22 | 0.36 | 1.55 | 0.59 | 0.24 | 0.57 | 0.57 | |
| Urban Green Spaces (n = 92) | min | 0.22 | 0.36 | 1.55 | 0.59 | 17.99 | 0.57 | 0.57 |
| max | 14.39 | 142.66 | 0.55 | 106.38 | 44.61 | 123.34 | 324.54 | |
| mean | 9.17 | 59.49 | 0.17 | 28.16 | 28.58 | 30.23 | 87.72 | |
| CV | 0.17 | 0.23 | 0.42 | 0.44 | 0.18 | 0.58 | 0.43 | |
| Croplands (n = 71) | min | 6.46 | 39.8 | 0.08 | 15.53 | 18.31 | 14.13 | 49.77 |
| max | 17.11 | 105.09 | 0.36 | 50.67 | 51.58 | 55.63 | 198.45 | |
| mean | 9.99 | 63.25 | 0.2 | 26.73 | 31.61 | 27.92 | 89.28 | |
| CV | 0.26 | 0.23 | 0.29 | 0.27 | 0.26 | 0.26 | 0.31 | |
| Vegetable Field/Orchard (n = 19) | min | 7.85 | 51.35 | 0.15 | 28.73 | 24.89 | 20.02 | 85.01 |
| max | 16.11 | 300.53 | 4.47 | 201.83 | 53.11 | 173.81 | 552.35 | |
| mean | 10.63 | 83.22 | 0.47 | 49.74 | 36.28 | 39.61 | 171.58 | |
| CV | 0.23 | 0.65 | 2.08 | 0.82 | 0.25 | 0.84 | 0.68 | |
| Background Value [22] | 10.50 | 71.20 | 0.10 | 23.90 | 29.90 | 21.90 | 81.90 | |
| Category | Urban Green Spaces | Croplands | Vegetable Fields/Orchards | |||||
|---|---|---|---|---|---|---|---|---|
| PCA1 | PCA2 | PCA3 | PCA1 | PCA2 | PCA3 | PCA1 | PCA2 | |
| As | 0.52 | 0.11 | 0.72 | 0.68 | −0.02 | 0.67 | 0.90 | 0.03 |
| Cr | 0.09 | 0.86 | 0.38 | 0.91 | 0.18 | 0.12 | 0.92 | 0.12 |
| Cd | 0.38 | 0.84 | 0.08 | 0.16 | 0.59 | 0.75 | 0.21 | 0.87 |
| Cu | 0.88 | 0.31 | 0.22 | 0.79 | 0.44 | 0.26 | 0.21 | 0.94 |
| Ni | 0.01 | 0.25 | 0.91 | 0.91 | 0.22 | 0.22 | 0.94 | 0.01 |
| Pb | 0.91 | 0.11 | 0.09 | 0.65 | 0.40 | 0.36 | 0.84 | 0.28 |
| Zn | 0.70 | 0.56 | 0.09 | 0.27 | 0.91 | 0.15 | −0.10 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Y.; Zhang, Y.; Wang, X.; Li, M.; Yang, L. Source Apportionment of Soil Heavy Metals in Urban Agglomerations Based on the APCS-MLR Model. Sustainability 2025, 17, 9798. https://doi.org/10.3390/su17219798
Zhang Y, Wang Y, Zhang Y, Wang X, Li M, Yang L. Source Apportionment of Soil Heavy Metals in Urban Agglomerations Based on the APCS-MLR Model. Sustainability. 2025; 17(21):9798. https://doi.org/10.3390/su17219798
Chicago/Turabian StyleZhang, Yanjie, Yunxia Wang, Yuan Zhang, Xinmiao Wang, Min Li, and Lei Yang. 2025. "Source Apportionment of Soil Heavy Metals in Urban Agglomerations Based on the APCS-MLR Model" Sustainability 17, no. 21: 9798. https://doi.org/10.3390/su17219798
APA StyleZhang, Y., Wang, Y., Zhang, Y., Wang, X., Li, M., & Yang, L. (2025). Source Apportionment of Soil Heavy Metals in Urban Agglomerations Based on the APCS-MLR Model. Sustainability, 17(21), 9798. https://doi.org/10.3390/su17219798
