The Role of Plant Genetic Resources and Grain Variety Mixtures in Building Sustainable Agriculture in the Context of Climate Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Nature and Purpose of the Work
- present the importance of genetic diversity for plant resistance and crop stability,
- discuss strategies for the conservation and use of genetic resources (in situ and ex situ),
- analyze the application of modern genome editing techniques (CRISPR/Cas9, base editing, prime editing),
- to identify synergies between genetic resources, variety mixtures, and participatory breeding (EPB/PPB).
2.2. Data Sources
2.3. Review Procedure
- Identification of sources—searching for publications using specific keywords: crop wild relatives, plant genetic resources, variety mixtures, biodiversity, wheat, barley, sustainable agriculture, CRISPR, in situ conservation, ex situ conservation.
- Publication selection—elimination of duplicates and materials of low scientific quality.
- Qualitative analysis—evaluation of content in relation to the research objectives and thematic areas.
- Comparative synthesis—compilation of agronomic, genetic, and ecological research results in the context of sustainable agriculture and adaptation to climate change.
2.4. Analytical Framework
- agronomic—assessment of the effectiveness of inter- and intraspecific mixtures in reducing pathogen pressure and stabilizing yields,
- ecological—analysis of mechanisms such as the barrier effect, induced resistance, and genotype complementarity,
- evolutionary-genetic—identification of adaptive alleles and genetic mechanisms in CWRs and local varieties associated with tolerance to biotic and abiotic stresses.
2.5. Genome Editing Techniques
2.6. Example of Practical Application
2.7. Limitations of the Study
3. Genetic Diversity for Sustainable Agriculture
3.1. The Importance and Applications of Crop Wild Relatives in Sustainable Agriculture
3.2. Gene Pools and Challenges in Using Crop Wild Relatives (CWRs)
3.3. Conservation and Use of Crop Wild Relatives: In Situ and Ex Situ Strategies
3.4. Crop Wild Relatives (CWRs) for Abiotic and Biotic Stress Tolerance
3.5. Genome Editing of Crop Wild Relatives: Advances, Applications, and Challenges
3.6. Summary of Genetic Diversity for Sustainable Agriculture
4. Genetic Resistance as a Basis for Sustainable Wheat and Barley Production
4.1. Wild Ancestors and Local Varieties: Foundations for Breeding Resistant Cereal Varieties
4.2. Application of Resistant Varieties in Integrated Crop Management
4.3. Role of Variety Mixtures in Enhancing Genetic Diversity and Disease Resilience
4.4. Summary: Genetic Resistance as a Basis for Sustainable Wheat and Barley Production
5. Benefits of Variety Mixtures
6. The Role of Genetic Resources and Variety Mixtures in Diversified Agriculture
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Żmija, D. Zrównoważony rozwój rolnictwa i obszarów wiejskich w Polsce. Stud. Ekon. Univ. Econ. Katowice 2014, 166, 149–158. [Google Scholar]
- Stokłosa, K. Dobrostan zwierząt gospodarskich a zasada zrównoważonego rolnictwa. Eunomia 2018, 94, 107–113. [Google Scholar]
- Ortiz, A.M.D.; Outhwaite, C.L.; Dalin, C.; Newbold, T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. One Earth 2021, 4, 88–101. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Santamarina, C.; Mathieu, L.; Bitocchi, E.; Pieri, A.; Bellucci, E.; Di Vittori, V.; Susek, K.; Scossa, F.; Nanni, L.; Papa, R. Agroecological genomics and participatory science: Optimizing crop mixtures for agricultural diversification. Trends Plant Sci. 2025, 30, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in Sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef]
- Bellucci, E.; Bitocchi, E.; Rau, D.; Nanni, L.; Ferradini, N.; Giardini, A.; Rodriguez, M.; Attene, G.; Papa, R. Population structure of barley landrace populations and gene-flow with modern varieties. PLoS ONE 2013, 8, e83891. [Google Scholar] [CrossRef] [PubMed]
- Pietrusińska, A.; Żurek, M.; Piechota, U.; Słowacki, P.; Smolińska, K. Poszukiwanie źródeł odporności na choroby w odmianach dawnych i miejscowych oraz dzikich gatunkach pokrewnych zbóż: Praca Przeglądowa. Acta Sci. Pol. Agric. 2018, 73, 45–60. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Chaudhary, R.; Sharma, S.; Janjhua, Y.; Thakur, P.; Sharma, P.; Keprate, A. Exploring the dynamics of climate-smart agricultural practices for sustainable resilience in a changing climate. Environ. Sustain. Indic. 2024, 24, 100535. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef]
- Fader, M.; Gerten, D.; Krause, M.; Lucht, W.; Cramer, W. Spatial decoupling of agricultural production and consumption: Quantifying dependence of countries on food imports due to domestic land and water constraints. Environ. Res. Lett. 2013, 8, 014046. [Google Scholar] [CrossRef]
- O’Neill, D.W.; Fanning, A.L.; Lamb, W.F.; Steinberger, J.K. A good life for all within planetary boundaries. Nat. Sustain. 2018, 1, 88–95. [Google Scholar] [CrossRef]
- Maxted, N.; Magos Brehm, J.; Abulaila, K.; Al-Zein, M.S.; Kehel, Z.; Yazbek, M. Review of crop wild relative conservation and use in West Asia and North Africa. Plants 2024, 13, 1343. [Google Scholar] [CrossRef] [PubMed]
- Buckler, E.S.; Thornsberry, J.M.; Kresovich, S. Molecular diversity, structure and domestication of grasses. Genet. Resour. 2001, 77, 213–218. [Google Scholar] [CrossRef]
- Gacek, E.; Głazek, M.; Matyjaszczyk, E.; Pruszyński, G.; Pruszyński, S.; Stobiecki, S. Metody Ochrony w Integrowanej Ochronie Roślin; Centrum Doradztwa Rolniczego w Brwinowie, Oddział w Poznaniu: Brwinów, Poland, 2016. [Google Scholar]
- Pietrusińska-Radzio, A.; Żurek, M. Wpływ rdzy brunatnej na uprawy pszenicy w kontekście zmian klimatu. Biul. Inst. Hodowl. Aklim. Rośl. 2024, 301, 63–68. [Google Scholar] [CrossRef]
- Stefan, L.; Hartmann, M.; Engbersen, N.; Six, J.; Schöb, C. Positive effects of crop diversity on productivity driven by changes in soil microbial composition. Front. Microbiol. 2021, 12, 660749. [Google Scholar] [CrossRef] [PubMed]
- Chadfield, V.G.A.; Hartley, S.E.; Redeker, K.R. Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases. New Phytol. 2022, 235, 2393–2405. [Google Scholar] [CrossRef]
- Huang, T.; Döring, T.F.; Zhao, X.; Weiner, J.; Dang, P.; Zhang, M.; Zhang, M.; Siddique, K.H.M.; Schmid, B.; Qin, X. Cultivar mixtures increase crop yields and temporal yield stability globally: A meta-analysis. Agron. Sustain. Dev. 2024, 44, 28. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, H.; Fan, J.; Wang, Y.; Li, Y.; Chen, J.; Fan, J.; Yang, S.; Hu, L.; Leung, H.; et al. Genetic diversity and disease control in rice. Nature 2000, 406, 718–722. [Google Scholar] [CrossRef]
- Gao, X.; Wu, M.; Xu, R.; Wang, X.; Pan, R.; Kim, H.J.; Liao, H. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS ONE 2014, 9, e95031. [Google Scholar] [CrossRef]
- Benjamin, J.; Oyedokun, D.O.; Oziegbe, E.V.; Oni, J.; Ogundare, E.B.; Ujah, G.O.; Adebayo, A. Cereal production in Africa: The threat of current plant pathogens in changing climate—A review. Discov. Agric. 2024, 2, 33. [Google Scholar] [CrossRef]
- Jarvis, A.; Lane, A.; Hijmans, R. The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23. [Google Scholar] [CrossRef]
- Price Waterhouse Coopers (PwC). Crop Wild Relatives: A Valuable Resource for Crop Development; PWC Valuations: London, UK, 2013. [Google Scholar]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022, 40, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Brozynska, M.; Furtado, A.; Henry, R.J. Genomics of crop wild relatives: Expanding the gene pool for crop improvement. Plant Biotechnol. J. 2016, 14, 1070–1085. [Google Scholar] [CrossRef]
- Tirnaz, S.; Zandberg, J.; Thomas, W.J.W.; Marsh, J.; Edwards, D.; Batley, J. Application of crop wild relatives in modern breeding: An overview of resources, experimental and computational methodologies. Front. Plant Sci. 2022, 13, 1008904. [Google Scholar] [CrossRef]
- Kaur, V.; Shubha, K.; Kumar, P. Role of crop wild relatives in crop improvement under changing climatic conditions. In Crop Improvement for Sustainability; Daya Publishing House: New Delhi, India, 2018; pp. 13–35. [Google Scholar]
- Xu, X.; Liu, X.; Ge, S.; Jensen, J.D.; Hu, F.; Li, X.; Wang, W. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 2012, 30, 105–111. [Google Scholar] [CrossRef]
- Wright, S.I.; Bi, I.V.; Schroeder, S.G.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S. The effects of artificial selection of the maize genome. Science 2005, 308, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Jiang, Y.; Wang, Z.; Gou, Z.; Lyu, J.; Li, W.; Tian, Z. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2015, 33, 408–414. [Google Scholar] [CrossRef]
- Kaur, A.; Sangha, M.K. Crop wild relatives (CWRs): A genetic pool for crop improvement: A review. Agric. Rev. 2025, 46, 109–115. [Google Scholar] [CrossRef]
- Harlan, J.R.; de Wet, J.M.J. Towards a rational classification of cultivated plants. Taxon 1971, 20, 509–517. [Google Scholar] [CrossRef]
- Gepts, P. A phylogenetic and genomic analysis of crop germplasm: A necessary condition for its rational conservation and utilization. In Proceedings of the Stadler Genetics Symposium, New York, NY, USA, 8–10 June 1998; pp. 163–181. [Google Scholar]
- Gepts, P.; Papa, R. Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. Environ. Biosaf. Res. 2003, 2, 89–103. [Google Scholar] [CrossRef]
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef]
- Perugini, L.D.; Murphy, J.P.; Marshall, D.; Brown-Guedira, G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timophevii. Theor. Appl. Genet. 2008, 116, 417–425. [Google Scholar] [CrossRef]
- Scholz, M.; Ruge-Wehling, B.; Habekuss, A.; Schrader, O.; Pendinen, G.; Fischer, K.; Wehling, P. Ryd4 (Hb): A novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor. Appl. Genet. 2009, 119, 837–849. [Google Scholar] [CrossRef]
- Feuillet, C.; Langridge, P.; Waugh, R. Cereal breeding takes a walk on the wild side. Trends Genet. 2007, 24, 24–32. [Google Scholar] [CrossRef]
- Hammer, K. Genepools—Structure, availability and elaboration for breeding (German, Engl. summary). Schriften Genet. Ressourcen 1998, 8, 4–14. [Google Scholar]
- Huang, K.; Jahani, M.; Gouzy, J.; Legendre, A.; Carrere, S.; Lázaro-Guevara, J.M.; González Segovia, E.G.; Todesco, M.; Mayjonade, B.; Rodde, N.; et al. The genomics of linkage drag in inbred lines of sunflower. Proc. Natl. Acad. Sci. USA 2023, 120, e2205783119. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Chauhan, B.S. Genetic diversity, conservation, and utilization of plant genetic resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Thompson, M.; Chauhan, B.S. Unravelling the genetic potential of untapped crop wild genetic resources for crop improvement. Conserv. Genet. Resour. 2022, 14, 109–124. [Google Scholar] [CrossRef]
- Díez, M.J.; De la Rosa, L.; Martín, I.; Guasch, L.; Cartea, M.E.; Mallor, C.; Casals, J.; Simó, J.; Rivera, A.; Anastasio, G. Plant genebanks: Present situation and proposals for their improvement. The case of the spanish network. Front. Plant Sci. 2018, 9, 1794. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. 2025. Available online: https://www.fao.org/wiews/data/ex-situ-sdg-251/overview/en/ (accessed on 26 August 2025).
- Börner, A.; Khlestkina, E.K. Ex-situ genebanks—Seed treasure chambers for the future. Russ. J. Genet. 2019, 55, 1299–1305. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Gupta, B.B.; Sood, M. Biotechnological interventions and their role in sustainable hill agriculture. J. Plant Sci. Res. 2015, 2, 1–8. [Google Scholar]
- Pandotra, P.; Gupta, S. Biotechnological approaches for conservation of plant genetic resources and traditional knowledge. In Plant Genetic Resources and Traditional Knowledge for Food Security; Springer: Berlin/Heidelberg, Germany, 2016; pp. 121–135. [Google Scholar]
- Dostatny, D.F.; Żurek, G.; Kapler, A.; Podyma, W. The ex situ conservation and potential usage of crop wild relatives in Poland on the example of grasses. Agronomy 2021, 11, 94. [Google Scholar] [CrossRef]
- Hajjar, R.; Hodgkin, T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 2007, 156, 1–13. [Google Scholar] [CrossRef]
- Singh, R.P.; Prasad, P.V.V.; Reddy, K.R. Climate change: Implications for stakeholders in genetic resources and seed sector. Adv. Agron. 2015, 129, 117–180. [Google Scholar]
- Börner, A.; Freytag, U.; Sperling, U. Analysis of wheat disease resistance data originating from screenings of Gatersleben genebank accessions during 1933 and 1992. Genet. Resour. Crop Evol. 2006, 53, 453–465. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; Ferreira De Siqeira, M.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Villa, T.C.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B. Defining and identifying crop land-races. Plant Genet. Resour. Charact. Util. 2005, 3, 373–384. [Google Scholar] [CrossRef]
- Curtin, S.; Qi, Y.; Peres, L.E.P.; Fernie, A.R.; Zsögön, A. Pathways to de novo domestication of crop wild relatives. Plant Physiol. 2022, 188, 1746–1756. [Google Scholar] [CrossRef]
- Yu, H.; Li, J.Y. Breeding future crops to feed the world through de novo domestication. Nat. Commun. 2022, 13, 1171. [Google Scholar] [CrossRef]
- Koinange, E.M.K.; Singh, S.P.; Gepts, P. Genetic control of the domestication syndrome in common bean. Crop Sci. 1996, 36, 1037–1045. [Google Scholar] [CrossRef]
- Zhu, H.C.; Li, C.; Gao, C.X. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 2020, 21, 661–677. [Google Scholar] [CrossRef]
- Zaidi, S.; Mansoor, S. Viral vectors for plant genome engineering. Front. Plant Sci. 2017, 8, 539. [Google Scholar] [CrossRef]
- Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep learning for plant stress phenotyping: Trends and future perspectives. Trends Plant Sci. 2018, 23, 88. [Google Scholar] [CrossRef]
- Van Dijk, A.D.J.; Kootstra, G.; Kruijer, W.; De Ridder, D. Machine learning in plant science and plant breeding. iScience 2021, 24, 101890. [Google Scholar] [CrossRef]
- Zheng, C.; Abd-Elrahman, A.; Whitaker, V. Remote sensing and machine learning in crop phenotyping and management, with an emphasis on applications in strawberry farming. Remote Sens. 2021, 13, 531. [Google Scholar] [CrossRef]
- Raubach, S.; Kilian, B.; Dreher, K.; Amri, A.; Bassi, F.M.; Boukar, O.; Cook, D.; Cruickshank, A.; Fatokun, C.; Haddad, N.E.; et al. From bits to bites: Advancement of the Germinate platform to support prebreeding informatics for crop wild relatives. Crop Sci. 2021, 61, 1538–1566. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. The Global Information System for Plant Genetic Resources for Food and Agriculture (GLIS). 2023. Available online: https://glis.fao.org/glis/ (accessed on 2 January 2023).
- Hanak, T.; Janjić, J.; Hay, F.R.; Brinch-Pedersen, H. Genome editing to re-domesticate and accelerate use of barley crop wild relatives. Front. Sustain. Food Syst. 2023, 7, 1331577. [Google Scholar] [CrossRef]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Wei, C.; Liu, J.; Yu, Z.; Zhang, B.; Gao, G.; Jiao, R. TALEN or Cas9—Rapid, efficient and specific choices for genome modifications. J. Genet. Genomics 2013, 40, 281–289. [Google Scholar] [CrossRef]
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471. [Google Scholar] [CrossRef]
- Ren, Q.; Sretenovic, S.; Liu, S.; Tang, X.; Huang, L.; He, Y.; Liu, L.; Guo, Y.; Zhong, Z.; Liu, G.; et al. PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants 2021, 7, 25–33. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Gao, X.D.; Podracky, C.J.; Nelson, A.T.; Koblan, L.W.; Raguram, A.; Levy, J.M.; Mercer, J.A.M.; Liu, D.R. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 2021, 40, 731–740. [Google Scholar] [CrossRef]
- Xie, K.; Minkenberg, B.; Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA 2015, 112, 3570–3575. [Google Scholar] [CrossRef]
- Kapusi, E.; Corcuera-Gómez, M.; Melnik, S.; Stoger, E. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 2017, 8, 540. [Google Scholar] [CrossRef]
- Holme, I.B.; Wendt, T.; Gil-Humanes, J.; Deleuran, L.C.; Starker, C.G.; Voytas, D.F.; Brinch-Pedersen, H. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol. Biol. 2017, 95, 111–121. [Google Scholar] [CrossRef]
- Lee, J.H.; Won, H.J.; Tran, P.H.N.; Lee, S.; Kim, H.Y.; Jung, J.H. Improving lignocellulosic biofuel production by CRISPR/Cas9-mediated lignin modification in barley. GCB Bioenergy 2021, 13, 742–752. [Google Scholar] [CrossRef]
- Zeng, Z.; Han, N.; Liu, C.; Buerte, B.; Zhou, C.; Chen, J.; Wang, M.; Zhang, Y.; Tang, Y.; Zhu, M.; et al. Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing. Ann. Bot. 2020, 126, 929–942. [Google Scholar] [CrossRef]
- Galli, M.; Martiny, E.; Imani, J.; Kumar, N.; Koch, A.; Steinbrenner, J.; Kogel, K.H. CRISPR/SpCas9-mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth. Plant Biotechnol. J. 2022, 20, 89–102. [Google Scholar] [CrossRef]
- Panting, M.; Holme, I.B.; Björnsson, J.M.; Zhong, Y.; Brinch-Pedersen, H. CRISPR/Cas9 and transgene verification of gene involvement in unfolded protein response and recombinant protein production in barley grain. Front. Plant Sci. 2021, 12, 755788. [Google Scholar] [CrossRef]
- Lemmon, Z.H.; Reem, N.T.; Dalrymple, J.; Soyk, S.; Swartwood, K.E.; Rodriguez-Leal, D.; Eck, J.V.; Lippman, Z.B. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 2018, 4, 766–770. [Google Scholar] [CrossRef]
- Zsögön, A.; Čermák, T.; Naves, E.R.; Notini, M.M.; Edel, K.H.; Weinl, S.; Freschi, L.; Voytas, D.F.; Kudla, J.; Peres, L.E.P. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 2018, 36, 1211–1216. [Google Scholar] [CrossRef]
- Yu, H.; Lin, T.; Meng, X.; Du, H.; Zhang, J.; Liu, G.; Chen, M.; Jing, Y.; Kou, L.; Li, X.; et al. A route to de novo domestication of wild allotetraploid rice. Cell 2021, 184, 1156–1170.e14. [Google Scholar] [CrossRef]
- Orman-Ligeza, B.; Harwood, W.; Hedley, P.E.; Hinchcliffe, A.; Macaulay, M.; Uauy, C.; Trafford, K. TRA1: A locus responsible for controlling Agrobacterium-mediated transformability in barley. Front. Plant Sci. 2020, 11, 355. [Google Scholar] [CrossRef]
- Choi, S.W.; Kumaishi, K.; Motohashi, R.; Enoki, H.; Chacuttayapong, W.; Takamizo, T.; Saika, H.; Endo, M.; Yamada, T.; Hirose, A.; et al. Oxicam-type nonsteroidal anti-inflammatory drugs enhance Agrobacterium-mediated transient transformation in plants. Plant Biotechnol. 2022, 39, 323–327. [Google Scholar] [CrossRef]
- Wang, K.; Shi, L.; Liang, X.; Zhao, P.; Wang, W.; Liu, J.; Chang, Y.; Hiei, Y.; Yanagihara, C.; Du, L.; et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 2022, 8, 110–117. [Google Scholar] [CrossRef]
- Holme, I.B.; Brinch-Pedersen, H.; Lange, M.; Holm, P.B. Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep. 2008, 27, 1833–1840. [Google Scholar] [CrossRef]
- Pietrusińska, A.; Czembor, J.H.; Czembor, P.C. Pyramiding of two resistance genes for leaf rust and powdery mildew resistance in common wheat. Cereal Res. Commun. 2011, 39, 577–588. [Google Scholar] [CrossRef]
- Pietrusińska, A.; Czembor, J.H. Piramidyzacja genów—Powszechne narzędzie używane w programach hodowlanych. Biuletyn IHAR 2015, 278, 3–16. [Google Scholar] [CrossRef]
- Chen, X.M.; Luo, Y.H.; Xia, X.C.; Xia, L.Q.; Chen, X.; Ren, Z.L.; He, A.H.; Jia, J.Z. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed. 2005, 124, 225–228. [Google Scholar] [CrossRef]
- Yahiaoui, N.; Kaur, N.; Keller, B. Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J. 2009, 57, 846–856. [Google Scholar] [CrossRef]
- Oliver, R.E.; Stack, R.W.; Miller, J.D.; Cai, X. Reaction of wild emmer wheat accessions to Fusarium head blight. Crop Sci. 2007, 47, 893–899. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Wellings, C.R.; Park, R.F. Wheat Rusts: An Atlas of Resistance Genes; CSIRO Publications: East Melbourne, Australia, 1995. [Google Scholar]
- Ambrozková, M.; Dedryver, F.; Dumalasová, V.; Hanzalová, A.; Bartoš, P. Determination on the cluster on wheat rust resistance genes Yr17, Lr37 and Sr38 by a molecular marker. Plant Prot. Sci. 2002, 38, 41–45. [Google Scholar] [CrossRef]
- Chen, P.D.; Qi, L.L.; Zhou, B.; Zhang, S.Z.; Liu, D.J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet. 1995, 91, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.; Jones, S.S.; Murray, T.D.; Line, R.F. Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis. 2000, 84, 40–44. [Google Scholar] [CrossRef]
- Górny, A.G. Tom 1. Jęczmień, pszenica i żyto. In Zarys Genetyki Zbóż; Wydawnictwo Instytut Genetyki Roślin PAN: Poznań, Poland, 2004; pp. 181–327. [Google Scholar]
- Niks, R.E.; Habekuß, A.; Bekele, B.; Ordon, F. A novel major gene on chromosome 6H for resistance to barley against the barley yellow dwarf virus. Theor. Appl. Genet. 2004, 109, 1536–1543. [Google Scholar] [CrossRef]
- Van Niekerk, B.D.; Pretorius, Z.A.; Boshoff, W.H.P. Occurrence and pathogenicity of Puccinia hordei on barley in South Africa. Plant Dis. 2001, 85, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Czembor, H.J. Resistance to powdery mildew in barley (Hordeum vulgare L.) landraces from Egypt. Plant Genet. Resour. Newslett. 2000, 123, 52–60. [Google Scholar]
- Czembor, H.J. Sources of resistance to powdery mildew (Blumeria graminis f.sp. hordei) in Moroccan barley landraces. Can. J. Plant Pathol. 2001, 23, 260–269. [Google Scholar] [CrossRef]
- Yun, S.J.; Gyenis, L.; Bossolini, E.; Hayes, P.M.; Matus, I.; Smith, K.P.; Steffenson, B.J.; Tuberosa, R.; Muehlbauer, G.J. Validation of quantitative trait loci for multiple disease resistance in barley using advanced backcross lines developed with a wild barley. Crop Sci. 2006, 46, 1179–1186. [Google Scholar] [CrossRef]
- Inostroza, L.; Pozo, A.; Matus, I.; Castillo, D.; Hayes, P.; Machado, S.; Corey, A. Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol. Breed. 2009, 23, 365–376. [Google Scholar]
- Finckh, M.R.; Gacek, E.S.; Czembor, H.J.; Wolfe, M.S.; Lannou, C.; Merz, U.; Mundt, C.C.; Munk, L.; Nadziak, J.; Newton, A.C.; et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 2000, 20, 813–837. [Google Scholar] [CrossRef]
- Tratwal, A.; Law, J.; Philpott, H.; Horwell, A.; Garner, J. The possibilities of reduction of winter barley chemical protection by growing variety mixtures. Part I. Effect on powdery mildew level. J. Plant Prot. Res. 2007, 47, 65–77. [Google Scholar]
- Tratwal, A.; Law, J.; Philpott, H.; Horwell, A.; Garner, J. The possibilities of reduction of winter barley chemical protection by growing variety mixtures. Part II. Effect on yield. J. Plant Prot. Res. 2007, 47, 79–86. [Google Scholar]
- Newton, A.C.; Guy, D.C.; Hackett, C.A. Grain and straw yield interactions in barley cultivar mixtures. J. Agric. Sci. 2019, 157, 117–128. [Google Scholar] [CrossRef]
- Philips, S.L.; Wolfe, M.S. Evolutionary plant breeding for low input systems. J. Agric. Sci. 2005, 143, 245–254. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Lannou, C.; Pope, C.; Finckh, M.R.; Munk, L.; Merz, U.; Valenghi, D.; Gacek, E. Cost Action 817. In Variety Mixtures in Theory and Practice; Compiled by Working Group 2; INRA-Grignon-France: Thiverval-Grignon, France, 1997; p. 15. [Google Scholar]
- Finckh, M.R.; Gacek, E.S.; Czembor, H.J.; Wolfe, M.S. Host frequency and density effects on disease and field in mixtures of barley. Plant Pathol. 1998, 48, 807–816. [Google Scholar] [CrossRef]
- Tratwal, A.; Walczak, F. Powdery mildew (Blumeria graminis) and pest occurrence reduction in spring cereals mixtures. J. Plant Prot. Res. 2010, 50, 372–377. [Google Scholar] [CrossRef]
- Czembor, E.; Tratwal, A.; Pukacki, J.; Krystek, M.; Czembor, J.H. Managing fungal pathogens of field crops in sustainable agriculture and AgroVariety internet application as a case study. J. Plant Prot. Res. 2025, 65, 1–26. [Google Scholar] [CrossRef]
- Engels, J.M.M.; Ebert, A.W. How can we strengthen the global genetic resources’ conservation and use system? Plants 2024, 13, 702. [Google Scholar] [CrossRef]
- Gacek, E. Studia nad sposobami wykorzystania odporności genetycznej jęczmienia w zwalczaniu mączniaka prawdziwego (Erysiphe graminis DC f. sp. hordei Marchal.). Hod. Rośl. Aklim. I Nasienn. 1990, 34, 3–49. [Google Scholar]
- Wolfe, M.S. Intra-crop diversification: Disease, yield and quality. Monogr. Br. Crop Prot. Counc. 1990, 45, 105–114. [Google Scholar]
- Finckh, M.R.; Mundt, C.C. Plant competition and disease in genetically diverse populations. Oecologia 1992, 91, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C.; Gravouil, C.; Fountaine, J.M. Managing the ecology of foliar pathogens: Ecological tolerance in crops. Ann. Appl. Biol. 2010, 157, 343–359. [Google Scholar] [CrossRef]
- Gacek, E.; Czembor, H.J.; Nadziak, J. Wpływ zróżnicowania genetycznego w mieszaninach i mieszankach zbożowych na rozwój chorób i plonowanie. Biuletyn IHAR 1996, 200, 203–209. [Google Scholar]
- Nadziak, J.; Tratwal, A. Określenie przydatności odmian do uprawy w zasiewach mieszanych pszenicy ozimej. Biuletyn IHAR 2012, 264, 49–54. [Google Scholar] [CrossRef]
- Cowger, C.; Weisz, R. Winter wheat blends (mixture) produce a field advantage in North Carolina. Agron. J. 2008, 100, 169–177. [Google Scholar] [CrossRef]
- Tooker, J.F.; Frank, D. Genotypically diverse cultivar mixtures for insect pest management and increased yields. J. Appl. Ecol. 2012, 49, 974–985. [Google Scholar] [CrossRef]
- Zhou, K.Q.; Wang, G.D.; Li, Y.H.; Liu, X.B.; Herbert, S.J.; Hashemi, M. Assessing variety mixture of continuous spring Triticum aestivum on grain yield and flour quality in Northeast China. Int. J. Plant Prod. 2014, 8, 91–106. [Google Scholar]
- Ceccarelli, S.; Grando, S. From participatory to evolutionary plant breeding. In Farmers and Plant Breeding: Current Approaches and Perspectives; Westengen, O.T., Winge, T., Eds.; Routledge: London, UK, 2019; pp. 231–244. [Google Scholar]
- Ceccarelli, S.; Galiè, A.; Grando, S. Participatory breeding for climate change-related traits. In Genomics and Breeding for Climate-Resilient Crops; Kole, C., Ed.; Springer: Berlin, Germany, 2013; Volume 1, pp. 331–376. [Google Scholar]
- Ceccarelli, S.; Grando, S. Evolutionary plant breeding as a response to the complexity of climate change. iScience 2020, 23, 101815. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S. Efficiency of plant breeding. Crop Sci. 2015, 55, 87–97. [Google Scholar] [CrossRef]
- Colley, M.R.; Dawson, J.C.; McCluskey, C.; Myers, J.R.; Tracy, W.F.; Lammerts van Bueren, E.T. Exploring the emergence of participatory plant breeding in countries of the Global North—A review. J. Agric. Sci. 2021, 159, 320–338. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S.; Salimi, M.; Razavi, K. Evolutionary populations for sustainable food security and food sovereignty. In Seeds for Diversity and Inclusion; Nishikawa, Y., Pimbert, M., Eds.; Palgrave Macmillan: Cham, Switzerland, 2022; pp. 1–18. [Google Scholar]
- Winter, E.; Grovermann, C.; Aurbacher, J.; Orsini, S.; Schäfer, F.; Lazzaro, M.; Messmer, M.M. Sow what you sell: Strategies for integrating organic breeding and seed production into value chain partnerships. Agroecol. Sustain. Food Syst. 2021, 45, 1500–1527. [Google Scholar] [CrossRef]
- Costanzo, A.; Amos, D.; Bickler, C.; Trump, A. Agronomic and genetic assessment of organic wheat performance in England: A field-scale cultivar evaluation with a network of farms. Agron. Sustain. Dev. 2021, 41, 54. [Google Scholar] [CrossRef]
- Demirboğa, G.; Demirboğa, Y.; Özbay, N. Local varieties and their importance. Biodiversity Stud. 2024, 3, 015–018. [Google Scholar] [CrossRef]
- Ficiciyan, A.; Loos, J.; Sievers-Glotzbach, S.; Tscharntke, T. More than yield: Ecosystem services of traditional versus modern crop varieties revisited. Sustainability 2018, 10, 2834. [Google Scholar] [CrossRef]
- Kell, S.P.; Maxted, N.; Allender, C.; Astley, D.; Ford-Lloyd, B.V. Vegetable Landrace Inventory of England and Wales; The University of Birmingham: Birmingham, UK, 2009; p. 117. [Google Scholar]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrusińska-Radzio, A.; Bolc, P.; Tratwal, A.; Dziubińska, D. The Role of Plant Genetic Resources and Grain Variety Mixtures in Building Sustainable Agriculture in the Context of Climate Change. Sustainability 2025, 17, 9737. https://doi.org/10.3390/su17219737
Pietrusińska-Radzio A, Bolc P, Tratwal A, Dziubińska D. The Role of Plant Genetic Resources and Grain Variety Mixtures in Building Sustainable Agriculture in the Context of Climate Change. Sustainability. 2025; 17(21):9737. https://doi.org/10.3390/su17219737
Chicago/Turabian StylePietrusińska-Radzio, Aleksandra, Paulina Bolc, Anna Tratwal, and Dorota Dziubińska. 2025. "The Role of Plant Genetic Resources and Grain Variety Mixtures in Building Sustainable Agriculture in the Context of Climate Change" Sustainability 17, no. 21: 9737. https://doi.org/10.3390/su17219737
APA StylePietrusińska-Radzio, A., Bolc, P., Tratwal, A., & Dziubińska, D. (2025). The Role of Plant Genetic Resources and Grain Variety Mixtures in Building Sustainable Agriculture in the Context of Climate Change. Sustainability, 17(21), 9737. https://doi.org/10.3390/su17219737

