The Impact of Rural Demographic Structure on Agricultural New-Quality Productivity in China: Evidence from a Panel Dataset of 30 Provinces
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Age Structure of the Rural Population
2.2. Gender Structure of the Rural Population
2.3. Household Structure of the Rural Population
2.4. Consumption Structure of the Rural Population
3. Materials and Methods
3.1. Measurement of Agricultural New-Quality Productivity
3.2. Data Sources
3.3. Model Specification
3.4. Variable Selection
3.4.1. Dependent Variable
3.4.2. Core Explanatory Variable
3.4.3. Control Variables
3.4.4. Descriptive Statistics
4. Results and Discussion
4.1. Current Status of Agricultural New-Quality Productivity
4.1.1. Static Measurement Results of Agricultural New-Quality Productivity
4.1.2. Regional Measurement Results of Agricultural New-Quality Productivity
4.2. Baseline Regression Results
4.2.1. Impact of Age Structure
4.2.2. Impact of Gender Structure
4.2.3. Impact of Household Structure
4.2.4. Impact of Consumption Structure
4.3. Robustness Tests
4.4. Heterogeneity Analysis
4.4.1. Heterogeneity Analysis of Population Age Structure
4.4.2. Heterogeneity Analysis of Population Gender Structure
4.4.3. Heterogeneity Analysis of Population Household Structure
4.4.4. Heterogeneity Analysis of Consumption Structure
4.5. Discussion
5. Conclusions and Implications
5.1. Main Conclusions
5.2. Policy Implications
5.2.1. Address Rural Aging and Promote Age-Friendly Agricultural Technology Innovations
5.2.2. Optimize Gender Structure and Enhance Women’s Participation and Division-of-Labor Efficiency in Agriculture
5.2.3. Improve the Socialized Service System and Promote Innovation in Household Operation Models
5.2.4. Promote the Coupling of Consumption Upgrading and the Agricultural Supply System
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, W.; Zuo, S.; Tang, S.; Li, C. The formation of new quality productivity of agriculture under the perspectives of digitalization and innovation: A dynamic qualitative comparative analysis based on the “Technology-Organization-Environment” framework. Sustainability 2025, 17, 597. [Google Scholar] [CrossRef]
- Fuglie, K.O. R&D Capital, R&D Spillovers, and Productivity Growth in World Agriculture. Appl. Econ. Perspect. Policy 2018, 40, 421–444. [Google Scholar] [CrossRef]
- Huang, L.; Ping, Y. The impact of technological innovation on agricultural green total factor productivity: The mediating role of environmental regulation in China. Sustainability 2024, 16, 4035. [Google Scholar] [CrossRef]
- Lei, X.; Zhao, W.; Du, H. Study on the impact of new quality productive forces on agricultural green production efficiency. Sci. Rep. 2025, 15, 20652. [Google Scholar] [CrossRef]
- Xi, J. Hold High the Great Banner of Socialism with Chinese Characteristics and Strive in Unity to Build a Modern Socialist Country in All Respects. In The Governance of China IV; Foreign Languages Press: Beijing, China, 2022. [Google Scholar]
- Su, G.; Chen, Z.; Li, W.; Xia, X. Study on the Impact of the Rural Population Aging on Agricultural Total Factor Productivity in China. Agriculture 2024, 14, 2175. [Google Scholar] [CrossRef]
- Li, T.; Lu, H.; Luo, Q.; Li, G.; Gao, M. The Impact of Rural Population Aging on Agricultural Cropping Structure: Evidence from China’s Provinces. Agriculture 2024, 14, 586. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, H.; Wu, G.S. Agricultural Green Total Factor Productivity under the Distortion of the Factor Market in China. Sustainability 2022, 14, 9309. [Google Scholar] [CrossRef]
- Wang, J.; Kuang, X.; Wang, Z.; Liao, W.; Qiu, H. The Impact of Rural Revitalization Talent Cultivation on Farm Household Part-Time Farming: Evidence from the “One Village, One University Student” Program. PLoS ONE 2025, 20, e0318680. [Google Scholar] [CrossRef]
- Yang, M.; Peng, H.; Yue, S. How Returning Home for Entrepreneurship Affects Rural Common Prosperity. Int. Rev. Econ. Financ. 2025, 98, 103871. [Google Scholar] [CrossRef]
- Yuan, D.; Yang, P.; Yang, H.; Tang, H.; Guo, C. Challenges and Responses of Left-Behind Elderly and Children in Rural China amid the New Population Development Stage. China CDC Wkly. 2023, 5, 609–613. [Google Scholar] [CrossRef]
- Mao, H.; Liu, M.; Tang, H.; Fu, Y. Aging of Agricultural Labor and the Adoption of Improved Crop Varieties: A Study Based on Rural China. J. Rural Stud. 2025, 103769, in press. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, T. Agricultural Mechanization Socialized Services and Gender Disparities in Labor Reallocation: Insights from Rural China. Rev. Dev. Econ. 2025, 29, 1416–1434. [Google Scholar] [CrossRef]
- Kansanga, M.; Dinko, D.H. Visualizing the Gendering of Agricultural Mechanization in the Global South: A Review of the Underlying Drivers. In Gender, Power and Politics in Agriculture; Njuki, J., Ed.; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Hu, Z.; Peng, X. Household Changes in Contemporary China: An Analysis Based on the Four Recent Censuses. J. Chin. Sociol. 2015, 2, 9. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y. The Impact of Agricultural Cooperatives on Farmers’ Agricultural Revenue: Evidence from Rural China. Sustainability 2024, 16, 10979. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; Ma, W.; Valentinov, V. The Effect of Cooperative Membership on Agricultural Technology Adoption in Sichuan, China. China Econ. Rev. 2020, 62, 101334. [Google Scholar] [CrossRef]
- Zhang, S. Research on the Effect and Experience of Rural Collective Economy on Poverty Alleviation under Resource Constraints: Case Study of Village A in Guizhou Province Based on SES Framework. Chin. Sustain. Dev. Rev. 2023, 2, 1–14. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.; Dong, Y.; Wang, H. Research on the Impact and Mechanism of Digital Economy on China’s Food Production Capacity. Sci. Rep. 2024, 14, 27292. [Google Scholar] [CrossRef]
- Zheng, Y.; Liao, F.; Tian, M. Examining the Factors Influencing the Digital Transformation of New Agricultural Operating Entities: Insights from Zhejiang, China. Humanit. Soc. Sci. Commun. 2025, 12, 608. [Google Scholar] [CrossRef]
- Yang, X.; Chen, C.; Huang, S.; He, C. How Digital Intelligence Enables Integration of Agricultural and Tourism Industries? An Empirical Study of Less-Developed Areas in China. SAGE Open 2025, 15, 21582440251328103. [Google Scholar] [CrossRef]
- Jia, K.; Guo, Q. Digital Inclusive Finance and Agricultural New-Quality Productivity. J. Cent. China Norm. Univ. (Humanit. Soc. Sci.) 2024, 63, 1–13. (In Chinese) [Google Scholar] [CrossRef]
- Peng, L.; Chen, L.; Dai, H. The Impact of Energy Structure on Agricultural Green Productivity in China. Sci. Rep. 2024, 14, 27938. [Google Scholar] [CrossRef]
- Adamopoulos, T.; Brandt, L.; Leight, J.; Restuccia, D. Misallocation, Selection, and Productivity: A Quantitative Analysis with Panel Data from China. Econometrica 2022, 90, 1261–1282. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; MIT Press: Cambridge, MA, USA, 2010; ISBN 978-0-262-23258-6. [Google Scholar]
- Song, M.; Li, Y.; Zhang, Q.; Wang, X. Could the Aging of the Rural Population Boost Green Agricultural Productivity? Sustainability 2024, 16, 6117. [Google Scholar] [CrossRef]
- Lin, L.; Gu, T.; Shi, Y. The Influence of New Quality Productive Forces on High-Quality Agricultural Development in China: Mechanisms and Empirical Testing. Agriculture 2024, 14, 1022. [Google Scholar] [CrossRef]
- West, R.M. Best Practice in Statistics: The Use of Log Transformation. Ann. Clin. Biochem. 2022, 59, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Liu, P. The Impact of Rural Population Structure on Agricultural Green Total Factor Productivity. Sci. Agric. Sin. 2024, 57, 4725–4745. (In Chinese) [Google Scholar] [CrossRef]
- Liao, R.; Wei, Y.; Bai, Y.; Liu, J. Bridging the Divide: How Agricultural Technological Innovation Narrows the Urban–Rural Income Gap in China. Front. Sustain. Food Syst. 2025, 9, 1595161. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Tian, Y. The Effect of Urban–Rural Public Service Gaps on Consumption Gaps Under the Perspective of Sustainable Development: Evidence from China. Sustainability 2025, 17, 6148. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M. Green Finance, Land Transfer and China’s Agricultural Modernization: An Empirical Analysis. Land 2024, 13, 2213. [Google Scholar] [CrossRef]
- Wang, H.; Leng, H.; Yuan, M. From opportunity to inequality: How the rural digital economy shapes intra-rural income distribution. Humanit. Soc. Sci. Commun. 2025, 12, 534. [Google Scholar] [CrossRef]
- Wu, F. Adoption and Income Effects of New Agricultural Technology on Family Farms in China. PLoS ONE 2022, 17, e0267101. [Google Scholar] [CrossRef]
- Huang, Q.; Guo, W.; Wang, Y. A Study of the Impact of New Quality Productive Forces on Agricultural Modernization: Empirical Evidence from China. Agriculture 2024, 14, 1935. [Google Scholar] [CrossRef]
- Varyvoda, Y.; Thomson, A.; Bruno, J. Factors Influencing the Adoption of Sustainable Agricultural Practices in the U.S.: A Social Science Literature Review. Sustainability 2025, 17, 6925. [Google Scholar] [CrossRef]
- Coulibaly, T.P.; Du, J.; Diakité, D. Sustainable Agricultural Practices Adoption. Agriculture 2021, 67, 166–176. [Google Scholar] [CrossRef]
- Bloom, D.E.; Canning, D.; Fink, G. Implications of Population Aging for Economic Growth. Oxf. Rev. Econ. Policy 2010, 26, 583–612. [Google Scholar] [CrossRef]
- Ge, Y.; Fan, L.; Li, Y.; Guo, J.; Niu, H. Gender Differences in Smallholder Farmers’ Adoption of Crop Diversification: Evidence from Shaanxi Plain, China. Clim. Risk Manag. 2023, 39, 100482. [Google Scholar] [CrossRef]
- Duan, H.; Yuan, W.; Snyder, T. Gender Imbalance and Temporary Migration: Evidence from Rural China. World Dev. 2025, 186, 106832. [Google Scholar] [CrossRef]
- Jin, X.; Guo, Q.; Feldman, M.W. Marriage Squeeze and Intergenerational Support in Contemporary Rural China: Evidence from X County of Anhui Province. Int. J. Aging Hum. Dev. 2015, 80, 115–139. [Google Scholar] [CrossRef]
- Zhang, Y. Research on the Governance of High Bride Price in Rural Areas under the Background of Rural Revitalization. Adv. Soc. Sci. 2024, 13, 407–413. (In Chinese) [Google Scholar] [CrossRef]
- Zou, W.; Zhang, Z.; Yang, F. Does Land Fragmentation Affect the Effectiveness of Fiscal Subsidies for Agriculture: Evidence from China. Land 2024, 13, 43. [Google Scholar] [CrossRef]
- Ju, X.; Li, H.; Liu, J.; Yao, P. Can Development of Large Scale Agricultural Business Entities Improve Agricultural Total Factor Productivity in China? An Empirical Analysis. Front. Sustain. Food Syst. 2023, 7, 1281328. [Google Scholar] [CrossRef]
- Xing, X.; Zhang, Q.; Ye, A.; Zeng, G. Mechanism and Empirical Test of the Impact of Consumption Upgrading on Agricultural Green Total Factor Productivity in China. Agriculture 2023, 13, 151. [Google Scholar] [CrossRef]
- Miao, Y.; Sun, J.; Liu, R.; Huang, J.; Sheng, J. Bridging the Quality-Price Gap: Unlocking Consumer Premiums for High-Quality Rice in China. Foods 2025, 14, 1184. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Zheng, Y.; Wang, X.; Xiong, L. Government-Market Synergy in China’s Agricultural Low-Carbon Transformation: Policy Adaptation to Regional Divides. Front. Sustain. Food Syst. 2025, 9, 1570678. [Google Scholar] [CrossRef]



| Target | Criterion | Primary | Secondary | Tertiary | Method | Attr. |
|---|---|---|---|---|---|---|
| Agricultural New-Quality Productivity | Labor | Labor Productivity | Economic Income | Farmers’ Disposable Income | Per Capita Disposable Income of Rural Residents (CNY/person) | + |
| Agricultural Output | Per Capita Agricultural Added Value | Agricultural, Forestry, Animal Husbandry, and Fishery Added Value ÷ Rural Population (CNY/person) | + | |||
| Employment Structure | Non-Agricultural Employment Ratio | 1 − (Number of Primary Industry Employees ÷ Total Rural Employment) (%) | + | |||
| Labor Quality | Educational Attainment | Average Years of Education of Rural Residents | Average Years of Education per Rural Resident (years) | + | ||
| Education Funding Intensity | Education Funding Intensity | Education Expenditure × (Total Output Value of Agriculture, Forestry, Animal Husbandry, and Fishery ÷ Regional GDP) ÷ Total Fiscal Expenditure (%) | + | |||
| Labor Spirit | Innovation Spirit | Full-Time Equivalent of Agricultural R&D Personnel | Number of R&D Researchers × (Total Output Value of Agriculture, Forestry, Animal Husbandry, and Fishery ÷ Regional GDP) (persons) | + | ||
| Means of Labor | Physical Means of Labor | Infrastructure | Agricultural Mechanization Level | Total Power of Agricultural Machinery (KW) | + | |
| Rural Hydropower Station Level | Number of Rural Hydropower Stations (units) | + | ||||
| Investment Intensity in Production Equipment | Investment in Production Equipment ÷ Total Fixed Assets Investment (%) | + | ||||
| Resource Output Level | Land Productivity | Total Agricultural Output Value ÷ Crop Planting Area (CNY/hectare) | + | |||
| Agricultural Output Ratio | Added Value of Agriculture, Forestry, Animal Husbandry, and Fishery ÷ Total Output Value of Agriculture, Forestry, Animal Husbandry, and Fishery (%) | + | ||||
| Resource Utilization Level | Agricultural Machinery Power per Unit Cultivated Land | Total Power of Agricultural Machinery ÷ Cultivated Land Area (KW/hectare) | + | |||
| Proportion of Water-Saving Irrigated Area | Water-Saving Irrigated Area ÷ Effective Irrigated Area (%) | + | ||||
| Immaterial Means of Labor | Technological Innovation Level | Agricultural Science and Technology Expenditure | Internal R&D Expenditure × (Total Output Value of Agriculture, Forestry, Animal Husbandry, and Fishery ÷ Regional GDP) (CNY) | + | ||
| Agricultural Fiscal Input Intensity | Fiscal Expenditure on Agriculture, Forestry, and Water ÷ Total Fiscal Expenditure (%) | + | ||||
| Object of Labor | Non-Physical Object of Labor | Informatization Level | Digital Information | Number of Rural Broadband Users (households) | + | |
| Green Production Outcomes | Actual number of rural cable TV users ÷ total number of households (%) | + | ||||
| Green Physical Object of Labor | Green Production | Green Production Outcomes | Number of Green Food Certified Products in the Year (units) | + | ||
| Environmental Pollution | Fertilizer Consumption per Unit | Fertilizer Usage ÷ Crop Planting Area (kg/hectare) | _ | |||
| Pesticide Consumption per Unit | Pesticide Usage ÷ Crop Planting Area (kg/hectare) | _ | ||||
| Agricultural Film Consumption per Unit | Agricultural Plastic Film Usage ÷ Crop Planting Area (kg/hectare) | _ | ||||
| Green Ecology | Forest Coverage Rate | Forest Coverage Rate (%) | + |
| Variable Name | Variable Definition | Measurement Method |
|---|---|---|
| Age Structure | Rural Child Dependency Ratio | (Number of rural children aged 0–14 ÷ Number of rural working-age population aged 15–64) × 100% (%) |
| Rural Elderly Dependency Ratio | (Number of rural elderly aged 65 and above ÷ Number of rural working-age population aged 15–64) × 100% (%) | |
| Gender Structure | Rural Gender Ratio | (Number of rural males ÷ Number of rural females) × 100 (%) |
| Household Structure | Average Rural Household Size | Total rural household population ÷ Number of rural households (persons/household) |
| Consumption Structure | Engel Coefficient of Rural Households | (Total food expenditure of rural households ÷ Total consumption expenditure of rural households) × 100% (%) |
| Variable Name | Obs | Mean | Std. Dev. | Min | Max |
|---|---|---|---|---|---|
| Agricultural New-quality Productivity | 300 | 0.292 | 0.081 | 0.145 | 0.529 |
| Rural Child Dependency Ratio | 300 | 26.603 | 8.313 | 6.26 | 44.45 |
| Rural Elderly Dependency Ratio | 300 | 19.298 | 7.095 | 7.69 | 45.8 |
| Rural Gender Ratio | 300 | 107.06 | 4.68 | 97.46 | 132.38 |
| Average Rural Household Size | 300 | 3.143 | 0.439 | 1.96 | 4.02 |
| Engel Coefficient of Rural Households | 300 | 32.498 | 4.526 | 23.8 | 49.5 |
| Level of Financial Development | 300 | 3.54 | 1.076 | 1.912 | 7.618 |
| Dependence on Agricultural Product Imports and Exports | 300 | 66.445 | 224.459 | 0.04 | 2066.285 |
| Urban–Rural Expenditure Gap | 300 | 2.039 | 0.276 | 1.492 | 2.832 |
| Level of Economic Development | 300 | 64,540.822 | 30,918.794 | 23,151 | 190,313 |
| Labor Force Level | 300 | 2210.266 | 1283.558 | 486.89 | 4903.2 |
| Provinces | Year | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
| Beijing | 0.239 | 0.244 | 0.255 | 0.265 | 0.276 | 0.282 | 0.289 | 0.289 | 0.306 | 0.299 |
| Tianjin | 0.145 | 0.148 | 0.151 | 0.159 | 0.173 | 0.182 | 0.186 | 0.195 | 0.221 | 0.218 |
| Hebei | 0.286 | 0.292 | 0.297 | 0.288 | 0.296 | 0.316 | 0.332 | 0.348 | 0.37 | 0.389 |
| Shanxi | 0.2 | 0.212 | 0.223 | 0.225 | 0.234 | 0.243 | 0.214 | 0.226 | 0.262 | 0.242 |
| Inner Mongolia | 0.211 | 0.221 | 0.226 | 0.225 | 0.226 | 0.239 | 0.239 | 0.26 | 0.27 | 0.268 |
| Liaoning | 0.261 | 0.261 | 0.266 | 0.264 | 0.262 | 0.268 | 0.274 | 0.259 | 0.274 | 0.275 |
| Jilin | 0.237 | 0.24 | 0.233 | 0.229 | 0.228 | 0.235 | 0.235 | 0.263 | 0.279 | 0.265 |
| Heilongjiang | 0.32 | 0.305 | 0.34 | 0.338 | 0.354 | 0.362 | 0.368 | 0.391 | 0.423 | 0.395 |
| Shanghai | 0.174 | 0.183 | 0.182 | 0.175 | 0.182 | 0.195 | 0.208 | 0.193 | 0.194 | 0.209 |
| Jiangsu | 0.316 | 0.372 | 0.347 | 0.346 | 0.363 | 0.369 | 0.402 | 0.4 | 0.457 | 0.455 |
| Zhejiang | 0.336 | 0.31 | 0.351 | 0.354 | 0.363 | 0.386 | 0.391 | 0.396 | 0.447 | 0.447 |
| Anhui | 0.237 | 0.324 | 0.265 | 0.273 | 0.288 | 0.306 | 0.313 | 0.345 | 0.363 | 0.389 |
| Fujian | 0.327 | 0.31 | 0.348 | 0.363 | 0.372 | 0.39 | 0.414 | 0.411 | 0.426 | 0.454 |
| Jiangxi | 0.271 | 0.234 | 0.288 | 0.305 | 0.315 | 0.322 | 0.328 | 0.346 | 0.364 | 0.381 |
| Shandong | 0.373 | 0.387 | 0.393 | 0.39 | 0.395 | 0.408 | 0.412 | 0.434 | 0.446 | 0.464 |
| Henan | 0.275 | 0.297 | 0.29 | 0.282 | 0.292 | 0.307 | 0.331 | 0.361 | 0.395 | 0.396 |
| Hubei | 0.269 | 0.306 | 0.283 | 0.289 | 0.3 | 0.305 | 0.325 | 0.353 | 0.385 | 0.397 |
| Hunan | 0.293 | 0.367 | 0.312 | 0.328 | 0.339 | 0.361 | 0.389 | 0.415 | 0.432 | 0.447 |
| Guangdong | 0.382 | 0.288 | 0.385 | 0.394 | 0.417 | 0.431 | 0.466 | 0.491 | 0.512 | 0.529 |
| Guangxi | 0.266 | 0.257 | 0.296 | 0.302 | 0.309 | 0.322 | 0.353 | 0.372 | 0.401 | 0.412 |
| Hainan | 0.197 | 0.229 | 0.219 | 0.242 | 0.245 | 0.263 | 0.277 | 0.286 | 0.31 | 0.346 |
| Chongqing | 0.193 | 0.247 | 0.204 | 0.216 | 0.226 | 0.242 | 0.265 | 0.292 | 0.307 | 0.304 |
| Sichuan | 0.32 | 0.284 | 0.352 | 0.358 | 0.37 | 0.382 | 0.394 | 0.419 | 0.434 | 0.462 |
| Guizhou | 0.194 | 0.22 | 0.237 | 0.245 | 0.257 | 0.28 | 0.299 | 0.308 | 0.329 | 0.342 |
| Yunnan | 0.231 | 0.221 | 0.242 | 0.253 | 0.272 | 0.278 | 0.312 | 0.323 | 0.342 | 0.373 |
| Shaanxi | 0.227 | 0.235 | 0.239 | 0.246 | 0.252 | 0.272 | 0.287 | 0.307 | 0.319 | 0.336 |
| Gansu | 0.162 | 0.168 | 0.191 | 0.194 | 0.21 | 0.231 | 0.226 | 0.245 | 0.267 | 0.267 |
| Qinghai | 0.152 | 0.155 | 0.156 | 0.156 | 0.168 | 0.17 | 0.185 | 0.181 | 0.194 | 0.198 |
| Ningxia | 0.15 | 0.175 | 0.155 | 0.172 | 0.171 | 0.194 | 0.183 | 0.202 | 0.234 | 0.224 |
| Xinjiang | 0.196 | 0.203 | 0.205 | 0.217 | 0.208 | 0.224 | 0.262 | 0.249 | 0.285 | 0.278 |
| Region | Year | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
| Northeast | 0.273 | 0.268 | 0.279 | 0.277 | 0.281 | 0.288 | 0.292 | 0.304 | 0.325 | 0.312 |
| East | 0.267 | 0.275 | 0.283 | 0.287 | 0.297 | 0.309 | 0.321 | 0.335 | 0.359 | 0.366 |
| Central | 0.273 | 0.288 | 0.29 | 0.292 | 0.301 | 0.313 | 0.323 | 0.337 | 0.361 | 0.366 |
| West | 0.253 | 0.261 | 0.269 | 0.275 | 0.284 | 0.298 | 0.313 | 0.327 | 0.35 | 0.358 |
| Variable | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| Age Structure 1 | 0.0498 | 0.0344 | 0.0254 | −0.00356 |
| (0.047) | (0.046) | (0.046) | (0.050) | |
| Age Structure 2 | −0.115 *** | −0.0978 *** | −0.0834 ** | −0.114 *** |
| (0.037) | (0.037) | (0.037) | (0.040) | |
| Gender Structure | −0.252 * | −0.334 ** | −0.317 ** | −0.261 * |
| (0.137) | (0.136) | (0.135) | (0.145) | |
| Household Structure | 0.03 | 0.0275 | 0.0431 | 0.129 |
| (0.112) | (0.110) | (0.110) | (0.118) | |
| Consumption Structure | −0.227 *** | −0.148 * | −0.142 * | −0.182 ** |
| (0.084) | (0.085) | (0.085) | (0.091) | |
| Constant | 0.672 | −0.794 | −1.066 | −0.0167 |
| (0.829) | (0.906) | (0.903) | (0.971) | |
| Observations | 300 | 300 | 300 | 300 |
| Number of id | 30 | 30 | 30 | 30 |
| R-squared | 0.826 | 0.836 | 0.835 | 0.793 |
| Control Variables | NO | YES | YES | YES |
| Time Fixed Effects | YES | YES | YES | YES |
| Individual Fixed Effects | YES | YES | YES | YES |
| Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
|---|---|---|---|---|---|---|---|---|
| Age Structure 1 | −0.505 ** | −0.296 * | 0.00972 | −0.566 | 0.148 | −0.0461 | −0.157 | −0.192 |
| (0.185) | (0.160) | (0.213) | (0.463) | (0.235) | (0.414) | (0.167) | (0.361) | |
| Age Structure 2 | −0.0871 | 0.170 * | −0.0026 | 0.543 | −0.604 *** | −0.088 | 0.159 | −0.129 |
| (0.185) | (0.086) | (0.171) | (0.306) | (0.173) | (0.477) | (0.205) | (0.193) | |
| Gender Structure | 0.257 | −0.404 * | −0.114 | 0.774 | −0.124 | 1.192 | −0.703 | −1.245 * |
| (0.451) | (0.201) | (0.728) | (0.595) | (0.322) | (1.275) | (0.414) | (0.694) | |
| Household Structure | −0.683 * | −0.234 | 0.105 | −0.0827 | 0.219 | −1.218 * | −0.515 | −0.123 |
| (0.311) | (0.256) | (0.576) | (0.630) | (0.589) | (0.593) | (0.409) | (0.491) | |
| Consumption Structure | −0.0032 | 0.354 * | 0.342 | 1.128 * | −1.265 ** | 0.788 | 0.124 | −0.501 |
| (0.261) | (0.190) | (0.431) | (0.514) | (0.554) | (0.682) | (0.213) | (0.299) | |
| Constant | −0.0654 | 1.117 | 9.672 | 4.931 | 5.610 ** | −10.86 | 4.188 | 10.71 |
| (2.530) | (1.957) | (11.760) | (6.340) | (2.528) | (9.277) | (2.959) | (7.100) | |
| Observations | 30 | 40 | 30 | 30 | 40 | 40 | 50 | 40 |
| Number of id | 3 | 4 | 3 | 3 | 4 | 4 | 5 | 4 |
| R-squared | 0.963 | 0.972 | 0.901 | 0.957 | 0.948 | 0.906 | 0.955 | 0.944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhang, K.; Wang, P. The Impact of Rural Demographic Structure on Agricultural New-Quality Productivity in China: Evidence from a Panel Dataset of 30 Provinces. Sustainability 2025, 17, 9697. https://doi.org/10.3390/su17219697
Li C, Zhang K, Wang P. The Impact of Rural Demographic Structure on Agricultural New-Quality Productivity in China: Evidence from a Panel Dataset of 30 Provinces. Sustainability. 2025; 17(21):9697. https://doi.org/10.3390/su17219697
Chicago/Turabian StyleLi, Changhao, Keliang Zhang, and Pingan Wang. 2025. "The Impact of Rural Demographic Structure on Agricultural New-Quality Productivity in China: Evidence from a Panel Dataset of 30 Provinces" Sustainability 17, no. 21: 9697. https://doi.org/10.3390/su17219697
APA StyleLi, C., Zhang, K., & Wang, P. (2025). The Impact of Rural Demographic Structure on Agricultural New-Quality Productivity in China: Evidence from a Panel Dataset of 30 Provinces. Sustainability, 17(21), 9697. https://doi.org/10.3390/su17219697
