Biogas from Zoo Animal Waste: ATEX Safety Distance Modelling at Madrid Zoo Aquarium
Abstract
1. Introduction
2. Case Study
2.1. Initial Data
2.2. Description of the Installation
3. Methodology
4. Results and Discussion
- A.
- Surface storage facilities or facilities equipped with vents.
- B.
- Storage facilities with open or partially closed structures or locations with shallow depressions in the ground.
- C.
- Storage facilities with open or partially enclosed structures when the ratio between their height and the dikes or walls is slightly elevated, or depressions of medium depth in the ground.
- D.
- Storage facilities with open or partially closed structures when the ratio between the height of the facility and the dikes or walls is moderately high, or deep depressions in the ground, but not yet considered pits.
- E.
- Storage in a deep pit, where there are real restrictions on air flow and therefore generally considered a closed environment.

- (a)
- In open areas, a compressed fiber flange for which larger openings due to failure are expected, even if it is located above five meters in height. In this case, a dangerous volume of 50.0 cm radius should be considered.
- (b)
- Valves located below five meters generate a dangerous area around them with a radius of 40.0 cm. However, if they are located above two meters in height, the radius to be considered will be 60.0 cm in diameter.
- (c)
- In manual purges of condensate pots, the hazardous area is cone-shaped with a length of 2.0 m and a radius of 1.0 m.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Khalid, H.; Zhu, Z.; Zhang, R.; Liu, G.; Chen, C.; Thorin, E. Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl. Energy 2018, 226, 1219–1228. [Google Scholar] [CrossRef]
- Edwiges, T.; Frare, L.; Mayer, B.; Lins, L.; Triolo, J.M.; Flotats, X.; de Mendonça, M.S.S. Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manag. 2018, 71, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Steffen, F.; Requejo, A.; Ewald, C.; Janzon, R.; Saake, B. Anaerobic digestion of fines from recovered paper processing–Influence of fiber source, lignin and ash content on biogas potential. Bioresour. Technol. 2016, 200, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.; Othman, M.; Burn, S. A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renew. Sustain. Energy Rev. 2015, 52, 815–828. [Google Scholar] [CrossRef]
- Massaro, V.; Digiesi, S.; Mossa, G.; Ranieri, L. The sustainability of anaerobic digestion plants: A win–win strategy for public and private bodies. J. Clean. Prod. 2015, 104, 445–459. [Google Scholar] [CrossRef]
- Hadidi, L.A.; Omer, M.M. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Manag. 2017, 59, 90–101. [Google Scholar] [CrossRef]
- Di Maria, F.; Sisani, F.; Contini, S. Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste? Appl. Energy 2018, 230, 1557–1572. [Google Scholar] [CrossRef]
- Li, Y.; Park, S.Y.; Zhu, J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 2011, 15, 821–826. [Google Scholar] [CrossRef]
- Coelho, J.J.; Prieto, M.L.; Dowling, S.; Hennessy, A.; Casey, I.; Woodcock, T.; Kennedy, N. Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Manag. 2018, 78, 8–15. [Google Scholar] [CrossRef]
- Iglesias, R.; Muñoz, R.; Polanco, M.; Díaz, I.; Susmozas, A.; Moreno, A.D.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from anaerobic digestion as an energy vector: Current upgrading development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- Zang, Y.; Li, Y.; Wang, C.; Zhang, W.; Xiong, W. Towards more accurate life cycle assessment of biological wastewater treatment plants: A review. J. Clean. Prod. 2015, 107, 676–692. [Google Scholar] [CrossRef]
- Corominas, L.; Byrne, D.M.; Guest, J.S.; Hospido, A.; Roux, P.; Shaw, A.; Short, M.D. The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review. Water Res. 2020, 184, 116058. [Google Scholar] [CrossRef]
- Faragò, M.; Damgaard, A.; Madsen, J.A.; Andersen, J.K.; Thornberg, D.; Andersen, M.H.; Rygaard, M. From wastewater treatment to water resource recovery: Environmental and economic impacts of full-scale implementation. Water Res. 2021, 204, 117554. [Google Scholar] [CrossRef] [PubMed]
- Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the Landfill of Waste. The Council of the European Union. Directorate-General for Environment, Official Journal l 182, 16 July 1999; pp. 1–19. Available online: http://data.europa.eu/eli/dir/1999/31/oj (accessed on 24 September 2025).
- Directive 2024/1157 of the European Parliament and of the Council of 11 April 2024 on Shipments of Waste, Amending Regulations (EU) No 1257/2013 and (EU) 2020/1056 and Repealing Regulation (EC) No 1013/2006. Parliament, Council of the European Union. OJ L, 2024/1157. Available online: http://data.europa.eu/eli/reg/2024/1157/oj (accessed on 24 September 2025).
- Acuerdo de París 2050. Conferencia de las Naciones Unidas sobre el Cambio Climático (COP21). Paris, France. Available online: https://www.un.org/es/climatechange/paris-agreement (accessed on 24 September 2025).
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Parliament, Council of the European Union OJ L 140 5.6.2009; p. 16. Available online: http://data.europa.eu/eli/dir/2009/28/2015-10-05 (accessed on 24 September 2025).
- Konieczna, A.; Borek, K.; Hołaj-Krzak, J.T.; Dybek, B.; Anders, D.; Szymenderski, J.; Klimek, K.; Kapłan, M.; Jarosz, Z.; Syrotyuk, S.; et al. The Potential of Utilizing Cattle (Cow) Manure for Biomethane Production: An Experiment for Photo fermentation. Energies 2024, 17, 6119. [Google Scholar] [CrossRef]
- Recebli, Z.; Selimli, S.; Ozkaymak, M.; Gonc, O. Biogas Production From Animal Manure. J. Eng. Sci. Technol. 2015, 10, 722–729. [Google Scholar]
- Nwokolo, N.; Mukumba, P.; Obileke, K.; Enebe, M. Waste to Energy: A Focus on the Impact of Substrate Type in Biogas Production. Processes 2020, 8, 1224. [Google Scholar] [CrossRef]
- Møller, H.B.; Sommer, S.G.; Ahring, B.K. Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 2004, 26, 485–495. [Google Scholar] [CrossRef]
- Kusmiyati, K.; Wijaya, D.K.; Hartono, B.R.; Shidik, G.F.; Fudholi, A. Harnessing the power of cow dung: Exploring the environmental, energy, and economic potential of biogas production in Indonesia. Results Eng. 2023, 20, 101431. [Google Scholar] [CrossRef]
- Nleya, Y.; Young, B.; Nooraee, E.; Baroutian, S. Anaerobic digestion of dairy cow and goat manure: Comparative assessment of biodegradability and greenhouse gas mitigation. Fuel 2025, 381, 133458. [Google Scholar] [CrossRef]
- Liu, X.; Bayard, R.; Benbelkacem, H.; Buffière, P.; Gourdon, R. Evaluation of the correlations between biodegradability of lignocellulosic feedstocks in anaerobic digestion process and their biochemical characteristics. Biomass Bioenergy 2015, 81, 534–543. [Google Scholar] [CrossRef]
- Triolo, J.M.; Pedersen, L.; Qu, H.; Sommer, S.G. Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production. Bioresour. Technol. 2012, 125, 226–232. [Google Scholar] [CrossRef]
- Gao, Z.; Cui, T.; Qian, H.; Sapsford, D.J.; Cleall, P.J.; Harbottle, M.J. Can wood waste be a feedstock for anaerobic digestion? A machine learning assisted meta-analysis. Chem. Eng. J. 2024, 487, 150496. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Savage, J.; Balde, H.; Sartaj, M.; VanderZaag, A.C.; Abdehagh, N.; Strehler, B. Enhancing hydrolysis and bio-methane generation of extruded lignocellulosic wood waste using microbial pre-treatment. Renew. Energy 2021, 170, 438–448. [Google Scholar] [CrossRef]
- Han, Y.; Agyeman, F.; Green, H.; Tao, W. Stable, high-rate anaerobic digestion through vacuum stripping of digestate. Bioresour. Technol. 2022, 343, 126133. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Li, G.; Luo, W.; Sun, Y. Manure digestate storage under different conditions: Chemical characteristics and contaminant residuals. Sci. Total Environ. 2018, 639, 19–25. [Google Scholar] [CrossRef] [PubMed]
- EN 16798-3:2018; Energy Performance of Buildings—Ventilation for Buildings—Part 3: For Non-Residential Buildings—Performance Requirements for Ventilation and Room-Conditioning Systems (Modules M5-1, M5-4). European Committee for Standardization (CEN): Brussels, Belgium, 2018.
- Sher, F.; Smječanin, N.; Hrnjić, H.; Karadža, A.; Omanović, R.; Šehović, E.; Sulejmanović, J. Emerging technologies for biogas production: A critical review on recent progress, challenges and future perspectives. Process. Saf. Environ. Prot. 2024, 188, 834–859. [Google Scholar] [CrossRef]
- EN 12255-10:2023; Wastewater Treatment Plants—Part 10: Safety Principles. European Committee for Standardization (CEN): Brussels, Belgium, 2023.
- N 60079-10-1:2022; Explosive Atmospheres—Part 10-1: Classification of Areas—Explosive Gas Atmospheres. European Committee for Standardization (CEN): Brussels, Belgium, 2022.
- EN 202007:2006; IN Application Guide of EN 60079-10. Electrical Apparatus for Explosive Gas Atmospheres. Classification of Hazardous Areas. European Committee for Standardization (CEN): Brussels, Belgium, 2006.
- EN ISO 20675:2022; Biogas Production, Conditioning, Upgrading and Utilization—Terms, Definitions and Classification Scheme. European Committee for Standardization (CEN): Brussels, Belgium, 2022.
- Wolin, E.A.; Wolin, M.; Wolfe, R.S. Formation of methane by bacterial extracts. J. Biol. Chem. 1963, 238, 2882–2886. [Google Scholar] [CrossRef]
- Pfluger, A.; Coontz, J.; Zhiteneva, V.; Gulliver, T.; Cherry, L.; Cavanaugh, L.; Figueroa, L. Anaerobic digestion and biogas beneficial use at municipal wastewater treatment facilities in Colorado: A case study examining barriers to widespread implementation. J. Clean. Prod. 2019, 206, 97–107. [Google Scholar] [CrossRef]
- EN-ISO 13443; Natural Gas. Standard Reference Conditions. European Committee for Standardization (CEN): Brussels, Belgium, 2017.
- EN-ISO 6976:2017; Natural Gas. Calculation of Calorific Values, Density, Relative Density and Wobbe Indices from Composition. European Committee for Standardization (CEN): Brussels, Belgium, 2017.
- Ellacuriaga, M.; García, J.; Gómez, X. Biogas production from organic wastes: Integrating concepts of circular economy. Fuels 2021, 2, 144–167. [Google Scholar] [CrossRef]
- Kodba, A.; Pukšec, T.; Duić, N. Analysis of specific greenhouse gas emissions savings from biogas production based on agricultural residues and industrial by-products. Energies 2023, 16, 3721. [Google Scholar] [CrossRef]
- Metcalf, E. Ingeniería de Aguas Residuales: Tratamiento, Vertido y Reutilización, 3rd ed.; McGraw Hill: Madrid, Spain, 2000. [Google Scholar]
- Niemiec, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Komorowska, M. ssessment of the possibilities for the use of selected waste in terms of biogas yield and further use of its digestate in agriculture. Materials 2022, 15, 988. [Google Scholar] [CrossRef] [PubMed]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Orlando, M.Q.; Borja, V.M. Pretreatment of animal manure biomass to improve biogas production: A review. Energies 2020, 13, 3573. [Google Scholar] [CrossRef]
- Karim, K.; Klasson, K.T.; Hoffmann, R.; Drescher, S.R.; DePaoli, D.W.; Al-Dahhan, M.H. Anaerobic digestion of animal waste: Effect of mixing. Bioresour. Technol. 2005, 96, 1607–1612. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Ma, R.; Kumar, V.; Tong, Y.W.; He, Y.; Mao, F. Mesophilic and thermophilic anaerobic digestion of animal manure: Integrated insights from biogas productivity, microbial viability and enzymatic activity. Fuel 2022, 320, 123990. [Google Scholar] [CrossRef]
- Bishnoi, P. Effects of Thermal Hydrolysis Pre-Treatment on Anaerobic Digestion of Sludge. Master’s Thesis, Faculty of the Virginia Polytechnic Institute, Blacksburg, VA, USA, 2012. Available online: https://vtechworks.lib.vt.edu/items/2de5888e-ac6e-4bda-84e4-ac06a42b26c5 (accessed on 24 September 2025).
- Moreno-Gutiérrez, R. Bioprocesses for Wastewater Treatment: Integration of Bioelectrochemical Systems and Other Technologies. Ph.D. Thesis, Instituto de Medio Ambiente, Recursos Naturales Y Biodiversidad. Grupo de Ingeniería Química, Ambiental y Bioprocesos, Universidad de León, León, España, 2016. [Google Scholar] [CrossRef]
- Makamure, F.; Mukumba, P.; Makaka, G. An analysis of bio-digester substrate heating methods: A review. Renew. Sustain. Energy Rev. 2021, 137, 110432. [Google Scholar] [CrossRef]
- Zhao, Q.; Leonhardt, E.; MacConnell, C.; Frear, C.; Chen, S. Purification technologies for biogas generated by anaerobic digestion. Compressed Biomethane. CSANR 2010, 1, 24. [Google Scholar]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valorization 2017, 8, 267–283. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Technologies for biogas to electricity conversion. Energy Rep. 2022, 8, 774–786. [Google Scholar] [CrossRef]
- Atelge, M.R.; Senol, H.; Djaafri, M.; Hansu, T.A.; Krisa, D.; Atabani, A.; Eskicioglu, C.; Muratçobanoglu, H.; Kallom, S.S.; Azbar, N.; et al. A critical overview of the state-of-the-art methods for biogas purification and utilization processes. Sustainability 2021, 13, 11515. [Google Scholar] [CrossRef]
- Werkneh, A.A. Biogas impurities: Environmental and health implications, removal technologies and future perspectives. Heliyon 2022, 8, e10929. [Google Scholar] [CrossRef] [PubMed]
- Stolecka, K.; Rusin, A. Potential hazards posed by biogas plants. Renew. Sustain. Energy Rev. 2021, 135, 110225. [Google Scholar] [CrossRef]
- Marrazzo, R.; Mazzini, C. Safety Considerations and Major Accidents Prevention in the Biogas Production. Chem. Eng. Trans. 2024, 109, 451–456. [Google Scholar] [CrossRef]
- Jin, T.; Liu, Y.; Wei, J.; Zhang, D.; Wang, X.; Lei, G.; Wang, T.; Lan, Y.; Chen, H. Numerical investigation on the dispersion of hydrogen vapor cloud with atmospheric inversion layer. Int. J. Hydrogen Energy 2019, 44, 23513–23521. [Google Scholar] [CrossRef]
- Hanna, S.R.; Chang, J.C. Use of the Kit Fox field data to analyze dense gas dispersion modelling issues. Atmos. Environ. 2001, 35, 2231–2242. [Google Scholar] [CrossRef]
- EN 437:2003+A1:2009; Test Gases—Test Pressures—Appliance Categories. UNE-European Committee for Standardization (CEN): Brussels, Belgium, 2009.
- Romero, Á.; Ballesteros, J.M.; Villena, B.M.; Rodríguez, Á.; González, C. Occupancy and Air Quality Model for Outdoor Events: A Strategy for Preventing Disease Transmission at Mass Events. Buildings 2025, 15, 677. [Google Scholar] [CrossRef]
- Gavala, H.N.; Yenal, U.; Skiadas, I.V.; Westermann, P.; Ahring, B.K. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Res. 2003, 37, 4561–4572. [Google Scholar] [CrossRef]








| Year | Annual Waste Generation (kg) | Propane Consumption (m3) | |
|---|---|---|---|
| Manure | Pruning Remains | ||
| 2024 | 53,400 | 15,020 | 11,156 | 
| 2025 | 59,400 | 46,440 | 10,932 | 
| Year | Annual Waste Generation (kg) | Production from Pruning Remains (m3) | ||
|---|---|---|---|---|
| Standard | Minimum | Annual | ||
| 2024 | 19,224 | 19,985 | 25,530 | 2053 | 
| 2025 | 21,384 | 22,230 | 28,399 | 6348 | 
| Type of Gas | Lower Heating Value (LHV) (kWh/m3) | 
|---|---|
| Methane | 11.70 | 
| Propane | 26.20 | 
| Biomethane | 10.30 | 
| Biogas | 6.27 | 
| Composition (%) | Lower Flammability Limit | Molecular Weight (kg/kmol) | Density (kg/m3) | ||
|---|---|---|---|---|---|
| (LIE) (%) | LIEM (kg/m3) | ||||
| Methane | 8.3 | 4.07 | 2.97 × 10−2 | 17.57 | 0.74 | 
| Ethane | 5.0 | ||||
| Propane | 1.2 | ||||
| Butane | 0.7 | ||||
| Pentane | 0.2 | ||||
| Hexane | 0.1 | ||||
| Composition (%) | Lower Flammability Limit | Molecular Weight (kg/kmol) | Density (kg/m3) | ||
|---|---|---|---|---|---|
| (LIE) (%) | LIEM (kg/m3) | ||||
| Methane | 98.0 | 4.49 | 3.10 × 10−2 | 16.60 | 0.69 | 
| Carbon Dioxide | 2.0 | ||||
| Composition (%) | Lower Flammability Limit | Molecular Weight (kg/kmol) | Density (kg/m3) | ||
|---|---|---|---|---|---|
| (LIE) (%) | LIEM (kg/m3) | ||||
| Methane | 62.5 | 6.80 | 7.36 × 10−2 | 26.01 | 1.01 | 
| Carbon Dioxide | 35.5 | ||||
| Hydrogen | 1.0 | ||||
| Hydrogen Sulphide | 1.0 | ||||
| Type | Critical Gauge Pressure (Atm) | 
|---|---|
| Natural Gas | 0.83 | 
| Methane | 0.84 | 
| Biomethane | 0.84 | 
| Biogas | 0.89 | 
| Type of Gas | <2.0 m | (2.0–5.0) m | ˃5.0 m | 
|---|---|---|---|
| Heavier than air | 0.3 | 0.6 | 1.0 | 
| Lighter than air | 0.5 | 1.0 | 2.0 | 
| Location of the Leak: Height Above Ground Level | Aperture Size (mm2) | Dangerous Distance (cm) | |||
|---|---|---|---|---|---|
| Biogas | Biomethane | Natural Gas | Methane | ||
| ˃5.0 m | 0.5 | 5.72 | 8.35 | 8.48 | 8.27 | 
| 1 | 8.37 | 12.22 | 12.41 | 12.10 | |
| 3 | 15.32 | 22.36 | 22.71 | 22.15 | |
| 5 | 20.29 | 29.61 | 30.08 | 29.34 | |
| (2.0–5.0) m | 0.5 | 8.37 | 1.22 | 12.41 | 12.10 | 
| 1 | 1.26 | 17.89 | 18.17 | 17.72 | |
| 3 | 22.43 | 32.74 | 33.25 | 32.43 | |
| 5 | 29.71 | 4.36 | 44.04 | 42.95 | |
| <2.0 m | 0.5 | 12.26 | 17.89 | 18.17 | 17.72 | 
| 1 | 17.95 | 26.19 | 26.60 | 25.95 | |
| 3 | 32.85 | 47.93 | 48.68 | 47.48 | |
| 5 | 43.50 | 63.48 | 64.47 | 62.88 | |
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballesteros-Álvarez, J.M.; Romero-Barriuso, Á.; Villena-Escribano, B.M.; Rodríguez-Sáiz, Á. Biogas from Zoo Animal Waste: ATEX Safety Distance Modelling at Madrid Zoo Aquarium. Sustainability 2025, 17, 9629. https://doi.org/10.3390/su17219629
Ballesteros-Álvarez JM, Romero-Barriuso Á, Villena-Escribano BM, Rodríguez-Sáiz Á. Biogas from Zoo Animal Waste: ATEX Safety Distance Modelling at Madrid Zoo Aquarium. Sustainability. 2025; 17(21):9629. https://doi.org/10.3390/su17219629
Chicago/Turabian StyleBallesteros-Álvarez, Jesús Manuel, Álvaro Romero-Barriuso, Blasa María Villena-Escribano, and Ángel Rodríguez-Sáiz. 2025. "Biogas from Zoo Animal Waste: ATEX Safety Distance Modelling at Madrid Zoo Aquarium" Sustainability 17, no. 21: 9629. https://doi.org/10.3390/su17219629
APA StyleBallesteros-Álvarez, J. M., Romero-Barriuso, Á., Villena-Escribano, B. M., & Rodríguez-Sáiz, Á. (2025). Biogas from Zoo Animal Waste: ATEX Safety Distance Modelling at Madrid Zoo Aquarium. Sustainability, 17(21), 9629. https://doi.org/10.3390/su17219629
 
        



 
       