Mapping Regional Flows: Supply Chain Pathways of Black Carbon Emissions in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Endogenous Environmental Extended Input–Output Analysis
2.2. Direct Residential and Consumption-Based Black Carbon Emissions
2.3. Structural Path Analysis
2.4. Data
3. Results
3.1. Consumption-Based BC Emissions in Different Chinese Provinces
3.2. BC Emissions Triggered by Final Demands
3.3. Critical Path Analysis of BC Emissions in a Specific Province
3.4. Critical Path of BC Emissions from Specific Provinces to Other Provinces
4. Conclusions and Policy Implementation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Zhang, F.; Yan, P.; Wang, X.; Sun, L.; Li, Y.; Zhang, X.; Sun, Y.; Li, Z. The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere. Environ. Pollut. 2020, 263, 114507. [Google Scholar] [CrossRef]
- Frey, A.; Rose, D.; Wehner, B.; Müller, T.; Cheng, Y.; Wiedensohler, A.; Virkkula, A. Application of the Volatility-TDMA Technique to Determine the Number Size Distribution and Mass Concentration of Less Volatile Particles. Aerosol Sci. Technol. 2008, 42, 817–828. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Kuhlbusch, T.A.J.; Crutzen, P.J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Glob. Biogeochem. Cycles 1995, 9, 491–501. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Bové, H.; Bongaerts, E.; Slenders, E.; Bijnens, E.M.; Saenen, N.D.; Gyselaers, W.; Van Eyken, P.; Plusquin, M.; Roeffaers, M.B.J.; Ameloot, M.; et al. Ambient black carbon particles reach the fetal side of human placenta. Nat. Commun. 2019, 10, 3866. [Google Scholar] [CrossRef]
- Farzad, K.; Khorsandi, B.; Khorsandi, M.; Bouamra, O.; Maknoon, R. A study of cardiorespiratory related mortality as a result of exposure to black carbon. Sci. Total Environ. 2020, 725, 138422. [Google Scholar] [CrossRef]
- Feng, J.F.; Wang, L.; Jiang, Y.H.; Yang, X.C. Reactive Protein to Prealbumin Ratio (CPR): A Novel Inflammatory-Nutritional Prognostic Factor for Predicting Cancer-Specific Survival (CSS) and Overall Survival (OS) in Patients with Resectable Esophageal Squamous Cell Carcinoma. J. Oncol. 2019, 2019, 4359103. [Google Scholar] [CrossRef]
- Gong, T.; Sun, Z.; Zhang, X.; Zhang, Y.; Wang, S.; Han, L.; Zhao, D.; Ding, D.; Zheng, C. Associations of black carbon and PM2.5 with daily cardiovascular mortality in Beijing, China. Atmos. Environ. 2019, 214, 116876. [Google Scholar] [CrossRef]
- Lin, W.; Dai, J.; Liu, R.; Zhai, Y.; Yue, D.; Hu, Q. Integrated assessment of health risk and climate effects of black carbon in the Pearl River Delta region, China. Environ. Res. 2019, 176, 108522. [Google Scholar] [CrossRef]
- Liu, S.; Zhan, C.; Zhang, J.; Liu, H.; Xiao, Y.; Zhang, L.; Guo, J.; Liu, X.; Xing, X.; Cao, J. Polycyclic aromatic hydrocarbons in railway stations dust of the mega traffic hub city, central China: Human health risk and relationship with black carbon. Ecotoxicol. Environ. Saf. 2020, 205, 111155. [Google Scholar] [CrossRef]
- Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y. Climate Effects of Black Carbon Aerosols in China and India. Science 2002, 297, 2250. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Fan, X.; Ni, C.; Sun, Z.; Wang, S.; Fan, J.; Zheng, C. Modifying effects of temperature on human mortality related to black carbon particulates in Beijing, China. Atmos. Environ. 2020, 243, 117845. [Google Scholar] [CrossRef]
- National Bureau of Statistic of China (NBSC). China Statistical Yearbook, Beijing, China, 2018; China Statistic Press: Beijing, China, 2019. Available online: http://www.stats.gov.cn/english/Statisticaldata/ (accessed on 15 October 2024).
- Wang, R.; Tao, S.; Balkanski, Y.; Ciais, P.; Boucher, O.; Liu, J.; Piao, S.; Shen, H.; Vuolo, M.R.; Valari, M.; et al. Exposure to ambient black carbon derived from a unique inventory and high- resolution model. Proc. Natl. Acad. Sci. USA 2014, 111, 2459–2463. [Google Scholar] [CrossRef]
- Shindell, D.; Kuylenstierna, J.C.I.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S.C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; et al. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science 2012, 335, 183. [Google Scholar] [CrossRef]
- Pani, S.K.; Wang, S.H.; Lin, N.H.; Chantara, S.; Lee, C.T.; Thepnuan, D. Black carbon over an urban atmosphere in Northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environ. Pollut. 2020, 259, 113871. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Meng, J.; Wei, W.; Li, J. Cross-regional Black Carbon Transfer and Management Strategy: Based on MRIO and WRF/Chem Models. J. Environ. Econ. Manag. 2018, 3, 110–125. [Google Scholar] [CrossRef]
- Davis, S.J.; Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 5687–5692. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Deng, Z.; Zhang, X.; Wang, Z.; Li, W.; Qi, H.; Lei, Y.; Ou, Y.; Deng, Z. Disparities in driving forces behind energy-related black carbon emission changes across China’s provinces. J. Clean. Prod. 2021, 330, 129849. [Google Scholar] [CrossRef]
- Peters, G.P. From production-based to consumption-based national emission inventories. Ecol. Econ. 2008, 65, 13–23. [Google Scholar] [CrossRef]
- Deng, Z.; Kang, P.; Wang, Z.; Zhang, X.; Li, W.; Ou, Y.; Lei, Y.; Dang, Y.; Deng, Z. The impact of urbanization and consumption patterns on China’s black carbon emissions based on input-output analysis and structural decomposition analysis. Environ. Sci. Pollut. Res. Int. 2021, 28, 2914–2922. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, W.; Yang, Y.; Wang, C.; Streets, D.G.; Yim, S.H.L. Assessing outdoor air quality and public health impact attributable to residential black carbon emissions in rural China. Resour. Conserv. Recycl. 2020, 159, 104812. [Google Scholar] [CrossRef]
- Meng, J.; Mi, Z.; Yang, H.; Shan, Y.; Guan, D.; Liu, J. The consumption-based black carbon emissions of China’s megacities. J. Clean. Prod. 2017, 161, 1275–1282. [Google Scholar] [CrossRef]
- Meng, J.; Liu, J.; Xu, Y.; Tao, S. Tracing Primary PM2.5 emissions via Chinese supply chains. Environ. Res. Lett. 2015, 10, 054005. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Peng, S.; Li, C.; Wei, L. Tracing CO2 emissions of China’s Construction sector. J. Clean. Prod. 2020, 275, 124165. [Google Scholar] [CrossRef]
- Fang, D.; Yang, J. Drivers and critical supply chain paths of black carbon emission: A structural path decomposition. J. Environ. Manag. 2021, 278, 111514. [Google Scholar] [CrossRef]
- Wang, R.; Tao, S.; Wang, W.; Liu, J.; Shen, H.; Shen, G.; Wang, B.; Liu, X.; Li, W.; Huang, Y.; et al. Black carbon emissions in China from 1949 to 2050. Environ. Sci. Technol. 2012, 46, 7595–7603. [Google Scholar] [CrossRef]
- Wu, J.; Kong, S.; Wu, F.; Cheng, Y.; Zheng, S.; Qin, S.; Liu, X.; Yan, Q.; Zheng, H.; Zheng, M.; et al. The moving of high emission for biomass burning in China: View from multi-year emission estimation and human-driven forces. Environ. Int. 2020, 142, 105812. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Deng, Z.; Liu, K.; Wang, J.; Fan, J. Widening inequality: Diverging trends in CO2 and air pollutant emissions across Chinese cities. Resour. Environ. Sustain. 2025, 21, 100227. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input-Output Analysis: Foundations and Extensions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Moses, L.N. The stability of interregional trading pattern and input–output analysis. Am. Econ. Rev. 1955, 45, 803–832. [Google Scholar]
- Miyazawa, K.; Masegi, S. Interindustry Analysis and the Structure of Laborers income-Distibution. Lect. Notes Econ. Math. Syst. 1963, 15, 89–103. [Google Scholar] [CrossRef]
- Liang, S.; Qu, S.; Zhu, Z.; Guan, D.; Xu, M. Income-Based Greenhouse Gas Emissions of Nations. Environ. Sci. Technol. 2017, 51, 346–355. [Google Scholar] [CrossRef]
- Li, J.S.; Zhou, H.W.; Meng, J.; Yang, Q.; Chen, B.; Zhang, Y.Y. Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city. Appl. Energy 2018, 226, 1076–1086. [Google Scholar] [CrossRef]
- Weber, C.L.; Peters, G.P.; Guan, D.; Hubacek, K. The contribution of Chinese exports to climate change. Energy Policy 2008, 36, 3572–3577. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Deng, Z.; Liu, X.; Yang, R.; Yin, L. Identifying the critical supply chains for black carbon and CO2 in the Sichuan urban agglomeration of southwest China. Sustainability 2023, 15, 15465. [Google Scholar] [CrossRef]
- Waugh, F.V. Inversion of the Leontief Matrix by power series. Econometrica 1950, 18, 142–154. [Google Scholar] [CrossRef]
- Zheng, H.; Bai, Y.; Wei, W.; Meng, J.; Zhang, Z.; Song, M.; Guan, D. Chinese provincial multi-regional input-output database for 2012, 2015, and 2017. Sci. Data 2021, 8, 244. [Google Scholar] [CrossRef] [PubMed]
- Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.; et al. Drivers of PM2.5 air pollution deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [Google Scholar] [CrossRef]
- Guan, D.; Su, X.; Zhang, Q.; Peters, G.P.; Liu, Z.; Lei, Y.; He, K. The socioeconomic drivers of China’s primary PM 2.5 emissions. Environ. Res. Lett. 2014, 9, 024010. [Google Scholar] [CrossRef]
- Huo, H.; Zhang, Q.; Guan, D.; Su, X.; Zhao, H.; He, K. Examining Air Pollution in China Using Production- And Consumption-Based Emissions Accounting Approaches. Environ. Sci. Technol. 2014, 48, 14139–14147. [Google Scholar] [CrossRef] [PubMed]







| Region | Driver Region | Sector | BC Emissions (Kt) | Contribution (%) | |
|---|---|---|---|---|---|
| Tier 0 | Tier 1 | ||||
| 1 | Guizhou | GZ:RES | 23.95 | 33.55 | |
| 2 | Hunan | HUN:RES | 20.57 | 29.17 | |
| 3 | Hebei | HEB:RES | 19.75 | 25.11 | |
| 4 | Sichuan | SC:RES | 14.34 | 31.43 | |
| 5 | Heilongjiang | HLJ:RES | 14.14 | 30.72 | |
| 6 | Hubei | HUB:RES | 13.70 | 22.89 | |
| 7 | Shandong | SD:RES | 13.61 | 18.61 | |
| 8 | Liaoning | LN:RES | 10.60 | 29.53 | |
| 9 | Inner Mongolia | NM:RES | 10.53 | 24.58 | |
| 10 | Yunnan | YN:RES | 10.30 | 29.20 | |
| 11 | Anhui | AH:RES | 10.04 | 21.43 | |
| 12 | Henan | HEN:RES | 8.49 | 16.73 | |
| 13 | Xinjiang | XJ:RES | 7.99 | 31.81 | |
| 14 | Shaanxi | SAX:RES | 7.61 | 26.13 | |
| 15 | Guangxi | GX:RES | 7.53 | 31.26 | |
| 16 | Guangdong | GD:RES | 7.32 | 25.00 | |
| 17 | Jilin | JL:RES | 7.25 | 28.53 | |
| 18 | Jiangsu | JS:CON | 7.03 | 18.79 | |
| 19 | Shanxi | SX:RES | 6.60 | 13.26 | |
| 20 | Guizhou | GZ:WRT | 6.44 | 9.03 | |
| 21 | Gansu | GS:RES | 6.36 | 33.43 | |
| 22 | Fujian | HJ:RES | 5.56 | 26.86 | |
| 23 | Jiangxi | JX:RES | 5.38 | 23.59 | |
| 24 | Jiangsu | JS:RES | 5.29 | 14.13 | |
| 25 | Zhejiang | ZJ:CON | 4.58 | 26.99 | |
| 26 | Chongqing | CQ:RES | 4.53 | 25.79 | |
| 27 | Guangdong | GD:CON | 4.50 | 15.37 | |
| 28 | Shandong | SD:CON | 4.16 | 5.69 | |
| 29 | Hunan | HUN:AGR | 4.12 | 5.85 | |
| 30 | Hebei | HEB:RES | HEB:RES | 3.99 | 5.07 |
| Rank | Driver Region | Sector | Destination Provinces | BC Emissions (Tons) | Contribution (%) | |
|---|---|---|---|---|---|---|
| Tier 0 | Tier 1 | |||||
| 1 | Anhui | AH:NMP | JS:CON | Jiangsu | 645.85 | 1.30 |
| 2 | Zhejiang | ZJ:NMP | SH:CON | Shanghai | 593.50 | 3.50 |
| 3 | Hebei | HEB:RES | SH:RES | Shanghai | 546.58 | 0.69 |
| 4 | Henan | HEN:NMP | GD:CON | Guangdong | 492.53 | 0.97 |
| 5 | Heilongjiang | HLJ:NMP | JL:CON | Jilin | 439.33 | 0.95 |
| 6 | Henan | HEN:NMP | ZJ:CON | Zhejiang | 435.72 | 0.86 |
| 7 | Heilongjiang | HLJ:AGR | JL:LIG | Jilin | 381.26 | 0.83 |
| 8 | Hebei | HEB:MTP | BJ:RES | Beijing | 355.94 | 0.45 |
| 9 | Henan | HEN:NMP | CQ:CON | Chongqing | 328.80 | 0.65 |
| 10 | Henan | HEN:NMP | YN:CON | Yunnan | 324.99 | 0.64 |
| 11 | Guizhou | GZ:RES | BJ:RES | Beijing | 317.42 | 0.44 |
| 12 | Henan | HEN:NMP | SAX:CON | Shaanxi | 317.16 | 0.63 |
| 13 | Hebei | HEB:NMP | BJ:CON | Beijing | 266.59 | 0.34 |
| 14 | Henan | HEN:NMP | LN:CON | Liaoning | 237.44 | 0.47 |
| 15 | Henan | HEN:NMP | SH:CON | Shanghai | 235.07 | 0.46 |
| 16 | Jilin | JL:RES | ZJ:RES | Zhejiang | 217.81 | 0.86 |
| 17 | Shanxi | SX:PPC | SH:RES | Shanghai | 215.69 | 0.43 |
| 18 | Hebei | HEB:MTP | BJ:CON | Beijing | 192.11 | 0.24 |
| 19 | Hebei | HEB:NMP | SX:CON | Shanxi | 186.40 | 0.24 |
| 20 | Henan | HEN:NMP | GZ:CON | Guizhou | 183.59 | 0.36 |
| 21 | Jilin | JL:NMP | HLJ:CON | Heilongjiang | 168.38 | 0.66 |
| 22 | Henan | HEN:NMP | NM:CON | Inner Mongolia | 165.11 | 0.33 |
| 23 | Hebei | HEB:MTP | YN:CON | Yunnan | 150.45 | 0.19 |
| 24 | Hebei | HEB:MTP | NM:CON | Inner Mongolia | 141.16 | 0.18 |
| 25 | Henan | HEN:NMP | JX:CON | Jiangxi | 138.16 | 0.27 |
| 26 | Gansu | GS:AGR | HEN:LIG | Henan | 133.01 | 0.70 |
| 27 | Hebei | HEB:RES | SH:RES | Shanghai | 131.93 | 0.17 |
| 28 | Shaanxi | SAX:RES | BJ:RES | Beijing | 131.15 | 0.45 |
| 29 | Beijing | BJ:NMP | TJ:CON | Henan | 127.48 | 2.73 |
| 30 | Hunan | HUN:RES | BJ:RES | Beijing | 126.03 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, K.; Deng, Z.; Yi, X.; Li, L.; Chen, D.; Duan, Y.; Li, Y.; Zhou, Y. Mapping Regional Flows: Supply Chain Pathways of Black Carbon Emissions in China. Sustainability 2025, 17, 9560. https://doi.org/10.3390/su17219560
Li S, Liu K, Deng Z, Yi X, Li L, Chen D, Duan Y, Li Y, Zhou Y. Mapping Regional Flows: Supply Chain Pathways of Black Carbon Emissions in China. Sustainability. 2025; 17(21):9560. https://doi.org/10.3390/su17219560
Chicago/Turabian StyleLi, Shuangzhi, Kang Liu, Zhongci Deng, Xili Yi, Linfeng Li, Dan Chen, Youquan Duan, Yujia Li, and Yu Zhou. 2025. "Mapping Regional Flows: Supply Chain Pathways of Black Carbon Emissions in China" Sustainability 17, no. 21: 9560. https://doi.org/10.3390/su17219560
APA StyleLi, S., Liu, K., Deng, Z., Yi, X., Li, L., Chen, D., Duan, Y., Li, Y., & Zhou, Y. (2025). Mapping Regional Flows: Supply Chain Pathways of Black Carbon Emissions in China. Sustainability, 17(21), 9560. https://doi.org/10.3390/su17219560

