Spatiotemporal Dynamics of Carbon Sequestration Potential Across South Korea: A CASA Model-Based Assessment of NPP, Heterotrophic Respiration, and NEP
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Meteorological Data
2.2.2. Maximum Light Use Efficiency Data
2.3. Methods
2.3.1. Estimation of Net Primary Production (NPP)
2.3.2. Empirical Modeling of Heterotrophic Respiration (RH)
2.3.3. Calculation of Net Ecosystem Production (NEP)
2.3.4. Spatial Aggregation Procedure
2.3.5. Input Datasets and Analytical Resolution
3. Results
3.1. Net Primary Production (NPP)
3.2. Heterotrophic Respiration (RH)
3.3. Net Ecosystem Production (NEP)
3.4. Temporal Changes in NPP
4. Discussion
4.1. Accuracy and Representativeness of the Estimated NEP
4.2. Spatiotemporal Variability of NEP
4.3. Relationship Between NEP and Climate and Vegetation Factors
4.4. Limitations and Future Directions
4.4.1. Limitations of the CASA Approach
4.4.2. Future Directions for Improvement
4.4.3. Implications for Climate Policy and Carbon Neutrality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| NPP | Net Primary Productivity |
| HR | Heterotrophic Respiration |
| NEP | Net Ecosystem Production |
References
- Zhang, C.; Liu, J. The Impact of Land-Use Changes on the Spatiotemporal Dynamics of Net Primary Productivity in Harbin, China. Sustainability 2025, 17, 5979. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef] [PubMed]
- Al Khaffaf, I.; Tamimi, A.; Ahmed, V. Pathways to Carbon Neutrality: A Review of Strategies and Technologies Across Sectors. Energies 2024, 17, 6129. [Google Scholar] [CrossRef]
- Höhne, N.; Gidden, M.J.; den Elzen, M.; Hans, F.; Fyson, C.; Geiges, A.; Jeffery, M.L.; Gonzales-Zuñiga, S.; Mooldijk, S.; Hare, W.; et al. Wave of Net Zero Emission Targets Opens Window to Meeting the Paris Agreement. Nat. Clim. Change 2021, 11, 820–822. [Google Scholar] [CrossRef]
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The Meaning of Net Zero and How to Get It Right. Nat. Clim. Change 2022, 12, 15–21. [Google Scholar] [CrossRef]
- Rogelj, J. Net Zero Targets in Science and Policy. Environ. Res. Lett. 2023, 18, 021003. [Google Scholar] [CrossRef]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net-Zero Emissions Energy Systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef]
- Minx, J.C.; Lamb, W.F.; Callaghan, M.W.; Fuss, S.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; Garcia, W.d.O.; Hartmann, J.; et al. Negative Emissions—Part 1: Research Landscape and Synthesis. Environ. Res. Lett. 2018, 13, 063001. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Global Change Biology|Environmental Change Journal|Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/gcb.15310 (accessed on 12 September 2025).
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests Science. Available online: https://www.science.org/doi/10.1126/science.1201609 (accessed on 12 September 2025).
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Landschützer, P.; Quéré, C.L.; Li, H.; Luijkx, I.T.; Olsen, A.; et al. ESSD—Global Carbon Budget 2024. Available online: https://essd.copernicus.org/articles/17/965/2025/ (accessed on 12 September 2025).
- Bui, M.; Adjiman, C.S.; Bardow, A.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hacketti, L.A.; Hallett, J.P.; et al. Carbon Capture and Storage (CCS): The Way Forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- van der Ploeg, R.; Haigh, M. The Importance of Natural Land Carbon Sinks in Modelling Future Emissions Pathways and Assessing Individual Country Progress towards Net-Zero Emissions Targets. Front. Environ. Sci. 2024, 12, 1379046. [Google Scholar] [CrossRef]
- Grassi, G.; Stehfest, E.; Rogelj, J.; van Vuuren, D.; Cescatti, A.; House, J.; Nabuurs, G.-J.; Rossi, S.; Alkama, R.; Viñas, R.A.; et al. Critical Adjustment of Land Mitigation Pathways for Assessing Countries’ Climate Progress|Nature Climate Change. Available online: https://www.nature.com/articles/s41558-021-01033-6 (accessed on 12 September 2025).
- Lim, B.-S.; Joo, S.-J.; Seok, J.-E.; Lee, C.-S. An Assessment of the Carbon Budget of the Passively Restored Willow Forests Along the Miho River, Central South Korea. Climate 2024, 12, 182. [Google Scholar] [CrossRef]
- Chen, H.; Wei, Y.; Huang, J.J. Urbanization Diminishes Net Ecosystem Productivity by Changing the Landscape Pattern. Agric. For. Meteorol. 2025, 362, 110369. [Google Scholar] [CrossRef]
- Lyu, J.; Fu, X.; Lu, C.; Zhang, Y.; Luo, P.; Guo, P.; Huo, A.; Zhou, M. Quantitative Assessment of Spatiotemporal Dynamics in Vegetation NPP, NEP and Carbon Sink Capacity in the Weihe River Basin from 2001 to 2020. J. Clean. Prod. 2023, 428, 139384. [Google Scholar] [CrossRef]
- Houghton, R.A. Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850–2000. Tellus B Chem. Phys. Meteorol. 2003, 55, 378–390. [Google Scholar]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS Terrestrial Gross and Net Primary Production Global Data Set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Yuan, W.; Xia, J.; Song, C.; Wang, Y.-P. Simulating the Land Carbon Sink: Progresses and Challenges of Terrestrial Ecosystem Models. Agric. For. Meteorol. 2024, 358, 110264. [Google Scholar] [CrossRef]
- Fuller, M.R.; Ganjam, M.; Baker, J.S.; Abt, R.C. Advancing Forest Carbon Projections Requires Improved Convergence between Ecological and Economic Models. Carbon Balance Manag. 2025, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, X.; Mao, F.; Huang, L.; Zhao, Y.; Song, M.; Yu, J.; Du, H. Integrating LUCC and Forest Aging to Project and Attribute Subtropical Forest NEP in Zhejiang Province under Four SSP-RCP Scenarios. Agric. For. Meteorol. 2025, 365, 110462. [Google Scholar] [CrossRef]
- Dong, D.; Zhang, R.; Guo, W.; Gong, D.; Zhao, Z.; Zhou, Y.; Xu, Y.; Fujioka, Y. Assessing Spatiotemporal Dynamics of Net Primary Productivity in Shandong Province, China (2001–2020) Using the CASA Model and Google Earth Engine: Trends, Patterns, and Driving Factors. Remote Sens. 2025, 17, 488. [Google Scholar] [CrossRef]
- Yisilayili, G.; He, B.; Song, Y.; Luo, X.; Yang, W.; Chen, Y. Simulation of Vegetation NPP in Typical Arid Regions Based on the CASA Model and Quantification of Its Driving Factors. Land 2025, 14, 371. [Google Scholar] [CrossRef]
- Xu, H.; He, B.; Guo, L.; Yan, X.; Zeng, Y.; Yuan, W.; Zhong, Z.; Tang, R.; Yang, Y.; Liu, H. Global Forest Plantations Mapping and Biomass Carbon Estimation. J. Geophys. Res. Biogeosciences 2024, 129, e2023JG007441. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IUCN: Gland, Switzerland, 2006. [Google Scholar]
- Jay, S.; Potter, C.; Crabtree, R.; Genovese, V.; Weiss, D.J.; Kraft, M. Evaluation of Modelled Net Primary Production Using MODIS and Landsat Satellite Data Fusion. Carbon Balance Manag. 2016, 11, 8. [Google Scholar] [CrossRef]
- Huang, X.; He, L.; He, Z.; Nan, X.; Lyu, P.; Ye, H. An Improved Carnegie-Ames-Stanford Approach Model for Estimating Ecological Carbon Sequestration in Mountain Vegetation. Front. Ecol. Evol. 2022, 10, 1048607. [Google Scholar] [CrossRef]
- Zhang, L.; Li, M.; Zhang, Z.; Li, L.; Yuan, J.; Zhu, S.; Wang, H.; Jia, M.; Ruan, J.; Pang, L.; et al. Aligning Regional Carbon Neutrality Pathways with National Climate Goals: An Integrated Analytical Framework. Environ. Sci. Ecotechnology 2025, 25, 100571. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, C.; Ou, X.; Lv, Y.; Ai, X.; Pan, R.; Zhang, Y.; Shi, M.; Zheng, X. Quantitative Structure and Spatial Pattern Optimization of Urban Green Space from the Perspective of Carbon Balance: A Case Study in Beijing, China. Ecol. Indic. 2023, 148, 110034. [Google Scholar] [CrossRef]
- Kim, G.S.; Kim, A.R.; Lim, B.S.; Seol, J.; An, J.H.; Lim, C.H.; Joo, S.J.; Lee, C.S. Assessment of the Carbon Budget of Local Governments in South Korea. Atmosphere 2022, 13, 342. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical Approaches for Incorporating Elevation into the Spatial Interpolation of Rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Lloyd, C. Assessing the Effect of Integrating Elevation Data into the Estimation of Monthly Precipitation in Great Britain. J. Hydrol. 2005, 308, 128–150. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP Products across Multiple Biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Zhou, G.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, A.H.; Goulden, M.L.; et al. Deriving a Light Use Efficiency Model from Eddy Covariance Flux Data for Predicting Daily Gross Primary Production across Biomes. Agric. For. Meteorol. 2007, 143, 189–207. [Google Scholar] [CrossRef]
- Sasai, T.; Saigusa, N.; Nasahara, K.N.; Ito, A.; Hashimoto, H.; Nemani, R.; Hirata, R.; Ichii, K.; Takagi, K.; Saitoh, T.M.; et al. Satellite-Driven Estimation of Terrestrial Carbon Flux over Far East Asia with 1-Km Grid Resolution. Remote Sens. Environ. 2011, 115, 1758–1771. [Google Scholar] [CrossRef]
- Shim, C.; Hong, J.; Hong, J.; Kim, Y.; Kang, M.; Thakuri, B.M.; Kim, Y.; Chun, J. Evaluation of MODIS GPP over a Complex Ecosystem in East Asia: A Case Study at Gwangneung Flux Tower in Korea. Adv. Space Res. 2014, 54, 2296–2308. [Google Scholar] [CrossRef]
- Didan, K. MYD13A1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center (DAAC) Data Set. MYD13A1-006. 2015. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-myd13a1-006 (accessed on 12 October 2025).
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C.S. Global Patterns of Carbon Dioxide Emissions from Soils. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-Associated Increases in the Global Soil Respiration Record|Nature. Available online: https://www.nature.com/articles/nature08930 (accessed on 12 September 2025).
- Turner, D.P.; Urbanski, S.; Bremer, D.; Wofsy, S.C.; Meyers, T.; Gower, S.T.; Gregory, M. A Cross-Biome Comparison of Daily Light Use Efficiency for Gross Primary Production. Glob. Change Biol. 2003, 9, 383–395. [Google Scholar] [CrossRef]
- Park, H.; Im, J.; Kim, M. Improvement of Satellite-Based Estimation of Gross Primary Production through Optimization of Meteorological Parameters and High Resolution Land Cover Information at Regional Scale over East Asia. Agric. For. Meteorol. 2019, 271, 180–192. [Google Scholar] [CrossRef]
- Hwang, K.; Choi, M. Seasonal Trends of Satellite-Based Evapotranspiration Algorithms over a Complex Ecosystem in East Asia. Remote Sens. Environ. 2013, 137, 244–263. [Google Scholar] [CrossRef]
- Wang, P.; Xue, Y.; Yan, Z.; Yin, W.; He, B.; Li, P. Study of Regional Spatial and Temporal Changes of Net Ecosystem Productivity of Crops from Remotely Sensed Data. Land 2024, 13, 155. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C.S.; Bhagawati, D. Interannual Variability in Global Soil Respiration, 1980–1994. Glob. Change Biol. 2002, 8, 800–812. [Google Scholar] [CrossRef]
- Kim, G.S.; Joo, S.J.; Lee, C.S. Seasonal Variation of Soil Respiration in the Mongolian Oak (Quercus Mongolica Fisch. Ex Ledeb.) Forests at the Cool Temperate Zone in Korea. Forests 2020, 11, 984. [Google Scholar] [CrossRef]
- Lee, S.J.; Yim, J.S.; Son, Y.M.; Son, Y.; Kim, R. Estimation of Forest Carbon Stocks for National Greenhouse Gas Inventory Reporting in South Korea. Forests 2018, 9, 625. [Google Scholar] [CrossRef]
- Long, T.; Wang, Y.; Jiang, Y.; Zhang, Y.; Wang, B. Spatiotemporal Evolution and Driving Factors of NPP in the LanXi Urban Agglomeration from 2000 to 2023. Sustainability 2025, 17, 5804. [Google Scholar] [CrossRef]
- Moustakis, Y.; Fatichi, S.; Onof, C.; Paschalis, A. Insensitivity of Ecosystem Productivity to Predicted Changes in Fine-Scale Rainfall Variability. J. Geophys. Res. Biogeosciences 2022, 127, e2021JG006735. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, Z.; Sun, W.; Li, S.; Han, F.; Huang, S.; Yu, C. The Relative Effects of Climate Change and Phenological Change on Net Primary Productivity Vary with Grassland Types on the Tibetan Plateau. Remote Sens. 2023, 15, 3733. [Google Scholar] [CrossRef]
- Ryan-Keogh, T.J.; Tagliabue, A.; Thomalla, S.J. Global Decline in Net Primary Production Underestimated by Climate Models. Commun. Earth Environ. 2025, 6, 75. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Papale, D.; Valentini, R.; Aubinet, M.; Bernhofer, C.; Knohl, A.; Laurila, T.; Lindroth, A.; Moors, E.; Pilegaard, K.; et al. Determinants of Terrestrial Ecosystem Carbon Balance Inferred from European Eddy Covariance Flux Sites. Geophys. Res. Lett. 2007, 34, 1–21. [Google Scholar] [CrossRef]
- Law, B.E.; Falge, E.; Gu, L.; Baldocchi, D.D.; Bakwin, P.; Berbigier, P.; Davis, K.; Dolman, A.J.; Falk, M.; Fuentes, J.D.; et al. Environmental Controls over Carbon Dioxide and Water Vapor Exchange of Terrestrial Vegetation. Agric. For. Meteorol. 2002, 113, 97–120. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global Patterns of Land-Atmosphere Fluxes of Carbon Dioxide, Latent Heat, and Sensible Heat Derived from Eddy Covariance, Satellite, and Meteorological Observations. J. Geophys. Res. Biogeosciences 2011, 116, G00J07. [Google Scholar] [CrossRef]
- Robinson, C.; Dilkina, B.; Hubbs, J.; Zhang, W.; Guhathakurta, S.; Brown, M.A.; Pendyala, R.M. Machine learning approaches for estimating commercial building energy consumption. Appl. Energy 2017, 208, 889–904. [Google Scholar] [CrossRef]
- Woldemariam, G.W.; Awoke, B.G.; Raian Vargas Maretto, R.V. Remote sensing vegetation Indices-Driven models for sugarcane evapotranspiration estimation in the semiarid Ethiopian Rift Valley. ISPRS J. Photogramm. Remote Sens. 2024, 215, 136–156. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The Global Carbon Dioxide Flux in Soil Respiration and Its Relationship to Vegetation and Climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Balsamo, G.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Beljaars, A.; Bidlot, J.; Blyth, E.; Bousserez, N.; Boussetta, S.; Brown, A.; et al. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sens. 2018, 10, 2038. [Google Scholar] [CrossRef]
- Wu, Z.; Ahlström, A.; Smith, B.; Ardö, J.; Eklundh, L.; Fensholt, R.; Lehsten, V. Climate Data Induced Uncertainty in Model-Based Estimations of Terrestrial Primary Productivity. Environ. Res. Lett. 2017, 12, 064013. [Google Scholar] [CrossRef]
- Huang, C.; Sun, C.; Nguyen, M.; Wu, Q.; He, C.; Yang, H.; Tu, P.; Hong, S. Spatio-Temporal Dynamics of Terrestrial Net Ecosystem Productivity in the ASEAN from 2001 to 2020 Based on Remote Sensing and Improved CASA Model. Ecol. Indic. 2023, 154, 110920. [Google Scholar] [CrossRef]
- Ji, S.; Ren, S.; Fang, L.; Chen, J.; Wang, G.; Wang, Q. Improved CASA-Based Net Ecosystem Productivity Estimation in China by Incorporating Developmental Factors into Autumn Phenology Model. Remote Sens. 2025, 17, 487. [Google Scholar] [CrossRef]
- Wang, H.; Jia, G.; Zhang, A.; Miao, C. Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid. Remote Sens. 2016, 8, 742. [Google Scholar] [CrossRef]
- Järvi, L.; Rannik, Ü.; Kokkonen, T.V.; Kurppa, M.; Karppinen, A.; Kouznetsov, R.D.; Rantala, P.; Vesala, T.; Wood, C.R. Uncertainty of Eddy Covariance Flux Measurements over an Urban Area Based on Two Towers. Atmos. Meas. Tech. 2018, 11, 5421–5438. [Google Scholar] [CrossRef]
- Wang, S.; Cui, D.; Wang, L.; Peng, J. Applying Deep-Learning Enhanced Fusion Methods for Improved NDVI Reconstruction and Long-Term Vegetation Cover Study: A Case of the Danjiang River Basin. Ecol. Indic. 2023, 155, 111088. [Google Scholar] [CrossRef]
- Cheng, Q.; Xie, R.; Wu, J.; Ye, F. Deep Learning-Based Spatiotemporal Fusion Architecture of Landsat 8 and Sentinel-2 Data for 10 m Series Imagery. Remote Sens. 2024, 16, 1033. [Google Scholar] [CrossRef]
- Liang, X.; Yu, S.; Meng, B.; Wang, X.; Yang, C.; Shi, C.; Ding, J. Multi-Source Remote Sensing and GIS for Forest Carbon Monitoring Toward Carbon Neutrality. Forests 2025, 16, 971. [Google Scholar] [CrossRef]
- van Wees, D. Global Fire Emissions Based on Native Resolution Satellite Data. Ph.D. Thesis, Research and Graduation Internal; Earth Sciences Amsterdam Sustainability Institute: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Takeda, N.; Rowlings, D.; Parton, W.; Grace, L.; Day, K.; Nguyen, T.; Grace, P. Soil Carbon Sequestration Potential in Subtropical Grasslands Estimated by DayCent-CABBI. Soil Sci. Soc. Am. J. 2025, 89, e70003. [Google Scholar] [CrossRef]
- Petropoulos, T.; Benos, L.; Busato, P.; Kyriakarakos, G.; Kateris, D.; Aidonis, D.; Bochtis, D. Soil Organic Carbon Assessment for Carbon Farming: A Review. Agriculture 2025, 15, 567. [Google Scholar] [CrossRef]





| Vegetation Type | εmax (gC·MJ−1) |
|---|---|
| Grassland | 0.860 |
| Coniferous Forest | 0.962 |
| Deciduous Broadleaf Forest | 1.165 |
| Mixed Forest | 1.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.-S.; Lee, J.-H.; Lee, C.-S. Spatiotemporal Dynamics of Carbon Sequestration Potential Across South Korea: A CASA Model-Based Assessment of NPP, Heterotrophic Respiration, and NEP. Sustainability 2025, 17, 9490. https://doi.org/10.3390/su17219490
Kim N-S, Lee J-H, Lee C-S. Spatiotemporal Dynamics of Carbon Sequestration Potential Across South Korea: A CASA Model-Based Assessment of NPP, Heterotrophic Respiration, and NEP. Sustainability. 2025; 17(21):9490. https://doi.org/10.3390/su17219490
Chicago/Turabian StyleKim, Nam-Shin, Jae-Ho Lee, and Chang-Seok Lee. 2025. "Spatiotemporal Dynamics of Carbon Sequestration Potential Across South Korea: A CASA Model-Based Assessment of NPP, Heterotrophic Respiration, and NEP" Sustainability 17, no. 21: 9490. https://doi.org/10.3390/su17219490
APA StyleKim, N.-S., Lee, J.-H., & Lee, C.-S. (2025). Spatiotemporal Dynamics of Carbon Sequestration Potential Across South Korea: A CASA Model-Based Assessment of NPP, Heterotrophic Respiration, and NEP. Sustainability, 17(21), 9490. https://doi.org/10.3390/su17219490

