The Impact of Consumer Characteristics, Product Attributes, and Food Type on Polish University Students’ Willingness to Pay More for Sustainable Insect-Based Foods
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Sample Characteristics
2.2. Statistical Analyses
3. Results
3.1. Socio-Demographic Factors and Willingness to Pay for EI Foods
3.2. Exploratory Factor Analysis of EI Product Categories and Purchase Attributes
3.3. Willingness to Pay and Effects of Product Formats and Purchase Attributes
4. Discussion
5. Conclusions
5.1. Limitations
5.2. Recommendation for Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abu Hatab, A.; Cavinato, M.E.R.; Lindemer, A.; Lagerkvist, C.-J. Urban Sprawl, Food Security and Agricultural Systems in Developing Countries: A Systematic Review of the Literature. Cities 2019, 94, 129–142. [Google Scholar] [CrossRef]
- Cao, C.; Wang, J. The Impact of Urban Expansion on Food Production: A Bibliometric Study of Development, Hotspots, and Future Prospects. Front. Sustain. Food Syst. 2025, 9, 1550373. [Google Scholar] [CrossRef]
- Goldstein, R.; You, H.Y. Cities as Lobbyists. Am. J. Political Sci. 2017, 61, 864–876. [Google Scholar] [CrossRef]
- Kozai, T. Sustainable Plant Factory: Closed Plant Production Systems with Artificial Light for High Resource Use Efficiencies and Quality Produce. Acta Hortic. 2013, 1004, 27–40. [Google Scholar] [CrossRef]
- Banerjee, C.; Adenaeuer, L. Up, Up and Away! The Economics of Vertical Farming. J. Agric. Stud. 2014, 2, 40–60. [Google Scholar] [CrossRef]
- Orsini, F.; Pennisi, G.; Gianquinto, G.; Martin, M. Defining Impacts of Urban Farming beyond Catchy Headlines. Int. J. Veg. Sci. 2024, 30, 497–502. [Google Scholar] [CrossRef]
- Vîrtosu, I.; Li, C. Vertical Farming Perspective and Challenges: A Comparative Review between China and the EU. In Proceedings of the Central and Eastern European eDem and eGov Days, Budapest, Hungary, 12–13 September 2024; Association for Computing Machinery: New York, NY, USA, 2024; pp. 1–12. [Google Scholar]
- Karpe, M.; Lachman, J.; Wang, L.; Marcelis, L.F.M.; Heuvelink, E. Potential for Urban Agriculture: Expert Insights on Sustainable Development Goals and Future Challenges. Sustain. Prod. Consum. 2025, 57, 16–34. [Google Scholar] [CrossRef]
- van Delden, S.H.; SharathKumar, M.; Butturini, M.; Graamans, L.J.A.; Heuvelink, E.; Kacira, M.; Kaiser, E.; Klamer, R.S.; Klerkx, L.; Kootstra, G.; et al. Current Status and Future Challenges in Implementing and Upscaling Vertical Farming Systems. Nat. Food 2021, 2, 944–956. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef]
- Muller, A.; Ferré, M.; Engel, S.; Gattinger, A.; Holzkämper, A.; Huber, R.; Müller, M.; Six, J. Can Soil-Less Crop Production Be a Sustainable Option for Soil Conservation and Future Agriculture? Land Use Policy 2017, 69, 102–105. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Secchi, M.; Corrado, S.; Beylot, A.; Sala, S. Assessing the Decoupling of Economic Growth from Environmental Impacts in the European Union: A Consumption-Based Approach. J. Clean. Prod. 2019, 236, 117535. [Google Scholar] [CrossRef]
- Andrade, H.J.; Vega, A.; Martínez-Salinas, A.; Villanueva, C.; Jiménez-Trujillo, J.A.; Betanzos-Simon, J.E.; Pérez, E.; Ibrahim, M.; Sepúlveda, L.C.J. The Carbon Footprint of Livestock Farms under Conventional Management and Silvopastoral Systems in Jalisco, Chiapas, and Campeche (Mexico). Front. Sustain. Food Syst. 2024, 8, 1363994. [Google Scholar] [CrossRef]
- Al-Qubati, A.; Zhang, L.; Forkel, M. Urban and Peri-Urban Agriculture under Climate Change: A Review on Carbon Emissions and Sequestration. Sustain. Cities Soc. 2024, 115, 105830. [Google Scholar] [CrossRef]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals 2019, 9, 119. [Google Scholar] [CrossRef]
- van Huis, A.; Itterbeeck, J.V.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013; ISBN 978-92-5-107596-8. [Google Scholar]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans-a Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef]
- Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001 (Text with EEA Relevance). 2015. Available online: https://eur-lex.europa.eu/eli/reg/2015/2283/oj/eng (accessed on 22 September 2025).
- Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 Establishing the Union List of Novel Foods in Accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods (Text with EEA Relevance). 2023. Available online: https://eur-lex.europa.eu/eli/reg_impl/2017/2470/oj/eng (accessed on 22 September 2025).
- Xie, X.; Cai, K.; Yuan, Z.; Shang, L.; Deng, L. Effect of Mealworm Powder Substitution on the Properties of High-Gluten Wheat Dough and Bread Based on Different Baking Methods. Foods 2022, 11, 4057. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as Ingredients for Bakery Goods. A Comparison Study of H. illucens, A. domestica and T. molitor flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat Bread Supplementation with Various Edible Insect Flours. Influence of chemical composition on nutritional and technological aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Bonaccorsi, G.; Lorini, C.; Cini, E. Assessment of the Rheological Properties and Bread Characteristics Obtained by Innovative Protein Sources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel Food or Potential Improvers for Wheat Flour? LWT 2020, 118, 108867. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein Fortification with Mealworm (Tenebrio molitor L.) Powder: Effect on Textural, Microbiological, Nutritional and Sensory Features of Bread. PLoS ONE 2019, 14, e0211747. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.; Mikulec, A.; Skotnicka, M.; Mickowska, B.; Makarewicz, M.; Sabat, R.; Wywrocka-Gurgul, A.; Mazurek, A. Effect of the Addition of Edible Insect Flour from Yellow Mealworm (Tenebrio molitor) on the Sensory Acceptance, and the Physicochemical and Textural Properties of Sponge Cake. Pol. J. Food Nutr. Sci. 2022, 72, 393–405. [Google Scholar] [CrossRef]
- Kowalski, S.; Gumul, D.; Oracz, J.; Rosicka-Kaczmarek, J.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Zborowski, M. Chemical Composition, Antioxidant Properties and Sensory Aspects of Sponge Cakes Supplemented with Edible Insect Flours. Antioxidants 2023, 12, 1912. [Google Scholar] [CrossRef]
- Tańska, M.; Browarek, J.; Ruszkowska, M.; Purkiewicz, A. Comparative Study on the Incorporation of Lesser Mealworm (Alphitobius diaperinus) and House Cricket (Acheta domesticus) Powders into Shortbread Cookies: Effects on Physical, Chemical and Sensory Properties. Pol. J. Food Nutr. Sci. 2024, 74, 280–292. [Google Scholar] [CrossRef]
- Ivanišová, E.; Rajnoha, M.; Harangozo, Ľ.; Kunecová, D.; Čech, M.; Gabríny, L.; Gálik, B.; Banach, J.K.; Kowalczewski, P.Ł.; Pietrzak-Fiećko, R. Physicochemical, Nutritional, Antioxidant, and Sensory Properties of Crackers Supplemented with Edible Insects. Appl. Sci. 2023, 13, 11911. [Google Scholar] [CrossRef]
- Kowalski, S.; Oracz, J.; Skotnicka, M.; Mikulec, A.; Gumul, D.; Mickowska, B.; Mazurek, A.; Sabat, R.; Wywrocka-Gurgul, A.; Żyżelewicz, D. Chemical Composition, Nutritional Value, and Acceptance of Nut Bars with the Addition of Edible Insect Powder. Molecules 2022, 27, 8472. [Google Scholar] [CrossRef]
- Gumul, D.; Oracz, J.; Kowalski, S.; Mikulec, A.; Skotnicka, M.; Karwowska, K.; Areczuk, A. Bioactive Compounds and Antioxidant Composition of Nut Bars with Addition of Various Edible Insect Flours. Molecules 2023, 28, 3556. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.; Rushforth, R.; Ruddell, B.L.; Mejia, A. Full Domestic Supply Chains of Blue Virtual Water Flows Estimated for Major U.S. Cities. Water Resour. Res. 2020, 56, e2019WR026190. [Google Scholar] [CrossRef]
- Ruszkowska, M.; Tańska, M.; Kowalczewski, P.Ł. Extruded Corn Snacks with Cricket Powder: Impact on Physical Parameters and Consumer Acceptance. Sustainability 2022, 14, 16578. [Google Scholar] [CrossRef]
- Ruszkowska, M.; Świtalski, M.; Tańska, M.; Rybicka, I.; Miedzianka, J.; Baranowska, H.M.; Kowalczewski, P.Ł. Sustainable Protein Fortification: Impact of Hemp and Cricket Powder on Extruded Snack Quality. Sustainability 2025, 17, 3097. [Google Scholar] [CrossRef]
- Andrzejczyk, B.; Łobacz, A.; Ziajka, J.; Lis, A.; Małkowska-Kowalczyk, M. Comprehensive Analysis of Yoghurt Made with the Addition of Yellow Mealworm Powder (Tenebrio molitor). Foods 2024, 13, 2416. [Google Scholar] [CrossRef]
- Karwacka, K.; Łobacz, A.; Ziajka, J.; Baranowska, M. Use of House Cricket (Acheta domesticus) Powder in Yoghurt Products. Foods 2024, 13, 2426. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, E.; Pečová, M.; Pankiewicz, U. Impact of Mealworm Powder (Tenebrio molitor) Fortification on Ice Cream Quality. Sustainability 2023, 15, 16041. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer Acceptance of Insect-Based Alternative Meat Products in Western Countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Bogusz, R.; Polak, R.; Nowacka, M. Consumer Attitudes to Food Products Made from Edible Insects. Zesz. Probl. Postępów Nauk Rol. 2020, 603, 17–27. [Google Scholar]
- Modlinska, K.; Adamczyk, D.; Maison, D.; Goncikowska, K.; Pisula, W. Relationship between Acceptance of Insects as an Alternative to Meat and Willingness to Consume Insect-Based Food-A Study on a Representative Sample of the Polish Population. Foods 2021, 10, 2420. [Google Scholar] [CrossRef]
- Modlinska, K.; Adamczyk, D.; Maison, D.; Pisula, W. Gender Differences in Attitudes to Vegans/Vegetarians and Their Food Preferences, and Their Implications for Promoting Sustainable Dietary Patterns—A Systematic Review. Sustainability 2020, 12, 6292. [Google Scholar] [CrossRef]
- La Barbera, F.; Verneau, F.; Amato, M.; Grunert, K.G.; Schnettler, B. Acceptance of Insect-Based Food in Chile: Evidence from a Survey Using the Entomophagy Attitude Questionnaire (EAQ). Food Qual. Prefer. 2021, 93, 104269. [Google Scholar] [CrossRef]
- Al-Otaibi, H.H.; Alabdulmohsen, S.R. From Disgust to Curiosity: Investigating Saudi University Students’ Willingness and Attitudes Toward Edible Insects as an Alternative Protein Source. Insects 2025, 16, 963. [Google Scholar] [CrossRef]
- Duman, E.; Keser, A. Entomophagy Attitudes Among Turkish Generation Z University Students: A Scale Validation and Path Analysis Model for Sustainable and Healthy Dietary Choices. Food Sci. Nutr. 2025, 13, e70397. [Google Scholar] [CrossRef]
- Platta, A.; Mikulec, A.; Radzymińska, M.; Kowalski, S.; Skotnicka, M. Willingness to Consume and Purchase Food with Edible Insects among Generation Z in Poland. Foods 2024, 13, 2202. [Google Scholar] [CrossRef] [PubMed]
- Pachołek, B.; Bartkowiak, P.; Michalak, S.; Stachowiak-Krzyżan, M. Attitudes towards Insect-Based Foods: The Polish Consumer Perspective. Econ. Environ. 2025, 93, 1048. [Google Scholar] [CrossRef]
- Mikulec, A.T.; Platta, A.M.; Radzymińska, M.; Ruszkowska, M.; Mikulec, K.; Suwała, G.; Kowalski, S.; Kowalczewski, P.Ł.; Nowicki, M. Attitudes and Purchase Intentions of Polish University Students towards Food Made from Insects—A Modelling Approach. PLoS ONE 2024, 19, e0300871. [Google Scholar] [CrossRef]
- Platta, A.; Mikulec, A.; Radzymińska, M.; Mikulec, K.; Kowalski, S. Segmentation of Young Polish Consumers in Relation to Product Attributes and Willingness to Consume Food Containing Edible Insects. Insects 2025, 16, 980. [Google Scholar] [CrossRef]
- Skotnicka, M.; Mazurek, A.; Kowalski, S. The Acceptance of Cream Soups with the Addition of Edible Insects (Mealworm, T. molitor; House Cricket, A. domesticus; Buffalo Worm, A. diaperinus; Grasshopper, R. differens) among Young People and Seniors in Poland. Nutrients 2023, 15, 5047. [Google Scholar] [CrossRef] [PubMed]
- Winning with Gen Z. Embracing Intention and Values for Brand Success. Available online: https://www.edelman.com/trust/2024/trust-barometer/special-report-brand/gen-z-embracing-intention-values-brand-success (accessed on 17 October 2025).
- NielsenIQ/World Data Lab. Spend Z: A Global Report on Generation Z’s Spending Potential. 2025. Available online: https://www.nielseniq.com/global/en/landing-page/spend-z (accessed on 17 October 2025).
- State of the Consumer Trends Report 2025|McKinsey. Available online: https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/state-of-consumer (accessed on 17 October 2025).
- Likert, R. A Technique for the Measurement of Attitudes; The Science Press: New York, NY, USA, 1932; 55p. [Google Scholar]
- Tolve, R.; Zanoni, M.; Sportiello, L.; Musollini, S.; Tchuenbou-Magaia, F.L.; Favati, F. From Fear to Fork—Exploring Food Neophobia and the Inclination towards Entomophagy in Italy. Int. J. Food Sci. Technol. 2025, 60, vvae047. [Google Scholar] [CrossRef]
- Rozin, P.; Fischler, C.; Imada, S.; Sarubin, A.; Wrzesniewski, A. Attitudes to Food and the Role of Food in Life in the U.S.A., Japan, Flemish Belgium and France: Possible Implications for the Diet-Health Debate. Appetite 1999, 33, 163–180. [Google Scholar] [CrossRef]
- Verbeke, W. Profiling Consumers Who Are Ready to Adopt Insects as a Meat Substitute in a Western Society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- de Boer, J.; Schösler, H.; Boersema, J.J. Motivational Differences in Food Orientation and the Choice of Snacks Made from Lentils, Locusts, Seaweed or “Hybrid” Meat. Food Qual. Prefer. 2013, 28, 32–35. [Google Scholar] [CrossRef]
- Tan, H.S.G.; Fischer, A.R.H.; van Trijp, H.C.M.; Stieger, M. Tasty but Nasty? Exploring the Role of Sensory-Liking and Food Appropriateness in the Willingness to Eat Unusual Novel Foods like Insects. Food Qual. Prefer. 2016, 48, 293–302. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Consumer Acceptance of Novel Food Technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Insects as food: Perception and acceptance Findings from current research. Ernahr. Umsch. 2017, 64, 44–50. [Google Scholar] [CrossRef]
- Gere, A.; Székely, G.; Kovács, S.; Kókai, Z.; Sipos, L. Readiness to Adopt Insects in Hungary: A Case Study. Food Qual. Prefer. 2017, 59, 81–86. [Google Scholar] [CrossRef]
- Videbæk, P.N.; Grunert, K.G. Disgusting or Delicious? Examining Attitudinal Ambivalence towards Entomophagy among Danish Consumers. Food Qual. Prefer. 2020, 83, 103913. [Google Scholar] [CrossRef]
- Tian, H.; Chen, J. Association of Food Neophobia and Food Disgust with the Willingness, Benefits, and Risks of Insect Food Consumption among Chinese University Students. Front. Nutr. 2025, 12, 1613932. [Google Scholar] [CrossRef]
- Platta, A.; Mikulec, A.; Radzymińska, M. Lifestyle as Determinant of Edible Insect Food Consumption among Selected Members of Generation Z. Sci. Pap. Silesian Univ. Technol. Organ. Manag. 2024, 2024, 409–425. [Google Scholar] [CrossRef]
- Orkusz, A.; Wolańska, W.; Harasym, J.; Piwowar, A.; Kapelko, M. Consumers’ Attitudes Facing Entomophagy: Polish Case Perspectives. Int. J. Environ. Res. Public Health 2020, 17, 2427. [Google Scholar] [CrossRef]
- Kornher, L.; Schellhorn, M.; Vetter, S. Disgusting or Innovative-Consumer Willingness to Pay for Insect Based Burger Patties in Germany. Sustainability 2019, 11, 1878. [Google Scholar] [CrossRef]
- Menozzi, D.; Sogari, G.; Veneziani, M.; Simoni, E.; Mora, C. Eating Novel Foods: An Application of the Theory of Planned Behaviour to Predict the Consumption of an Insect-Based Product. Food Qual. Prefer. 2017, 59, 27–34. [Google Scholar] [CrossRef]
- Ardoin, R.; Prinyawiwatkul, W. Product Appropriateness, Willingness to Try and Perceived Risks of Foods Containing Insect Protein Powder: A Survey of U.S. Consumers. Int. J. Food Sci. Technol. 2020, 55, 3215–3226. [Google Scholar] [CrossRef]
- Schäufele, I.; Barrera Albores, E.; Hamm, U. The Role of Species for the Acceptance of Edible Insects: Evidence from a Consumer Survey. Br. Food J. 2019, 121, 2190–2204. [Google Scholar] [CrossRef]
- Tuccillo, F.; Marino, M.G.; Torri, L. Italian Consumers’ Attitudes towards Entomophagy: Influence of Human Factors and Properties of Insects and Insect-Based Food. Food Res. Int. 2020, 137, 109619. [Google Scholar] [CrossRef] [PubMed]
- Harms, E.; Pirolet, N. Consumer Acceptance of Insect-Based Burgers. Appetite 2018, 130, 306. [Google Scholar] [CrossRef]
- Poortvliet, P.M.; Van der Pas, L.; Mulder, B.C.; Fogliano, V. Healthy, but Disgusting: An Investigation into Consumers’ Willingness to Try Insect Meat. J. Econ. Entomol. 2019, 112, 1005–1010. [Google Scholar] [CrossRef]
- Balzan, S.; Fasolato, L.; Maniero, S.; Novelli, E. Edible Insects and Young Adults in a North-East Italian City an Exploratory Study. Br. Food J. 2016, 118, 318–326. [Google Scholar] [CrossRef]
- Woolf, E.; Zhu, Y.; Emory, K.; Zhao, J.; Liu, C. Willingness to Consume Insect-Containing Foods: A Survey in the United States. LWT 2019, 102, 100–105. [Google Scholar] [CrossRef]
| Variable | Men | Women | ||
|---|---|---|---|---|
| N | % | N | % | |
| Gender | 379 | 40.00 | 568 | 60.00 |
| Field of study | ||||
| Engineering and technical sciences | 216 | 57.00 | 173 | 30.46 |
| Social and humanities sciences | 132 | 34.83 | 280 | 49.30 |
| Natural sciences | 31 | 8.17 | 115 | 20.24 |
| Place of residence | ||||
| Rural area | 137 | 36.15 | 212 | 37.33 |
| Town (up to 50,000 inhabitants) | 66 | 17.41 | 101 | 17.78 |
| Town (50,000–150,000 inhabitants) | 56 | 14.78 | 101 | 17.78 |
| City (>150,000 inhabitants) | 120 | 31.66 | 154 | 27.11 |
| Self-reported economic status | ||||
| Lower economic status | 88 | 23.22 | 154 | 27.11 |
| Good economic status | 202 | 53.30 | 300 | 52.82 |
| Higher economic status | 89 | 23.48 | 114 | 20.07 |
| Predictor | Coef. | SE | z | p | 95% CI | OR |
|---|---|---|---|---|---|---|
| Female (vs. male) | 0.388 | 0.130 | 2.976 | 0.003 | (0.133–0.645) | 1.474 |
| Social and humanities sciences (vs. engineering and technical sciences) | −0.216 | 0.139 | −1.556 | 0.120 | (−0.489–0.056) | 0.806 |
| Natural sciences (vs. engineering and technical sciences) | −0.016 | 0.188 | −0.085 | 0.932 | (−0.386–0.352) | 0.984 |
| Town up to 150,000 inhabitants (vs. rural area) | 0.246 | 0.147 | 1.672 | 0.095 | (−0.042–0.535) | 1.279 |
| City > 150,000 inhabitants (vs. rural area) | 0.389 | 0.154 | 2.525 | 0.012 | (0.087–0.691) | 1.475 |
| Good economic status (vs. lower) | 0.129 | 0.145 | 0.891 | 0.373 | (−0.154–0.414) | 1.138 |
| High economic status (vs. lower) | 0.275 | 0.177 | 1.549 | 0.121 | (−0.072–0.622) | 1.316 |
| Product | F1 * | F2 | F3 | F4 |
|---|---|---|---|---|
| Burgers and processed meat products | 0.862 | |||
| Ready-to-eat meals (soups, pasta, pancakes, sauces) | 0.850 | |||
| Bakery products (bread, rolls, pizza, etc.) | 0.757 | |||
| Confectionery (cakes, cookies, chocolate-coated insects, desserts) | 0.989 | |||
| Snacks (bars, crisps) | 0.512 | |||
| Post-workout beverages and high-protein supplements | 0.511 | |||
| Dairy-based products (e.g., cottage cheese, yogurts) | 0.979 | |||
| Sauces and mayonnaise | 0.431 | |||
| Cricket (frozen, dried, or powdered form) | 0.894 | |||
| Mealworm larvae (frozen, dried, or powdered form) | 0.928 | |||
| Migratory locust (frozen, dried, or powdered form) | 0.980 |
| Product Attribute | F1 * | F2 | F3 |
|---|---|---|---|
| Appealing taste | 0.917 | ||
| Pleasant aroma | 0.906 | ||
| Attractive appearance | 0.808 | ||
| High nutritional value | 0.401 | ||
| Product variety and market availability | 0.600 | ||
| Popularity (trendiness) | 0.614 | ||
| Affordable price | 0.442 | ||
| Package size and attractiveness | 0.712 | ||
| Ease of use | 0.608 | ||
| Health claims | 0.946 | ||
| Nutrition claims | 0.917 | ||
| Reduction in CO2 emissions | 0.472 | ||
| Recipe availability on blogs and websites | 0.791 |
| Composite | Estimate | SE | OR | 95% CI | z | p |
|---|---|---|---|---|---|---|
| Whole/Visible Insects | 0.076 | 0.079 | 1.08 | (0.92–1.26) | 0.962 | 0.336 |
| Processed Staples and Basics | 0.110 | 0.120 | 1.12 | (0.88–1.41) | 0.911 | 0.362 |
| Sweet Snacks and Confectionery | 0.216 | 0.103 | 1.24 | (1.01–1.52) | 2.098 | 0.036 * |
| Dairy and Sauces | 0.227 | 0.103 | 1.26 | (1.03–1.54) | 2.210 | 0.027 * |
| Sensory Appeal | −0.092 | 0.109 | 0.91 | (0.74–1.13) | −0.847 | 0.397 |
| Market Access and Convenience | 0.512 | 0.125 | 1.67 | (1.31–2.13) | 4.098 | <0.001 *** |
| Claims (Health/Nutrition/CO2) | 0.430 | 0.103 | 1.54 | (1.26–1.88) | 4.191 | <0.001 *** |
| Threshold (Category Split) | Estimate | SE | z | OR | 95% CI | p |
|---|---|---|---|---|---|---|
| Low|Moderate | −0.295 | 0.076 | −3.893 | 0.744 | (0.641–0.864) | <0.001 |
| Moderate|High | 1.424 | 0.088 | 16.104 | 4.152 | (3.492–4.938) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platta, A.; Mikulec, A.; Radzymińska, M.; Mikulec, K.; Kowalski, S. The Impact of Consumer Characteristics, Product Attributes, and Food Type on Polish University Students’ Willingness to Pay More for Sustainable Insect-Based Foods. Sustainability 2025, 17, 9463. https://doi.org/10.3390/su17219463
Platta A, Mikulec A, Radzymińska M, Mikulec K, Kowalski S. The Impact of Consumer Characteristics, Product Attributes, and Food Type on Polish University Students’ Willingness to Pay More for Sustainable Insect-Based Foods. Sustainability. 2025; 17(21):9463. https://doi.org/10.3390/su17219463
Chicago/Turabian StylePlatta, Anna, Anna Mikulec, Monika Radzymińska, Karolina Mikulec, and Stanisław Kowalski. 2025. "The Impact of Consumer Characteristics, Product Attributes, and Food Type on Polish University Students’ Willingness to Pay More for Sustainable Insect-Based Foods" Sustainability 17, no. 21: 9463. https://doi.org/10.3390/su17219463
APA StylePlatta, A., Mikulec, A., Radzymińska, M., Mikulec, K., & Kowalski, S. (2025). The Impact of Consumer Characteristics, Product Attributes, and Food Type on Polish University Students’ Willingness to Pay More for Sustainable Insect-Based Foods. Sustainability, 17(21), 9463. https://doi.org/10.3390/su17219463

