A Technology Roadmap for the Açaí Value-Chain Valorization
Abstract
1. Introduction
2. Materials and Methods
2.1. Preliminary Study
2.2. Methodology for the Strategy Definition
2.2.1. Scientific and Technical Papers
2.2.2. Granted and Pending Patents
2.2.3. Specialized Media
2.3. Methodology for the Data Analysis
2.3.1. Macro-Level Analysis
2.3.2. Meso-Level Analysis
2.3.3. Micro-Level Analysis
2.4. Methodology for the Roadmap Construction
2.4.1. Current Stage
2.4.2. Short-Term
2.4.3. Mid-Term
2.4.4. Long-Term
2.5. Roadmap Analysis
3. Results
3.1. Strategy Definition
3.2. Data Analysis
3.2.1. Macro-Level Data Analysis
- Rio de Janeiro State University (UERJ)—44 documents;
- Federal University of Pará (UFPA)—42 documents;
- Federal Rural University of the Amazon—26 documents;
- State University of Campinas (UNICAMP)—24 documents;
- Federal University of Rio de Janeiro (UFRJ)—20 documents.
3.2.2. Meso- and Micro-Level Data Analysis
- Miscellaneous products not classified in previous categories, such as enzymes [89], exfoliants, and specialty biochemicals.
- Thermal processing approaches, including pyrolysis, gasification, and torrefaction [86];
3.3. Roadmap Construction
3.4. Roadmap Analysis
4. Discussion
4.1. Horizontal Analysis: Temporal Dynamics of Products, Markets, and Technologies
4.2. Vertical Analysis: Time-Based Trends in Technology and Market Maturity
4.3. Player-Centric Analysis: Institutional Strategies and IP Positioning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| RD&I | Research, development, and innovation |
| ITA | Aeronautics Institute of Technology |
| INPI | National Institute of Industrial Property |
| INT | Brazilian National Technology Institute |
| UNICAMP | State University of Campinas |
| UFPA | Federal University of Pará |
| UFRJ | Federal University of Rio de Janeiro |
| UERJ | Rio de Janeiro State University |
| FIOCRUZ | Oswaldo Cruz Foundation |
| INCA | National Cancer Institute |
| Neitec | Nucleus for Industrial and Technological Studies |
| Embrapa | Brazilian Agricultural Research Corporation |
| IBGE | Brazilian Institute of Geography and Statistics |
| TRLs | Technology readiness levels |
References
- Mindelo, V.; Brabo, R.; Souza, L.F.; Magno, J.C. Analysis of an Açaí Pulp Production Process Through the Simulation of Discrete Events. Available online: https://www.abepro.org.br/biblioteca/TN_STP_263_512_35849.pdf (accessed on 3 August 2025).
- Oliveira, M.S.P.; Neto, J.T.F.; Mattietto, R.A.; Mochiutti, S.; Carvalho, A.V. Açaí–Euterpe Oleracea; IICA/PROCISUR: Buenos Aires, Argentina, 2017. [Google Scholar]
- Oliveira, M.d.S.P.d.; Neto, J.T.d.F.; Pena, R.d.S. Açaí: Cultivation and Processing Techniques. Available online: https://portalidea.com.br/cursos/db117bdde130dad21bf3cc89e6c0ee9b.pdf (accessed on 3 August 2025).
- Pessoa, J.D.C.; Arduin, M.; Martins, M.A.; Carvalho, J.E.U.d. Characterization of Açaí (E. Oleracea) Fruits and Its Processing Residues. Braz. Arch. Biol. Technol. 2010, 53, 1451–1460. [Google Scholar] [CrossRef]
- Pompeu, D.R.; Silva, E.M.; Rogez, H. Optimisation of the Solvent Extraction of Phenolic Antioxidants from Fruits of Euterpe Oleracea Using Response Surface Methodology. Bioresour. Technol. 2009, 100, 6076–6082. [Google Scholar] [CrossRef]
- SEBRAE. Açaí: Study of the Sanitary and Phytosanitary Barriers of the North American Market; Support Service for Micro and Small Enterprises: Brasília, Brazil, 2015; p. 54. [Google Scholar]
- Cefali, L.C.; Ataide, J.A.; Moriel, P.; Foglio, M.A.; Mazzola, P.G. Plant-Based Active Photoprotectants for Sunscreens. Int. J. Cosmet. Sci. 2016, 38, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Palencia, L.A.; Mertens-Talcott, S.; Talcott, S.T. Chemical Composition, Antioxidant Properties, and Thermal Stability of a Phytochemical Enriched Oil from Acai (Euterpe Oleracea Mart.). J. Agric. Food Chem. 2008, 56, 4631–4636. [Google Scholar] [CrossRef] [PubMed]
- Monge-Fuentes, V.; Muehlmann, L.A.; Longo, J.P.F.; Silva, J.R.; Fascineli, M.L.; de Souza, P.; Faria, F.; Degterev, I.A.; Rodriguez, A.; Carneiro, F.P.; et al. Photodynamic Therapy Mediated by Acai Oil (Euterpe Oleracea Martius) in Nanoemulsion: A Potential Treatment for Melanoma. J. Photochem. Photobiol. B 2017, 166, 301–310. [Google Scholar] [CrossRef]
- Burke-Colvin, D.; Hines, M.; Gan, D. Skin Care Formulations. US11123578B2, 30 August 2019. [Google Scholar]
- Nascimento, R.J.S.; Couri, S.; Antoniassi, R.; Freitas, S.P. Fatty Acid Composition of Açaí Pulp Oil Extracted with Enzymes and Hexane. Rev. Bras. Frutic. 2009, 30, 498–502. [Google Scholar] [CrossRef]
- Okada, Y.; Motoya, T.; Tanimoto, S.; Nomura, M. A Study on Fatty Acids in Seeds of Euterpe Oleracea Mart Seeds. J. Oleo Sci. 2011, 60, 463–467. [Google Scholar] [CrossRef]
- Reports, V.M. Acai Berry Market Size, Growth, Research, & Forecast 2032. Available online: https://www.verifiedmarketreports.com/product/acai-berry-market-size-and-forecast/ (accessed on 9 March 2025).
- Nogueira, A.K.M.; Santana, A.C.d.; Garcia, W.S. The Dynamics of Açai Market in Pará State from 1994 to 2009. Rev. Ceres 2013, 60, 324–331. [Google Scholar] [CrossRef]
- IBGE. Table 1613: Area Intended for Harvesting, Harvested Area, Quantity Produced, Average Yield and Production Value of Permanent Crops. Available online: https://sidra.ibge.gov.br/tabela/1613 (accessed on 24 February 2025).
- Eight Institutions Join IBGE and SERPRO’s Program to Strengthen Predictive Public Policies. Available online: https://agenciadenoticias.ibge.gov.br/en/agencia-news/2184-news-agency/news/43812-eight-institutions-join-ibge-and-serpro-s-program-to-strengthen-predictive-public-policies (accessed on 6 July 2025).
- Table 289: Quantity Produced and Value of Production in Plant Extraction, by Type of Extractive Product. Available online: https://sidra.ibge.gov.br/tabela/289 (accessed on 6 July 2025).
- Fioravanti, C. Açaí: From the Tree to the Snack. Available online: https://revistapesquisa.fapesp.br/acai-do-pe-para-o-lanche/ (accessed on 24 February 2025).
- Amaral, G.V.M.; Soletti, J.I.; Araújo, M.A.D.S.; Farias, M.B.D.; Bispo, M.D.; Ricardo, S.; Carvalho, S.H.V.D.; Balliano, T.L.; Vieira, W.T. Pyroligneous Extract for Treating Microbial Infections. BR102020013751A2, 18 January 2022. [Google Scholar]
- Silva, M.A.C.N.d.; Costa, J.H.; Pacheco-Fill, T.; Ruiz, A.L.T.G.; Vidal, F.C.B.; Borges, K.R.A.; Guimarães, S.J.A.; Azevedo-Santos, A.P.S.d.; Buglio, K.E.; Foglio, M.A.; et al. Açai (Euterpe Oleracea Mart.) Seed Extract Induces ROS Production and Cell Death in MCF-7 Breast Cancer Cell Line. Molecules 2021, 26, 3546. [Google Scholar] [CrossRef]
- Melo, P.S.; Massarioli, A.P.; Lazarini, J.G.; Soares, J.C.; Franchin, M.; Rosalen, P.L.; Alencar, S.M. de Simulated Gastrointestinal Digestion of Brazilian Açaí Seeds Affects the Content of Flavan-3-Ol Derivatives, and Their Antioxidant and Anti-Inflammatory Activities. Heliyon 2020, 6, e05214. [Google Scholar] [CrossRef] [PubMed]
- de Lima, A.C.P.; Bastos, D.L.R.; Camarena, M.A.; Bon, E.P.S.; Cammarota, M.C.; Teixeira, R.S.S.; Gutarra, M.L.E. Physicochemical Characterization of Residual Biomass (Seed and Fiber) from Açaí (Euterpe Oleracea) Processing and Assessment of the Potential for Energy Production and Bioproducts. Biomass Convers. Biorefinery 2021, 11, 925–935. [Google Scholar] [CrossRef]
- Poveda-Giraldo, J.A.; Salgado-Aristizabal, N.; Piedrahita-Rodriguez, S.; Ortiz-Sanchez, M.; Ledezma Rentería, E.D.; Orrego Alzate, C.E.; Cardona Alzate, C.A. Improving Small-Scale Value Chains in Tropical Forests. The Colombian Case of Annatto and Açai. Waste Biomass Valorizat. 2023, 14, 3297–3313. [Google Scholar] [CrossRef]
- Monteiro, A.F.; Miguez, I.S.; Silva, J.P.R.B.; Silva, A.S.d. High Concentration and Yield Production of Mannose from Açaí (Euterpe Oleracea Mart.) Seeds via Mannanase-Catalyzed Hydrolysis. Sci. Rep. 2019, 9, 10939. [Google Scholar] [CrossRef]
- Probert, D.R.; Farrukh, C.J.P.; Phaal, R. Technology Roadmapping—Developing a Practical Approach for Linking Resources to Strategic Goals. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2003, 217, 1183–1195. [Google Scholar] [CrossRef]
- Phaal, R.; Chaskel, C.; Gonzalez Nakazawa, R.; Ross, J. Roadmapping Roadmapping: Strategic Planning for Roadmapping Systems. Front. Eng. Manag. 2024, 11, 516–527. [Google Scholar] [CrossRef]
- Kappel, T.A. Perspectives on Roadmaps: How Organizations Talk about the Future. J. Prod. Innov. Manag. 2001, 18, 39–50. [Google Scholar] [CrossRef]
- Carvalho, M.M.; Fleury, A.; Lopes, A.P. An Overview of the Literature on Technology Roadmapping (TRM): Contributions and Trends. Technol. Forecast. Soc. Change 2013, 80, 1418–1437. [Google Scholar] [CrossRef]
- Kerr, C.; Phaal, R. Roadmapping and Roadmaps: Definition and Underpinning Concepts. IEEE Trans. Eng. Manag. 2022, 69, 6–16. [Google Scholar] [CrossRef]
- Yadav, S.K.; Singh, S.; Vijay, T.S.; Singh, S. Strategic Roadmapping for the Future of Retail Healthcare. J. Retail. Consum. Serv. 2025, 87, 104351. [Google Scholar] [CrossRef]
- Zhao, X.; You, F. Decarbonizing Energy: Plastic Waste Trade for Zero Waste 2040. Adv. Appl. Energy 2025, 17, 100216. [Google Scholar] [CrossRef]
- Xavier, B.G.; da Silva, L.V.; Alves, F.C.; Teixeira, L.V.; Santos, V.E.N. Circular Bioeconomy Ecosystems: Hydroxyapatite from Fish Waste at Rio de Janeiro. Biofuels Bioprod. Biorefining 2024, 18, 378–390. [Google Scholar] [CrossRef]
- Cardoso, F.S.; Borschiver, S. Technology Roadmap: Anaerobic Digestion and Biogas Production from Straw. Chim OggiChemistry Today 2019, 37, 20–26. [Google Scholar]
- Assunção, L.R.C.; Mendes, P.A.S.; Matos, S.; Borschiver, S. Technology Roadmap of Renewable Natural Gas: Identifying Trends for Research and Development to Improve Biogas Upgrading Technology Management. Appl. Energy 2021, 292, 116849. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.A.; Venturini, M.; Poganietz, W.-R.; Finkenrath, M.; Kirsten, T.; Acevedo, H.; Spina, P.R. Development of a Technology Roadmap for Bioenergy Exploitation Including Biofuels, Waste-to-Energy and Power Generation & CHP. Appl. Energy 2016, 180, 338–352. [Google Scholar] [CrossRef]
- NEITEC—Nucleus for Industrial and Technological Studies. Available online: http://www.neitec.eq.ufrj.br/ (accessed on 6 July 2025).
- Borschiver, S.; Silva, A.L.R. (Eds.) Technology Roadmap: Planejamento Estratégico Para Alinhar Mercado-Produto-Tecnologia, 1st ed.; Editora Interciência: Rua Verna de Magalhães, Brazil, 2016; ISBN 978-85-7193-386-6. [Google Scholar]
- What Is Scopus Preview?—Scopus Support Center. Available online: https://service-elsevier-com.ez29.periodicos.capes.gov.br/app/answers/detail/a_id/15534/supporthub/scopus/p/18445/ (accessed on 6 July 2025).
- Minesoft. Global Patent Data Coverage in PatBase. Available online: https://minesoft.com/solutions/patent-intelligence/patbase/ (accessed on 3 August 2025).
- INPI. Available online: https://busca.inpi.gov.br/pePI/jsp/patentes/PatenteSearchBasico.jsp (accessed on 6 July 2025).
- Café com Bioeconomia. Available online: https://open.spotify.com/show/7EvqnFQorE1Gv7CGNgRAek (accessed on 6 July 2025).
- Introduction to Sistema S. Available online: https://thebrazilbusiness.com/article/introduction-to-sistema-s (accessed on 6 July 2025).
- Açai-Portal Embrapa. Available online: https://www.embrapa.br/agencia-de-informacao-tecnologica/cultivos/acai (accessed on 6 July 2025).
- IBGE. Produção de Açaí (Cultivo). Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/acai-cultivo/br (accessed on 6 July 2025).
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 6 July 2025).
- Daniel, A.D.; Alves, L. University-Industry Technology Transfer: The Commercialization of University’s Patents. Knowl. Manag. Res. Pract. 2020, 18, 276–296. [Google Scholar] [CrossRef]
- Jesus, C.S.d.; de Cardoso, D.d.O.; Souza, C.G.d. Motivational Factors for Patenting: A Study of the Brazilian Researchers Profile. World Pat. Inf. 2023, 75, 102241. [Google Scholar] [CrossRef]
- Da Veiga, C.C.; de Menezes, A.B. Barriers to Turning Inventions into Innovations in Brazilian Public Universities. Rev. Gest. Países Língua Port. 2023, 22, 102–127. [Google Scholar] [CrossRef]
- Viana, L.S.; Jabur, D.M.; Ramirez, P.; da Cruz, G.P. Patents Go to The Market? University-Industry Technology Transfer from a Brazilian Perspective. J. Technol. Manag. Innov. 2018, 13, 24–35. [Google Scholar] [CrossRef]
- Battaglia, D.; Paolucci, E.; Ughetto, E. Hurdles in University-Industry Technology Transfer: Why Research-Based Inventions Are Not Transferred to the Market? IEEE Trans. Eng. Manag. 2024, 71, 13415–13427. [Google Scholar] [CrossRef]
- Ravi, R.; Janodia, M.D. Factors Affecting Technology Transfer and Commercialization of University Research in India: A Cross-Sectional Study. J. Knowl. Econ. 2022, 13, 787–803. [Google Scholar] [CrossRef]
- Vanderford, N.L.; Marcinkowski, E. A Case Study of the Impediments to the Commercialization of Research at the University of Kentucky. F1000Research 2015, 4, 133. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.R.; Mattos, M.M.G.; Nascimento, F.M.; Brum, F.L.; Mohana-Borges, R.; Figueiredo, N.G.; Neto, D.F.M.; Domont, G.B.; Nogueira, F.C.S.; de Paiva Campos, F.d.A.; et al. Phenolic Profile and Antioxidant Properties in Extracts of Developing Açaí (Euterpe Oleracea Mart.) Seeds. J. Agric. Food Chem. 2022, 70, 16218–16228. [Google Scholar] [CrossRef]
- da Silva, M.A.C.N.; Soares, C.S.; Borges, K.R.A.; Wolff, L.A.S.; Barbosa, M.D.C.L.; Nascimento, M.D.D.S.B.; de Carvalho, J.E. Ultrastructural Changes Induced by Açaí (Euterpe Oleracea Mart) in MCF-7 Breast Cancer Cell Line. Ultrastruct. Pathol. 2022, 46, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.C.; Mapa, L.M.; Kelmer, A.C.; Ferreira, S.O.; Bianchi, R.F. New Insight into Natural Fiber-reinforced Polymer Composites as Pressure Sensors: Experiment, Theory, and Application. Polym. Compos. 2022, 43, 8869–8876. [Google Scholar] [CrossRef]
- de Oliveira, B.P.; Balieiro, L.C.S.; Maia, L.S.; Zanini, N.C.; Teixeira, E.J.O.; da Conceição, M.O.T.; Medeiros, S.F.; Mulinari, D.R. Eco-Friendly Polyurethane Foams Based on Castor Polyol Reinforced with Açaí Residues for Building Insulation. J. Mater. Cycles Waste Manag. 2022, 24, 553–568. [Google Scholar] [CrossRef]
- Mesquita, Â.D.L. Medium Density Ecological Panel, Production Process of a Panel Based on Açaí Fiber and Use of Açaí Fruit Fiber. BR102017022238A2, 16 August 2017. [Google Scholar]
- Lacerda, N.G.; Oliveira, L.R.S.; Oliveira, C.M.C.; Ferreira, T.T.A.; Alves, K.S.; de Almeida, M.R.; de Souza, T.S.; Santos, M.C.A.; Gomes, D.I.; Mezzomo, R. Whole or Coarsely Broken Açai Seed as a Source of Roughage in the Diet of Feedlot Cattle: Intake, Digestibility, and Ruminal Parameters. Trop. Anim. Health Prod. 2022, 54, 206. [Google Scholar] [CrossRef] [PubMed]
- Sganzerla, W.G.; Tena-Villares, M.; Buller, L.S.; Mussatto, S.I.; Forster-Carneiro, T. Dry Anaerobic Digestion of Food Industry By-Products and Bioenergy Recovery: A Perspective to Promote the Circular Economy Transition. Waste Biomass Valorizat. 2022, 13, 2575–2589. [Google Scholar] [CrossRef]
- Rossetto, R.; Maciel, G.M.; Fernandes, I.D.A.A.; Modkovski, T.A.; Semião, M.A.; Brugnari, T.; Haminiuk, C.W.I. Açaí Seeds as a Prospective Biosorbent for Acid Dyes Removal. Chem. Biochem. Eng. Q. 2021, 35, 407–420. [Google Scholar] [CrossRef]
- Pessôa, T.S.; Lima Ferreira, L.E.d.; da Silva, M.P.; Pereira Neto, L.M.; Nascimento, B.F.d.; Fraga, T.J.M.; Jaguaribe, E.F.; Cavalcanti, J.V.; da Motta Sobrinho, M.A. Açaí Waste Beneficing by Gasification Process and Its Employment in the Treatment of Synthetic and Raw Textile Wastewater. J. Clean. Prod. 2019, 240, 118047. [Google Scholar] [CrossRef]
- Monteiro, C.E.d.S.; Filho, H.B.d.C.; Silva, F.G.O.; de Souza, M.d.F.F.; Sousa, J.A.O.; Franco, Á.X.; Resende, Â.C.; de Moura, R.S.; de Souza, M.H.L.; Soares, P.M.G.; et al. Euterpe Oleracea Mart. (Açaí) Attenuates Experimental Colitis in Rats: Involvement of TLR4/COX-2/NF-ĸB. Inflammopharmacology 2021, 29, 193–204. [Google Scholar] [CrossRef]
- da Silva, A.d.S.; Nunes, D.V.Q.; Carvalho, L.C.D.R.M.d.; Santos, I.B.; de Menezes, M.P.; de Bem, G.F.; Costa, C.A.d.; Moura, R.S.d.; Resende, A.C.; Ognibene, D.T. Açaí (Euterpe Oleracea Mart) Seed Extract Protects against Maternal Vascular Dysfunction, Hypertension, and Fetal Growth Restriction in Experimental Preeclampsia. Hypertens. Pregnancy 2020, 39, 211–219. [Google Scholar] [CrossRef]
- Calixto, J.B.; Heller, M.; Zimmer, C.G.M.; Junior, J.M.S.; Freitas, C.S.; Marcon, R. Extracts of Euterpe Oleracea, Methods of Making, and Uses Thereof. US20240285514A1, 9 June 2022. [Google Scholar]
- Tavares, J.L.N. Method for Transforming Açaí Seeds into Coffee Powder by Roasting the Seeds from the Inside out. BR102021018902, 4 April 2023. [Google Scholar]
- Açaí Coffee Products. Available online: https://www.ecoviveiro.com.br/cafe-acai-ct-318b1e (accessed on 3 August 2025).
- da Silva, R.C.; Batista, A.; da Costa, D.C.F.; Moura-Nunes, N.; Koury, J.C.; da Costa, C.A.; Resende, Â.C.; Daleprane, J.B. Açai (Euterpe Oleracea Mart.) Seed Flour Prevents Obesity-Induced Hepatic Steatosis Regulating Lipid Metabolism by Increasing Cholesterol Excretion in High-Fat Diet-Fed Mice. Food Res. Int. 2018, 111, 408–415. [Google Scholar] [CrossRef]
- Yuyama, L.K.O.; Faber, M.A. Food Composition, Cereal Bar, and Production Process of Food Composition Comprising Açaí Seeds. BRPI1106470B1, 3 August 2021. [Google Scholar]
- Jorge, F.T.A.; da Silva, A.S.; Brigagão, G.V. Açaí Waste Valorization via Mannose and Polyphenols Production: Techno-Economic and Environmental Assessment. Biomass Convers. Biorefinery 2024, 14, 3739–3752. [Google Scholar] [CrossRef]
- de Souza Lima, E.C.; Manhães, L.R.T.; dos Santos, E.R.; Feijó, M.B.d.S.; Sabaa-Srur, A.U.d.O. Optimization of the Inulin Aqueous Extraction Process from the Açaí (Euterpe Oleracea, Mart.) Seed. Food Sci. Technol. 2021, 41, 884–889. [Google Scholar] [CrossRef]
- Linan, L.Z.; Cidreira, A.C.M.; da Rocha, C.Q.; de Menezes, F.F.; Rocha, G.J.d.M.; Paiva, A.E.M. Utilization of Acai Berry Residual Biomass for Extraction of Lignocellulosic Byproducts. J. Bioresour. Bioprod. 2021, 6, 323–337. [Google Scholar] [CrossRef]
- Nascimento, K.B.X.D.; Nascimento, C.A.X.D. Method for the Production of Tannin Extract for Industrial Purposes. BR102021012561A2, 27 December 2022. [Google Scholar]
- Scatolino, M.V.; Bufalino, L.; Dias, M.C.; Mendes, L.M.; da Silva, M.S.; Tonoli, G.H.D.; de Souza, T.M.; Junior, F.T.A. Copaiba Oil and Vegetal Tannin as Functionalizing Agents for Açai Nanofibril Films: Valorization of Forest Wastes from Amazonia. Environ. Sci. Pollut. Res. Int. 2022, 29, 66422–66437. [Google Scholar] [CrossRef] [PubMed]
- Romani, V.P.; Martins, V.G.; da Silva, A.S.; Martins, P.C.; Nogueira, D.; Carbonera, N. Amazon-Sustainable-Flour from Açaí Seeds Added to Starch Films to Develop Biopolymers for Active Food Packaging. J. Appl. Polym. Sci. 2022, 139, 51579. [Google Scholar] [CrossRef]
- Braga, D.G.; Abreu, J.L.L.d.; Silva, M.G.d.; Souza, T.M.d.; Dias, M.C.; Tonoli, G.H.D.; Oliveira Neto, C.F.d.; Claro, P.I.C.; Gomes, L.G.; Bufalino, L. Cellulose Nanostructured Films from Pretreated Açaí Mesocarp Fibers: Physical, Barrier, and Tensile Performance. CERNE 2021, 27, e-102783. [Google Scholar] [CrossRef]
- Silva, D.W.; Batista, F.G.; Scatolino, M.V.; Mascarenhas, A.R.P.; De Medeiros, D.T.; Tonoli, G.H.D.; Lazo, D.A.Á.; Caselli, F.d.T.R.; de Souza, T.M.; Alves Junior, F.T. Developing a Biodegradable Film for Packaging with Lignocellulosic Materials from the Amazonian Biodiversity. Polymers 2023, 15, 3646. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.; de Matos, P.; Marvila, M.; Sakata, R.; Silvestro, L.; Gleize, P.; Brito, J.d. Rheology, Hydration, and Microstructure of Portland Cement Pastes Produced with Ground Açaí Fibers. Appl. Sci. 2021, 11, 3036. [Google Scholar] [CrossRef]
- Oliveira, J.A.R.; Komesu, A.; Martins, L.H.; Filho, R.M. Evaluation of Microstructure of Açaí Seeds Biomass Untreated and Treated with H2SO4 and NaOH by SEM, RDX and FTIR. Chem. Eng. Trans. 2016, 50, 379–384. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; Ampese, L.C.; Parisoto, T.A.C.; Forster-Carneiro, T. Process Intensification for the Recovery of Methane-Rich Biogas from Dry Anaerobic Digestion of Açaí Seeds. Biomass Convers. Biorefinery 2023, 13, 8101–8114. [Google Scholar] [CrossRef]
- Oliveira, D.C.D.; Vaz, J.R.P.; Silva, M.D.O.E.; Abreu, E.B.S.D.; Galhardo, M.A.B.; Araújo, L.F.D. TM Small Steam Turbine Operating at Low Pressure for Generating Electricity in the Amazon. Matér. Rio Jan. 2023, 28, e20230059. [Google Scholar] [CrossRef]
- Albuquerque, A.R.L.; Angélica, R.S.; Merino, A.; Paz, S.P.A. Chemical and Mineralogical Characterization and Potential Use of Ash from Amazonian Biomasses as an Agricultural Fertilizer and for Soil Amendment. J. Clean. Prod. 2021, 295, 126472. [Google Scholar] [CrossRef]
- de Moura Lima, E.; Vargas, J.A.C.; Gomes, D.I.; Maciel, R.P.; Alves, K.S.; Oliveira, W.F.; Aguiar, G.L.; de Carvalho Reis, G.; Oliveira, L.R.S.; Mezzomo, R. Intake, Digestibility, and Milk Yield Response in Dairy Buffaloes Fed Panicum Maximum Cv. Mombasa Supplemented with Seeds of Tropical Açai Palm. Trop. Anim. Health Prod. 2021, 53, 178. [Google Scholar] [CrossRef] [PubMed]
- da Silva Frasao, B.; Lima Dos Santos Rosario, A.I.; Leal Rodrigues, B.; Abreu Bitti, H.; Diogo Baltar, J.; Nogueira, R.I.; Pereira da Costa, M.; Conte-Junior, C.A. Impact of Juçara (Euterpe Edulis) Fruit Waste Extracts on the Quality of Conventional and Antibiotic-Free Broiler Meat. Poult. Sci. 2021, 100, 101232. [Google Scholar] [CrossRef]
- Feitoza, U.d.S.; Thue, P.S.; Lima, E.C.; dos Reis, G.S.; Rabiee, N.; de Alencar, W.S.; Mello, B.L.; Dehmani, Y.; Rinklebe, J.; Dias, S.L.P. Use of Biochar Prepared from the Açaí Seed as Adsorbent for the Uptake of Catechol from Synthetic Effluents. Molecules 2022, 27, 7570. [Google Scholar] [CrossRef]
- Guerreiro, L.H.H.; Baia, A.C.F.; Assunção, F.P.d.C.; Rodrigues, G.d.O.; e Oliveira, R.L.; Junior, S.D.; Pereira, A.M.; de Sousa, E.M.P.; Machado, N.T.; de Castro, D.A.R.; et al. Investigation of the Adsorption Process of Biochar Açaí (Euterpea Olerácea Mart.) Seeds Produced by Pyrolysis. Energies 2022, 15, 6234. [Google Scholar] [CrossRef]
- Ramirez, R.; Schnorr, C.E.; Georgin, J.; Netto, M.S.; Franco, D.S.P.; Carissimi, E.; Wolff, D.; Silva, L.F.O.; Dotto, G.L. Transformation of Residual Açai Fruit (Euterpe Oleracea) Seeds into Porous Adsorbent for Efficient Removal of 2,4-Dichlorophenoxyacetic Acid Herbicide from Waters. Molecules 2022, 27, 7781. [Google Scholar] [CrossRef]
- de Souza, T.N.V.; de Carvalho, S.M.L.; Vieira, M.G.A.; da Silva, M.G.C.; Brasil, D.d.S.B. Adsorption of Basic Dyes onto Activated Carbon: Experimental and Theoretical Investigation of Chemical Reactivity of Basic Dyes Using DFT-Based Descriptors. Appl. Surf. Sci. 2018, 448, 662–670. [Google Scholar] [CrossRef]
- de Souza, L.K.C.; Martins, J.C.; Oliveira, D.P.; Ferreira, C.S.; Gonçalves, A.A.S.; Araujo, R.O.; da Silva Chaar, J.; Costa, M.J.F.; Sampaio, D.V.; Passos, R.R.; et al. Hierarchical Porous Carbon Derived from Acai Seed Biowaste for Supercapacitor Electrode Materials. J. Mater. Sci. Mater. Electron. 2020, 31, 12148–12157. [Google Scholar] [CrossRef]
- Lima, A.C.; Silva, D.; Silva, V.; Godoy, M.; Cammarota, M.; Gutarra, M. β-Mannanase Production by Penicillium Citrinum through Solid-State Fermentation Using Açaí Residual Biomass (Euterpe Oleracea). J. Chem. Technol. Biotechnol. 2021, 96, 2744–2754. [Google Scholar] [CrossRef]
- Monteiro, E.B.; Borges, N.A.; Monteiro, M.; de Castro Resende, Â.; Daleprane, J.B.; Soulage, C.O. Polyphenol-Rich Açaí Seed Extract Exhibits Reno-Protective and Anti-Fibrotic Activities in Renal Tubular Cells and Mice with Kidney Failure. Sci. Rep. 2022, 12, 20855. [Google Scholar] [CrossRef] [PubMed]
- Muto, N.A.; Hamoy, M.; da Silva Ferreira, C.B.; Hamoy, A.O.; Lucas, D.C.R.; de Mello, V.J.; Rogez, H. Extract of Euterpe Oleracea Martius Stone Presents Anticonvulsive Activity via the GABAA Receptor. Front. Cell. Neurosci. 2022, 16, 872743. [Google Scholar] [CrossRef] [PubMed]
- de Bem, G.F.; da Costa, C.A.; da Silva Cristino Cordeiro, V.; Santos, I.B.; de Carvalho, L.C.R.M.; de Andrade Soares, R.; Ribeiro, J.H.; de Souza, M.A.V.; da Cunha Sousa, P.J.; Ognibene, D.T.; et al. Euterpe Oleracea Mart. (Açaí) Seed Extract Associated with Exercise Training Reduces Hepatic Steatosis in Type 2 Diabetic Male Rats. J. Nutr. Biochem. 2018, 52, 70–81. [Google Scholar] [CrossRef]
- Dias, Y.N.; Pereira, W.V.d.S.; Costa, M.V.d.; Souza, E.S.d.; Ramos, S.J.; Amarante, C.B.d.; Campos, W.E.O.; Fernandes, A.R. Biochar Mitigates Bioavailability and Environmental Risks of Arsenic in Gold Mining Tailings from the Eastern Amazon. J. Environ. Manag. 2022, 311, 114840. [Google Scholar] [CrossRef]
- Nogueira, D.; Marasca, N.S.; Latorres, J.M.; Costa, J.A.V.; Martins, V.G. Effect of an Active Biodegradable Package Made from Bean Flour and Açaí Seed Extract on the Quality of Olive Oil. Polym. Eng. Sci. 2022, 62, 1070–1080. [Google Scholar] [CrossRef]
- Vilhena, J.C.; Lopes de Melo Cunha, L.; Jorge, T.M.; de Lucena Machado, M.; de Andrade Soares, R.; Santos, I.B.; Freitas de Bem, G.; Fernandes-Santos, C.; Ognibene, D.T.; Soares de Moura, R.; et al. Açaí Reverses Adverse Cardiovascular Remodeling in Renovascular Hypertension: A Comparative Effect With Enalapril. J. Cardiovasc. Pharmacol. 2021, 77, 673–684. [Google Scholar] [CrossRef]
- Felin, F.D.; Maia-Ribeiro, E.A.; Felin, C.D.; Bonotto, N.A.C.; Turra, B.O.; Roggia, I.; Azzolin, V.F.; Teixeira, C.F.; Mastella, M.H.; de Freitas, C.R.; et al. Amazonian Guarana- and Açai-Conjugated Extracts Improve Scratched Fibroblast Healing and Eisenia Fetida Surgical Tail Amputation by Modulating Oxidative Metabolism. Oxid. Med. Cell. Longev. 2022, 2022, 3094362. [Google Scholar] [CrossRef]
- Martins, G.R.; Guedes, D.; Marques de Paula, U.L.; de Oliveira, M.d.S.P.; Lutterbach, M.T.S.; Reznik, L.Y.; Sérvulo, E.F.C.; Alviano, C.S.; Ribeiro da Silva, A.J.; Alviano, D.S. Açaí (Euterpe Oleracea Mart.) Seed Extracts from Different Varieties: A Source of Proanthocyanidins and Eco-Friendly Corrosion Inhibition Activity. Molecules 2021, 26, 3433. [Google Scholar] [CrossRef]
- Olera Ti35®—Olera’s First Patent. Available online: https://olera.io/ti35.html (accessed on 9 March 2025).
- Douglas, M.C. Softgels Açaí Oil or Liquid. BRPI1000581A2, 18 August 2011. [Google Scholar]
- Power Seed Açai Seed Extract Organic Superfood and Metabolism Booster Supplement. Available online: https://www.powerseedacai.com/products/acai-berries-seed-extract-organic-supplement-metabolism-booster-60-caps-by-power-seed-acai (accessed on 9 March 2025).
- Araújo, S.S.; Santos, G.T.A.; Tolosa, G.R.; Hiranobe, C.T.; Budemberg, E.R.; Cabrera, F.C.; da Silva, M.J.; Paim, L.L.; Job, A.E.; dos Santos, R.J. Acai Residue as an Ecologic Filler to Reinforcement of Natural Rubber Biocomposites. Mater. Res. 2023, 26, e20220505. [Google Scholar] [CrossRef]
- Hydro Açaí: A Source of Smoothies, and Possibly Renewable Energy in Brazil. Available online: https://www.hydro.com/en/global/media/news/2022/acai-a-source-of-smoothies-and-possibly-renewable-energy-in-brazil/ (accessed on 9 March 2025).
- Pernites, R.B.; Fu, D.; Clark, J.L. Methods for Cementing Well Bores Using Cleaning Fluids with Nut Shells. US10858569B2, 8 December 2020. [Google Scholar]
- Votorantim Açaí, the fruit of our energy. Votorantim Cimentos. Available online: https://www.votorantimcimentos.com.br/estudo-de-caso/acai-o-fruto-da-nossa-energia/ (accessed on 3 August 2025).
- Açaí Coffee? The Seed of an Amazonian Fruit Becomes an Aromatic Drink in a Community in Maranhão. Available online: https://fundoecos.org.br/en/historias/cafe-de-acai-caroco-de-fruto-amazonico-vira-bebida-aromatica-em-comunidade-do-maranhao/ (accessed on 3 August 2025).
- Poveda-Giraldo, J.A.; Piedrahita-Rodríguez, S.; Salgado Aristizabal, N.; Salas-Moreno, M.; Cardona Alzate, C.A. Prefeasibility Analysis of Small-Scale Biorefineries: The Annatto and Açai Case to Improve the Incomes of Rural Communities. Biomass Convers. Biorefinery 2024, 14, 12227–12252. [Google Scholar] [CrossRef]
- Jorge, F.T.A.; Miguez, I.S.; Brigagão, G.V.; Silva, A.S.d. From Açaí (Euterpe Oleracea Mart.) Waste to Mannose and Mannanoligosaccharides: A One-Step Process for Recalcitrant Mannan Depolymerization Using Dilute Oxalic Acid. Green Chem. 2024, 26, 10575–10592. [Google Scholar] [CrossRef]
- Rocha, J.H.A.; Siqueira, A.A.d.; Oliveira, M.A.B.d.; Castro, L.d.S.; Caldas, L.R.; Monteiro, N.B.R.; Filho, R.D.T. Circular Bioeconomy in the Amazon Rainforest: Evaluation of Açaí Seed Ash as a Regional Solution for Partial Cement Replacement. Sustainability 2022, 14, 14436. [Google Scholar] [CrossRef]
- Xavier, G.S.; Teles, A.M.; Moragas-Tellis, C.J.; Chagas, M.d.S.d.S.; Behrens, M.D.; Moreira, W.F.d.F.; Abreu-Silva, A.L.; Calabrese, K.d.S.; Nascimento, M.d.D.S.B.; Almeida-Souza, F. Inhibitory Effect of Catechin-Rich Açaí Seed Extract on LPS-Stimulated RAW 264.7 Cells and Carrageenan-Induced Paw Edema. Foods 2021, 10, 1014. [Google Scholar] [CrossRef]
- Freitas, D.d.S.; Morgado-Díaz, J.A.; Gehren, A.S.; Vidal, F.C.B.; Fernandes, R.M.T.; Romão, W.; Tose, L.V.; Frazão, F.N.S.; Costa, M.C.P.; Silva, D.F.; et al. Cytotoxic Analysis and Chemical Characterization of Fractions of the Hydroalcoholic Extract of the Euterpe Oleracea Mart. Seed in the MCF-7 Cell Line. J. Pharm. Pharmacol. 2017, 69, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.F.; Vidal, F.C.B.; Santos, D.; Costa, M.C.P.; do Morgado-Díaz, J.A.; Desterro Soares Brandão Nascimento, M.; de Moura, R.S. Cytotoxic Effects of Euterpe Oleracea Mart. in Malignant Cell Lines. BMC Complement. Altern. Med. 2014, 14, 175. [Google Scholar] [CrossRef]
- Pinheiro, R.O.; Brasil, D.D.S.B.; Rego, J.D.A.R.; Marques, S.D.P.P.M.; Conceição, G.D.S.; Conceição, S.D.S.; Velasco, M.F. Process for Obtaining and Precipitating Product of Chromium Metal Ions in Solution Obtained from Açaí Seeds (Solid Residue). BR102021004290A2, 13 September 2022. [Google Scholar]
- de Melo, G.D.S.V.; Bastos, L.P. Açaí fiber extraction machine 2012.
- Petruz Açaí. Available online: https://www.petruz.com/a-petruz (accessed on 3 August 2025).
- Coffí Mudaí. Available online: https://fundacaocargill.org.br/iniciativa/mudai/ (accessed on 3 August 2025).
- Silva, A.A.S.; Pereira, B.C.F.; Batista, J.P.B.; Gomes, T.C.F.; Moraes, J.C.B. Study of a New Potassium Phosphate-Based Waste as an Alkaline Activator in Alkali-Activated Binders: The Açai Seed Ash. Constr. Build. Mater. 2023, 408, 133757. [Google Scholar] [CrossRef]
- Balestra, C.E.T.; Garcez, L.R.; Couto da Silva, L.; Veit, M.T.; Jubanski, E.; Nakano, A.Y.; Pietrobelli, M.H.; Schneider, R.; Ramirez Gil, M.A. Contribution to Low-Carbon Cement Studies: Effects of Silica Fume, Fly Ash, Sugarcane Bagasse Ash and Acai Stone Ash Incorporation in Quaternary Blended Limestone-Calcined Clay Cement Concretes. Environ. Dev. 2023, 45, 100792. [Google Scholar] [CrossRef]
- Polimex Polimex Bioplásticos. Available online: https://ciorganicos.com.br/sustentabilidade-tag/polimex-bioplasticos/ (accessed on 9 March 2025).
- FINEP Bioeconomy Projects. Available online: https://news.confap.org.br/wp-content/uploads/2022/06/Kallil-Maia-represenante-da-FINEP-Norte-Apresenta%C3%A7%C3%A3o-dos-Programas-FINEP.pdf (accessed on 9 March 2025).
- Amazon Products. Available online: https://www.amazonind.com.br/produtos (accessed on 9 March 2025).
- Jr, R.M.; Gabriel, L.P.; Dias, C.G.B.T.; Dos, S.D.J.; Munhoz, A.L.J.; Zavaglia, C.A.D.C. Acai-Based Polyurethane and Its Use in the Biomanufacturing of Medical Devices. BRPI1105296B1, 24 November 2020. [Google Scholar]
- Beraca Beraca Açai Scrub Por Beraca—A Clariant Group Company—Personal Care and Cosmetics. Available online: https://www.ulprospector.com/pt/la/PersonalCare/Detail/3668/1002464/Beraca-Aai-Scrub (accessed on 9 March 2025).
- Schmidt, S. Previously Discarded açaí Waste is Now Used to Make cosmetics, Paper and Plastics, as Well as a Source of Energy. Available online: https://umsoplaneta.globo.com/financas/negocios/noticia/2023/01/10/residuos-antes-descartados-do-acai-viram-cosmeticos-papeis-e-plasticos-alem-de-fonte-de-energia.ghtml (accessed on 9 March 2025).
- Nascimento, K.B.X.D.; Nascimento, C.A.X.D. A Method For Producing Input for the Containment Floor Organic Bed of Animals. BR102021015119A2, 14 February 2023. [Google Scholar]
- Castilho, A.M.; Pianowski, L.F.; Moura, R.S.D. Acai Seed Extract, Fractions of Acai Seed Extracts, Process of Obtaining Acai Seed Extract, Use of Acai Seed Extracts, Pharmaceutical or Food Compositions and Method of Treating Diseases or Disorders. BR102018005450A2, 8 October 2019. [Google Scholar]
- Castilho, A.M.; Pianowski, L.F.; de Moura, R.S. Açai Berry Seed Extract, Fractions of Açai Berry Seed Extracts, Process for Obtaining Açai Berry Seed Extracts, Pharmaceutical and Food Compositions and Method for the Treatment of Diseases or Disorders with Açai Berry Seed Extract. US20190290715, 26 September 2019. [Google Scholar]
- Campos, L.V.B.D.; Batista, L.C.; Cardoso, P.H.M. Ternary Biocomposite Produced with Lignocellulosic Agroindustrial Residue from Euterpe Oleracea. BR102021022353A2, 23 May 2023. [Google Scholar]
- Campos, L.V.B.D.; Campos, J.P.C.; Batista, L.C.; Alves, S. Biodegradable Composite Using Açaí Bagasse and Its Manufacturing Processes. BR102019021120A2, 2 April 2021. [Google Scholar]
- Maifrede, P.O. Açaí Products Containing Fruits or Their Flavorings, or Chocolate, or Guarana, or Taioba Extract, or Açaí Seed Extract, or Coffee, and Their Production Processes. BR102018077052A2, 7 July 2020. [Google Scholar]
- Zimmer, C.G.M.; Freitas, C.S.; Junior, J.M.S.; Calixto, J.B.; Melina, H.; Rodrigo, M. Euterpe Oleracea Extracts, Methods of Preparation and Uses Thereof. BR112023017795A2, 26 December 2023. [Google Scholar]
- Silva, A.S.D.; Jorge, F.T.A.; Miguez, I.S. Process for Obtaining Mannose and Mannano-Oligosaccharides from Açaí Seeds (Euterpe Oleracea Mart) in a Single Hydrolysis Stage with Dilute Oxalic Acid. BR102023005989B1, 3 March 2023. [Google Scholar]
- de Souza, E.S.; Dias, Y.N.; da Costa, H.S.C.; Pinto, D.A.; de Oliveira, D.M.; de Souza Falção, N.P.; Teixeira, R.A.; Fernandes, A.R. Organic Residues and Biochar to Immobilize Potentially Toxic Elements in Soil from a Gold Mine in the Amazon. Ecotoxicol. Environ. Saf. 2019, 169, 425–434. [Google Scholar] [CrossRef]
- Dias, Y.N.; Souza, E.S.; Costa, H.S.C.; Melo, L.C.A.; Penido, E.S.; Amarante, C.B.; Teixeira, O.M.M.; Fernandes, A.R. Biochar produced from Amazonian agro-industrial wastes: Properties and adsorbent potential of Cd2+ and Cu2+. Biochar 2019, 1, 389–400. [Google Scholar] [CrossRef]
- Guedes, R.S.; Pinto, D.A.; Ramos, S.J.; Dias, Y.N.; Caldeira Junior, C.F.; Gastauer, M.; Souza Filho, P.W.M.e.; Fernandes, A.R. Biochar and Conventional Compost Reduce Hysteresis and Increase Phosphorus Desorbability in Iron Mining Waste. Rev. Bras. Ciênc. Solo 2021, 45, e0200174. [Google Scholar] [CrossRef]
- Biochars from Agro-Industrial Residues of the Amazon: An Ecological Alternative to Enhance the Use of Phosphorus in Agriculture | Clean Technologies and Environmental Policy. Available online: https://link.springer.com/article/10.1007/s10098-022-02427-6 (accessed on 10 March 2025).
- Embrapa International Portal. Available online: https://www.embrapa.br/en/international (accessed on 24 February 2025).








| Açaí Biomass | Fibrous Seeds | Seeds | Fibers | ||||
|---|---|---|---|---|---|---|---|
| References | [23] | Lot 1 [24] | Lot 2 [24] | Lot 1 [24] | [22] | [22] | Lot 1 [24] |
| Total extractives (%) | 22.31 ± 0.51 | 15.45 ± 0.95 | 9.89 ± 2.09 | 16.72 ± 2.43 | 7.7 | 11.8 | 12.89 ± 1.88 |
| Cellulose (%) | 13.05 ± 1.46 | - | - | - | - | - | - |
| Hemicellulose (%) | 42.67 ± 1.81 | - | - | - | - | - | - |
| Lignin (%) | 15.91 ± 6.71 | - | - | - | 11 ± 0.29 | 35 ± 0.2 | - |
| Glucose (%) | - | 6.09 ± 0.67 | 8.40 ± 0.52 | 4.61 ± 0.48 | 5.7 ± 0.10 | 29.7 ± 0.9 | 21.88 ± 0.46 |
| Xylose (%) | - | 1.83 ± 1.33 | 2.05 ± 0.22 | 1.13 ± 0.16 | 0.6 ± 0.03 | 18.6 ± 0.6 | 15.12 ± 0.39 |
| Galactose (%) | - | 1.79 ± 0.21 | 1.51 ± 0.27 | 2.61 ± 0.12 | 1.9 ± 0.06 | 0.3 ± 0.0 | 0.90 ± 0.04 |
| Arabinose (%) | - | 0.40 ± 0.02 | 0.63 ± 0.03 | 0.85 ± 0.03 | 0.8 ± 0.03 | 0.5 ± 0.0 | 0.82 ± 0.03 |
| Mannose (%) | - | 47.09 ± 1.42 | 52.46 ± 1.51 | 47.19 ± 2.58 | 74.9 ± 1.19 | 0.7 ± 0.2 | n.d. |
| Ashes (%) | 7.54 ± 0.11 | 0.61 ± 0.09 | 0.44 ± 0.02 | 0.41 ± 0.03 | 2.4 ± 0.2 | 2.6 ± 0.2 | 2.12 ± 0.06 |
| Calorific value (MJ.kg−1) | - | - | - | - | 19 | 19 | - |
| Database | Type of Document | Analyzed Documents | Documents Within the Scope |
|---|---|---|---|
| Scopus | Scientific and technical papers | 312 | 174 |
| Patbase | Granted and pending patents | 443 | 75 |
| INPI | Granted and pending patents | 190 | |
| Open reports, company websites, newspapers | Specialized media | >500 | 58 |
| Total number of analyzed documents | -- | >1000 | 307 |
| Layer | Meso-Level Taxonomy | Micro-Level Taxonomy |
|---|---|---|
| Market | Biomass | Fibrous seed; seed; fibers |
| Segment | Food; chemical; pharmaceutical or cosmetic; energy; agricultural or aquicultural; environmental treatment; construction or steel industry; other segments | |
| Product | Product | Extract; coffee or flour; ingredients; films or nanocellulose; composite or materials; biofuel or bioenergy; offal or animal feed; adsorbent or biochar; other products |
| Technology | Pretreatment | Drying; grinding; sieving; decoction |
| Processing technology | Extraction technologies; mechanical processes; thermal processing; chemical processing; biotechnological; polymerization or coating | |
| Post treatment | Phase separation; concentration/conservation technologies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, F.; Vaz Junior, S.; Doria, M.; Borschiver, S. A Technology Roadmap for the Açaí Value-Chain Valorization. Sustainability 2025, 17, 9448. https://doi.org/10.3390/su17219448
Cardoso F, Vaz Junior S, Doria M, Borschiver S. A Technology Roadmap for the Açaí Value-Chain Valorization. Sustainability. 2025; 17(21):9448. https://doi.org/10.3390/su17219448
Chicago/Turabian StyleCardoso, Fernanda, Silvio Vaz Junior, Mariana Doria, and Suzana Borschiver. 2025. "A Technology Roadmap for the Açaí Value-Chain Valorization" Sustainability 17, no. 21: 9448. https://doi.org/10.3390/su17219448
APA StyleCardoso, F., Vaz Junior, S., Doria, M., & Borschiver, S. (2025). A Technology Roadmap for the Açaí Value-Chain Valorization. Sustainability, 17(21), 9448. https://doi.org/10.3390/su17219448

