Sustainable Recovery of Valuable Constituents from Octopus (Octopus vulgaris) Cooking Liquor
Abstract
1. Introduction
2. Materials and Methods
2.1. Octopus, Cooking, Filtration and CLs
2.2. Proximate Composition Analysis
2.3. PL and Total Volatile Base-Nitrogen (TVB-N) Values
2.4. Analysis of the FA Profile
2.5. Analysis of Macro- and Microelements
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Determination of PL and TVB-N Values
3.3. Analysis of the FA Profile
3.4. Determination of Macro- and Microelement Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venugopal, V. Marine product for health care. In Marine Product for Health Care; Venugopal, V., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 185–214. [Google Scholar]
- Tilami, S.K.; Sampels, S. Nutritional value of fish: Lipids, proteins, vitamins, and minerals. Rev. Fish. Sci. 2018, 26, 242–253. [Google Scholar]
- Martínez-Valverde, I.; Periago, M.J.; Santaella, M.; Ros, G. The content and nutritional significance of minerals on fish flesh in the presence and absence of bone. Food Chem. 2000, 71, 503–509. [Google Scholar] [CrossRef]
- Durazzo, A.; Di Lena, G.; Gabrielli, P.; Santini, A.; Lombardi-Boccia, G.; Lucarini, M. Nutrients and bioactive compounds in seafood: Quantitative literature research analysis. Fishes 2022, 7, 132. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Ramakrishnan, V.V.; Brooks, M.S.; Budge, S.M.; Dave, D. Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. J. Microb. Biochem. Technol. 2013, 5, 107–129. [Google Scholar]
- Olsen, R.L.; Toppe, J.; Karunasagar, I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 2014, 36, 144–152. [Google Scholar] [CrossRef]
- Zhang, J.; Akyol, Ç.; Meers, E. Nutrient recovery and recycling from fishery waste and by-products. J. Environ. Manag. 2023, 348, 119266. [Google Scholar] [CrossRef]
- Cooney, R.; De Sousa, D.B.; Fernández-Ríos, A.; Mellett, S.; Rowan, N.; Morse, A.P.; Clifford, E. A circular economy framework for seafood waste valorisation to meet challenges and opportunities for intensive production and sustainability. J. Clean. Prod. 2023, 392, 136283. [Google Scholar] [CrossRef]
- Cristóvão, R.O.; Botelho, C.M.; Martins, R.J.E.; Loureiro, J.M.; Boaventura, R.A.R. Primary treatment optimization of a fish canning wastewater from a Portuguese plant. Water Res. Ind. 2014, 6, 51–63. [Google Scholar] [CrossRef]
- Katsara, A.; Coughlan, N.E.; Jansen, M.A.K. Characterization of seafood processing wastewater: Processing procedures and physicochemical variability. Environ. Pollut. 2025, 383, 126761. [Google Scholar] [CrossRef]
- Al-Dawery, S.K.; Al-Yaqoubi, G.E.; Al-Musharrafi, A.A.; Harharah, H.N.; Amari, A.; Harharah, R.H. Treatment of fish-processing wastewater using polyelectrolyte and palm anguish. Processes 2023, 11, 2124. [Google Scholar] [CrossRef]
- Ltaief, S.; Mateos, A.; Forestier, A.; Walha, K.; Firdaous, L. Sustainable protein recovery and wastewater valorization in shrimp processing by ultrafiltration. Foods 2025, 14, 2044. [Google Scholar] [CrossRef]
- Dewi, R.N.; Nur, M.M.A.; Astuti, R.P.; Andriyanto, W.; Panjaitan, F.C.A.; Febrianti, D.; Budiadnyani, I.G.A.; Utari, S.P.S.D.; Samanta, P.N.; Perceka, M.L. Bioremediation of seafood processing wastewater by microalgae: Nutrient removal, and biomass, lipid and protein enhancement. Environ. Eng. Res. 2024, 29, 230673. [Google Scholar] [CrossRef]
- Azin, E.; Moghimi, H.; Dastgheib, S.M.M.; Darvishi, F. Biovalorization of wastewater of fish canning process by Yarrowia lipolytica for biodiesel and animal feed supplement production. Biomass Conv. Biorefin. 2024, 14, 7981–7994. [Google Scholar] [CrossRef]
- Lourenço, H.M.; Anacleto, P.; Afonso, C.; Ferraria, V.; Martins, M.F.; Carvalho, M.L.; Lino, A.R.; Nunes, M.L. Elemental composition of cephalopods from Portuguese continental waters. Food Chem. 2009, 113, 1146–1153. [Google Scholar] [CrossRef]
- Oliveira, H.; Muniz, J.A.; Bandarra, N.M.; Castanheira, I.; Ribeiro Coelho, I.; Delgado, I.; Gonçalves, S.; Lourenço, H.M.; Motta, C.; Duarte, M.P.; et al. Effects of industrial boiling on the nutritional profile of common octopus (Octopus vulgaris). Foods 2019, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Arechavala-López, P.; Capó, X.; Oliver-Codorniú, M.; Sillero-Ríos, J.; Busquéts-Cortés, C.; Sánchez-Jerez, P.; Sureda, A. Fatty acids and elemental composition as biomarkers of Octopus vulgaris populations: Does origin matter? Mar. Pollut. Bull. 2019, 139, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.I.; Kim, J.S.; Park, S.Y.; Lee, S.M.; Jang, M.S.; Oh, J.Y.; Choi, J.S. Development and quality characteristics of elderly-friendly Pulpo a la Gallega prepared using texture-modified octopus (Octopus vulgaris) arms. Foods 2023, 12, 3343. [Google Scholar] [CrossRef] [PubMed]
- Zamuz, S.; Bohrer, B.M.; Shariati, M.A.; Rebezov, M.; Kumar, M.; Pateiro, M.; Lorenzo, J.M. Assessing the quality of octopus: From sea to table. Food Front. 2023, 4, 733–749. [Google Scholar] [CrossRef]
- Venugopal, V.; Gopakumar, K. Shellfish: Nutritive value, health benefits, and consumer safety. Comp. Rev. Food Sci. Food Saf. 2017, 16, 1219–1242. [Google Scholar] [CrossRef]
- Ngandjui, Y.A.T.; Kereeditse, T.T.; Kamika, I.; Madikizela, L.M.; Msagati, T.A.M. Review: Nutraceutical and medicinal importance of marine molluscs. Mar. Drugs 2024, 22, 201. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.J.; Choi, J.I.; Kim, J.H.; Chun, B.S.; Ahn, D.H.; Kwon, J.H.; Kim, Y.J.; Byun, M.W.; Lee, J.W. Effect of electron beam irradiation on the physiological activities of cooking drips from Enteroctopus dofleini. J. Korean Soc. Food Sci. Nutr. 2008, 37, 1190–1195. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Murado, M.A. Enzymatic hydrolysates from food wastewater as a source of peptones for lactic acid bacteria productions. Enzym. Microb. Technol. 2008, 43, 66–72. [Google Scholar] [CrossRef]
- Oh, H.S.; Kang, K.T.; Kim, H.S.; Lee, J.H.; Jee, S.J.; Ha, J.H.; Kim, J.J.; Heu, M.S. Food Component characteristics of seafood cooking drips. J. Korean Soc. Food Sci. Nutr. 2007, 36, 595–602. [Google Scholar] [CrossRef]
- Choi, J.I.; Kim, Y.J.; Sung, N.Y.; Kim, J.H.; Ahn, D.H.; Chun, B.S.; Cho, K.Y.; Byun, M.W.; Lee, J.W. Investigation on the increase of antioxidant activity of cooking drip from Enteroctopus dofleini by irradiation. J. Korean Soc. Food Sci. Nutr. 2009, 38, 121–124. [Google Scholar] [CrossRef]
- Malga, J.M.; Trigo, M.; Martínez, B.; Aubourg, S.P. Preservative effect on canned mackerel (Scomber colias) lipids by addition of octopus (Octopus vulgaris) cooking liquor in the packaging medium. Molecules 2022, 27, 739. [Google Scholar] [CrossRef]
- Méndez, L.; Trigo, M.; Zhang, B.; Aubourg, S.P. Antioxidant effect of octopus by-products in canned horse mackerel (Trachurus trachurus) previously subjected to different frozen storage times. Antioxidants 2022, 11, 2091. [Google Scholar] [CrossRef]
- Ahn, C.B.; Kim, H.R. Processing of the extract powder using skipjack cooking juice and its taste compounds. Korean J. Food Sci. Technol. 1996, 28, 696–701. [Google Scholar]
- Achour, M.; Khelifi, O.; Bouazizi, I.; Hamdi, M. Design of an integrated bioprocess for the treatment of tuna processing liquid effluents. Process Biochem. 2000, 35, 1013–1017. [Google Scholar] [CrossRef]
- Jao, C.L.; Ko, W.C. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fish. Sci. 2002, 68, 430–435. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Osborne, S.; Masci, P.; Gobe, G. Marine-based nutraceuticals: An innovative trend in the food and supplement industries. Mar. Drugs 2015, 13, 6336–6351. [Google Scholar] [CrossRef]
- Šimat, V.; Elabed, N.; Kulawik, P.; Ceylan, Z.; Jamroz, E.; Yazgan, H.; Cagalj, M.; Regenstein, J.M.; Özogul, F. Recent advances in marine-based nutraceuticals and their health benefits. Mar. Drugs 2020, 18, 627. [Google Scholar] [CrossRef]
- Senadheera, R.L.; Hossain, A.; Shahidi, F. Marine bioactives and their application in the food industry: A Review. Appl. Sci. 2023, 13, 12088. [Google Scholar] [CrossRef]
- Anh, H.T.H.; Shahsavari, E.; Bott, N.J.; Ball, A.S. Options for improved treatment of saline wastewater from fish and shellfish processing. Front. Environ. Sci. 2021, 9, 689580. [Google Scholar] [CrossRef]
- Mosquera-Corral, A.; Val del Río, A.; Campos Gómez, J.L. Case study: Treatment of fish-canning effluents. In Treatment and Valorisation of Saline Wastewater: Principles and Practice; IWA Publishing: London, UK, 2021; pp. 123–149. [Google Scholar]
- Virpiranta, V.H.; Abayie, S.O.; Mäkikangas, J.; Puirava, M.; Koivula, K.; Leivisk, T. Treatment of fish processing plant wastewater using dissolved air flotation and pilot-scale biochar column filtration. J. Environ. Chem. Eng. 2023, 11, 110853. [Google Scholar] [CrossRef]
- FAO. El Estado Mundial de la Pesca y la Acuicultura: Hacia la Transformación Azul; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Rome, Italy, 2022; pp. 117–160. [Google Scholar]
- Regulation (EU) 2024/1781, Also Known as the Ecodesign for Sustainable Products Regulation (ESPR), Establishes EU-Wide Ecodesign Requirements to Make Products Placed on the EU Market More Sustainable, Durable, Repairable, and Resource-Efficient, Aiming for a Circular and Climate-Neutral Economy. Available online: http://data.europa.eu/eli/reg/2024/1781/oj (accessed on 1 July 2025).
- AOAC. Official Methods for Analysis of the Association of Analytical Chemistry, 15th ed.; Association of Official Chemists, Inc.: Arlington, VA, USA, 1990; pp. 931–937. [Google Scholar]
- Bligh, E.; Dyer, W. A rapid method of total extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Herbes, S.E.; Allen, C.P. Lipid quantification of freshwater invertebrates: Method modification for microquantitation. Can. J. Fish. Aquat. Sci. 1983, 40, 1315–1317. [Google Scholar] [CrossRef]
- Raheja, R.; Kaur, C.; Singh, A.; Bhatia, A. New colorimetric method for the quantitative determination of phospholipids without acid digestion. J. Lipid Res. 1973, 14, 695–697. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Quitral, V.; Larraín, M.A.; Rodríguez, A.; Gómez, J.; Maier, L.; Vinagre, J. Autolytic degradation and microbiological activity in farmed Coho salmon (Oncorhynchus kisutch) during chilled storage. Food Chem. 2007, 104, 369–375. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Medina, I.; Pérez-Martín, R. Polyunsaturated fatty acids in tuna phospholipids: Distribution in the sn-2 location and changes during cooking. J. Agric. Food Chem. 1996, 44, 585–589. [Google Scholar] [CrossRef]
- US-EPA. Acid Digestion of Sediments, Sludges, and Soils, SW-846 Test Method 3050B; Revision 2 (12 Pages); United States Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Prego, R.; Cobelo-García, A.; Calvo, S.; Aubourg, S.P. Comparative nutritional and healthy values of macro- and microelements in edible and non-edible tissues of raw and processed common octopus (Octopus vulgaris). Foods 2025, 14, 2210. [Google Scholar] [CrossRef]
- Piclet, G. Le poisson aliment. Composition-Intérêt nutritionnel. Cah. Nutr. Diét. 1987, XXII, 317–335. [Google Scholar]
- Cheong, H.S. Antioxidant effect of histidine containing low molecular weight peptide isolated from skipjack boiled extract. Korean J. Food Cook. Sci. 2007, 23, 221–226. [Google Scholar]
- Soto, M.; Méndez, R.; Lema, J.M. Biodegradability and toxicity in the anaerobic treatment of fish canning wastewaters. Environ. Technol. 1991, 12, 669–677. [Google Scholar] [CrossRef]
- Méndez, L.; Rodríguez, A.; Aubourg, S.P.; Medina, I. Low-toxicity solvents for the extraction of valuable lipid compounds from octopus (Octopus vulgaris) waste. Foods 2023, 12, 3631. [Google Scholar] [CrossRef]
- Rodríguez Amado, I.; González, M.P.; Murado, M.A.; Vázquez, J.A. Shrimp wastewater as a source of astaxanthin and bioactive peptides. J. Chem. Technol. Biotechnol. 2016, 91, 793–805. [Google Scholar] [CrossRef]
- Bechtel, P.J. Properties of Stickwater from Fish Processing Byproducts. J. Aquat. Food Prod. Technol. 2005, 14, 25–38. [Google Scholar] [CrossRef]
- Martínez-Montaño, E.; Osuna-Ruiz, I.; Benítez-García, I.; Osuna, C.O.; Pacheco-Aguilar, R.; Navarro-Peraza, R.S.; Lugo Sánchez, M.E.; Hernández, C.; Spanopoulos-Hernández, M.; Salazar-Leyva, J.A. Biochemical and antioxidant properties of recovered solids with pH shift from fishery effluents (sardine stickwater and tuna cooking water). Waste Biomass Valoriz. 2021, 12, 1901–1913. [Google Scholar] [CrossRef]
- Tonon, R.V.; dos Santos, B.A.; Couto, C.C.; Mellinger-Silva, C.; Brígida, A.I.S.; Cabral, L.M.C. Coupling of ultrafiltration and enzymatic hydrolysis aiming at valorizing shrimp wastewater. Food Chem. 2016, 198, 20–27. [Google Scholar] [CrossRef]
- Köhler, A.; Sarkinnen, E.; Tapola, N.; Niskanen, T.; Bruheim, I. Bioavailability of fatty acids from krill oil, krill meal and fish oil in healthy subjects–a randomized, single-dose, cross-over trial. Lipids Health Dis. 2015, 14, 19. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhang, T.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015, 10, 81–98. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Medina, I.; Pérez-Martín, R. A comparison between conventional and fluorescence detection methods of cooking-induced damage to tuna fish lipids. Z. Lebensm. Unters. Forsch. 1995, 200, 252–255. [Google Scholar] [CrossRef]
- Özoğul, Y. Methods for freshness quality and deterioration. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 189–214. [Google Scholar]
- Ólafsdóttir, G.; Jónsdóttir, R. Volatile aroma compounds in fish. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 97–117. [Google Scholar]
- Directive 95/149/EC: Commission Decision of 8 March 1995 fixing the total volatile basic nitrogen (TVB-N) limit values for certain categories of fishery products and specifying the analysis methods to be used. Off. J. Eur. Com. 1995, L 097, 29/04/1995. 0084–0087.
- Picos-Benítez, A.R.; Peralta-Hernández, J.M.; López-Hincapié, J.D.; Rodríguez-García, A. Biogas production from saline wastewater of the evisceration process of the fish processing industry. J. Water Process. Eng. 2019, 32, 100933. [Google Scholar] [CrossRef]
- Kim, J.S.; Heu, M.S.; Yeum, D.M. Component characteristics of canned oyster processing waste water as a food resource. J. Korean Soc. Food Sci. Nutr. 2001, 30, 299–306. [Google Scholar]
- Thomas, S.; Harindranathan Nair, M.V.; Bright Singh, I.S. Physicochemical Analysis of Seafood Processing Effluents in Aroor Gramapanchayath, Kerala. IOSR J. Environm. Sci. Toxicol. Food Technol. 2015, 9, 38–44. [Google Scholar]
- Prasertsan, P.; Jung, S.; Buckle, K.A. Anaerobic filter treatment of fishery wastewater. World J. Microbiol. Biotechnol. 1994, 10, 11–13. [Google Scholar] [CrossRef]
- Veiga, M.C.; Méndez, R.; Lema, J.M. Anaerobic filter and DSFF reactors in anaerobic treatment of tuna processing wastewater. Water Sci. Technol. 1994, 30, 425–432. [Google Scholar] [CrossRef]
- Méndez, L.; Zhang, B.; Aubourg, S.P. Enhancement of lipid stability of frozen fish by octopus-waste glazing. Foods 2023, 12, 2298. [Google Scholar] [CrossRef]
- Aubourg, S.P. Lipid compounds. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 69–86. [Google Scholar]
- Rustad, T. Lipid oxidation. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 87–95. [Google Scholar]
- Rodríguez, A.; Trigo, M.; Aubourg, S.P.; Medina, I. Optimisation of healthy-lipid content and oxidative stability during oil extraction from squid (Illex argentinus) viscera by green processing. Mar. Drugs 2021, 19, 616. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, M.; Reddy, C.R.; Jha, B. Algal lipids, fatty acids and sterols. In Functional Ingredients from Algae for Foods and Nutraceuticals; Domínguez, H., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 87–134. [Google Scholar]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Sieiro, M.P.; Aubourg, S.P.; Rocha, F. Seasonal study of the lipid composition in different tissues of the common octopus (Octopus vulgaris). Eur. J. Lipid Sci. Technol. 2006, 108, 479–487. [Google Scholar] [CrossRef]
- Kiss, S.A.; Forster, T.; Dongo, A. Absorption and effect of the magnesium content of a mineral water in the human body. J. Am. Coll. Nutr. 2004, 23, 758S–762S. [Google Scholar] [CrossRef] [PubMed]
- El-Said, G.F.; El-Sikaily, A. Chemical composition of some seaweed from Mediterranean Sea coast, Egypt. Environ. Monit. Assessm. 2013, 185, 6089–6099. [Google Scholar] [CrossRef] [PubMed]
- Ismail, G.A. Biochemical composition of some Egyptian seaweeds with potent nutritive and antioxidant properties. Food Sci. Technol. Campinas 2017, 37, 294–302. [Google Scholar] [CrossRef]
- Shahidi, F.; Varatharajan, V.; Peng, H.; Senadheera, R. Utilization of marine by-products for the recovery of value-added products. J. Food Bioact. 2019, 6, 10–61. [Google Scholar] [CrossRef]
- Bruno, S.F.; Ekorong, F.J.A.A.; Karkala, S.S.; Cathrine, M.S.B.; Kudre, T.G. Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends Food Sci. Technol. 2019, 85, 10–22. [Google Scholar] [CrossRef]
- Venugopal, V. Valorization of seafood processing discards: Bioconversion and bio-refinery approaches. Front. Sustain. Food Syst. 2021, 5, 611835. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Franco, F.; Martinho, F.; Carvalho, L.; Pereira, M.E.; Coelho, J.P.; Pardal, M.A. Essential mineral content variations in commercial marine species induced by ecological and taxonomical attributes. J. Food Compos. Anal. 2021, 103, 104118. [Google Scholar] [CrossRef]
- Fraga, C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005, 26, 235–244. [Google Scholar] [CrossRef]
- Oehlenschläger, J. Minerals and trace elements. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2010; Chapter 20; pp. 351–375. [Google Scholar]
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No. 1881/2006. Diario Oficial de la Unión Europea L119/103, 5 May 2023.
- European Food Safety Authority (EFSA). Panel on contaminants in the food chain (CONTAM); scientific opinion on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar]
- Lavilla, I.; Vilas, P.; Bendicho, C. Fast determination of arsenic, selenium, nickel and vanadium in fish and shellfish by electrothermal atomic absorption spectrometry following ultrasound-assisted extraction. Food Chem. 2008, 106, 403–409. [Google Scholar] [CrossRef]
- CXS 193-1995; General Standard for Contaminants and Toxins in Food and Feed. FAO/WHO: Rome, Italy, 1995.
- Anacleto, P.; Lourenço, H.M.; Ferraria, V.; Afonso, C.; Carvalho, M.L.; Martins, M.F.; Nunes, M.L. Total arsenic content in seafood consumed in Portugal. J. Aquat. Food Prod. Technol. 2009, 18, 32–45. [Google Scholar] [CrossRef]
- Alves, R.N.; Maulvault, A.L.; Barbosa, V.L.; Fernandez-Tejedor, M.; Tediosi, A.; Kotterman, M.; van den Heuvel, F.H.M.; Robbens, J.; Fernandes, J.O.; Rasmussen, R.R.; et al. Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets. Food Chem. 2018, 267, 15–27. [Google Scholar] [CrossRef]
Element | % Recovery | LOD | Unit * |
---|---|---|---|
Macroelement | |||
Ca | 92 | 0.0004 | g·L−1 |
K | 99 | 0.002 | g·L−1 |
Mg | 110 | 0.0004 | g·L−1 |
Na | 101 | 0.005 | g·L−1 |
P | 102 | 0.002 | g·L−1 |
S | 101 | 0.035 | g·L−1 |
Microelement | |||
As | 101 | 0.05 | mg·L−1 |
Ba | 102 | 0.0001 | mg·L−1 |
Cd | 101 | 0.00005 | mg·L−1 |
Co | 103 | 0.0007 | mg·L−1 |
Cu | 103 | 0.007 | mg·L−1 |
Fe | 103 | 0.05 | mg·L−1 |
Mn | 91 | 0.0025 | mg·L−1 |
Pb | 93 | 0.0001 | mg·L−1 |
Zn | 102 | 0.08 | mg·L−1 |
Chemical Parameter | Cooking Liquor | |
---|---|---|
Non-Filtered | Filtered | |
Moisture | 974.37 ± 0.22 a | 977.17 ± 0.11 b |
Proteins | 15.30 ± 0.34 b | 13.30 ± 0.13 a |
Lipids | 0.29 ± 0.02 b | 0.25 ± 0.01 a |
Ash | 8.85 ± 0.12 b | 6.10 ± 0.00 a |
PL | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
TVB-N | 174.53 ± 1.57 b | 162.51 ± 3.89 a |
FA | Cooking Liquor | |
---|---|---|
Non-Filtered | Filtered | |
14:0 | 4.77 ± 0.27 a | 5.53 ± 0.48 b |
15:0 | 2.03 ± 0.53 a | 2.09 ± 0.65 a |
16:0 | 37.79 ± 2.20 a | 35.83 ± 7.85 a |
16:1ω7 | 0.51 ± 0.18 a | 0.89 ± 0.53 a |
17:0 | 2.53 ± 0.30 a | 2.37 ± 0.43 a |
18:0 | 20.77 ± 0.92 a | 18.13 ± 2.75 a |
18:1ω9 | 2.63 ± 1.16 a | 6.38 ± 1.49 b |
18:1ω7 | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
18:2ω6 | 0.00 ± 0.00 a | 0.43 ± 0.15 b |
20:1ω9 | 0.45 ± 0.18 a | 2.11 ± 0.77 b |
20:2ω6 | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
20:4ω6 | 3.99 ± 1.10 a | 2.59 ± 1.03 a |
22:1ω9 | 0.00 ± 0.00 a | 1.67 ± 0.46 b |
20:5ω3 | 4.08 ± 1.17 a | 5.40 ± 1.09 a |
22:4ω6 | 5.16 ± 0.43 a | 5.22 ± 1.20 a |
24:1ω9 | 0.00 ± 0.00 a | 1.22 ± 0.55 b |
22:5ω3 | 1.84 ± 0.22 b | 0.46 ± 0.10 a |
22:6ω3 | 13.44 ± 4.91 a | 9.68 ± 2.32 a |
Macroelement | Cooking Liquor | |
---|---|---|
Non-Filtered | Filtered | |
Ca | 0.036 ± 0.003 b | 0.017 ± 0.001 a |
K | 0.524 ± 0.037 b | 0.282 ± 0.009 a |
Mg | 0.118 ± 0.010 b | 0.059 ± 0.002 a |
Na | 1.81 ± 0.14 b | 0.91 ± 0.03 a |
P | 0.245 ± 0.023 b | 0.106 ± 0.003 a |
S | 0.75 ± 0.06 b | 0.43 ± 0.01 a |
Microelement | Cooking Liquor | |
---|---|---|
Non-Filtered | Filtered | |
As | 1.95 ± 0.15 b | 1.18 ± 0.03 a |
Ba | 0.0044 ± 0.0003 b | 0.0034 ± 0.0001 a |
Cd | 0.00515 ± 0.00046 b | 0.00082 ± 0.00003 a |
Co | 0.0015 ± 0.0001 b | 0.0005 ± 0.0001 a |
Cu | 0.233 ± 0.034 a | 0.229 ± 0.019 a |
Fe | 0.07 ± 0.01 b | 0.03 ± 0.01 a |
Mn | 0.0298 ± 0.0028 b | 0.0156 ± 0.0002 a |
Pb | 0.0028 ± 0.0005 b | 0.0018 ± 0.0001 a |
Zn | 0.70 ± 0.03 b | 0.26 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prego, R.; Cobelo-García, A.; Trigo, M.; Calvo, S.; Aubourg, S.P. Sustainable Recovery of Valuable Constituents from Octopus (Octopus vulgaris) Cooking Liquor. Sustainability 2025, 17, 9391. https://doi.org/10.3390/su17219391
Prego R, Cobelo-García A, Trigo M, Calvo S, Aubourg SP. Sustainable Recovery of Valuable Constituents from Octopus (Octopus vulgaris) Cooking Liquor. Sustainability. 2025; 17(21):9391. https://doi.org/10.3390/su17219391
Chicago/Turabian StylePrego, Ricardo, Antonio Cobelo-García, Marcos Trigo, Susana Calvo, and Santiago P. Aubourg. 2025. "Sustainable Recovery of Valuable Constituents from Octopus (Octopus vulgaris) Cooking Liquor" Sustainability 17, no. 21: 9391. https://doi.org/10.3390/su17219391
APA StylePrego, R., Cobelo-García, A., Trigo, M., Calvo, S., & Aubourg, S. P. (2025). Sustainable Recovery of Valuable Constituents from Octopus (Octopus vulgaris) Cooking Liquor. Sustainability, 17(21), 9391. https://doi.org/10.3390/su17219391