Advancing Innovative Climate-Resilient and Net-Zero Technologies to Enhance Rice Productivity and Sustainability Amidst Climate Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Systematic Literature Review Using PRISMA
2.2. Data Retrieval for Bibliometric Analysis
3. Results
3.1. Bibliometric Analysis by RStudio
3.1.1. Geographic Distribution of Scientific Contributions
3.1.2. Distribution of Key Sources
3.1.3. Bibliometric Analysis by VOSviewers
3.2. Systematic Literature Review
4. Discussion
4.1. Case Study of Agricultural Problems in Rice Production Centers
4.2. Innovative Technologies in Sustainable Rice Farming
4.2.1. Precision Agriculture and Digital Farming
4.2.2. Biofertilizers, Microbial Inoculants, and Soil Amendment
4.2.3. Stress-Tolerant and Climate-Resilient Rice Varieties
4.2.4. Sustainable Water and Irrigation Technologies
4.2.5. Carbon and Methane Mitigation Strategies
4.2.6. Mechanization Technologies
4.3. Assessing the Impacts of Innovative Technologies
4.3.1. Productivity Outcomes
4.3.2. Environmental Impact Analysis
4.3.3. Economic Viability and Farmer Livelihoods
4.4. Challenges and Barriers to Adoption
4.5. Future Prospects and Policy Recommendations
4.5.1. Integrating Multiple Technologies for Holistic Sustainability
4.5.2. Role of Public-Private Partnerships in Promoting Sustainable Practices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, M.; Lin, Y.; Chen, H. Improving nutritional quality of rice for human health. Theor. Appl. Genet. 2020, 133, 1397–1413. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Chhogyel, N.; Gopalakrishnan, T.; Hasan, M.K.; Jayasinghe, S.L.; Kariyawasam, C.S.; Kogo, B.K.; Ratnayake, S. Climate change and future of agri-food production. In Future Foods; Elsevier: Amsterdam, The Netherlands, 2022; pp. 49–79. [Google Scholar] [CrossRef]
- Nurliani, N. Comparison of conventional and organic paddy cropping systems in South Sulawesi, Indonesia. SAINS TANAH-J. Soil Sci. Agroclimatol. 2024, 21, 246–253. [Google Scholar] [CrossRef]
- Suntoro, S.; Herdiansyah, G.; Minardi, S.; Hartati, S.; Sari, C.W.; Damayanti, F.; Ardhasista, O.I. Use of Azolla in organic farming on availability and uptake of N, P, K of rice paddy (Oryza sativa L.). J. Appl. Nat. Sci. 2024, 16, 299. [Google Scholar] [CrossRef]
- Yuen, K.W.; Hanh, T.T.; Quynh, V.D.; Switzer, A.D.; Teng, P.; Lee, J.S.H. Interacting effects of land-use change and natural hazards on rice agriculture in the Mekong and Red River deltas in Vietnam. Nat. Hazards Earth Syst. Sci. 2021, 21, 1473–1493. [Google Scholar] [CrossRef]
- Sembiring, H.; A. Subekti, N.; Erythrina; Nugraha, D.; Priatmojo, B.; Stuart, A.M. Yield gap management under seawater intrusion areas of Indonesia to improve rice productivity and resilience to climate change. Agriculture 2019, 10, 1. [Google Scholar] [CrossRef]
- Zeng, Y.-F.; Chen, C.-T.; Lin, G.-F. Practical application of an intelligent irrigation system to rice paddies in Taiwan. Agric. Water Manag. 2023, 280, 108216. [Google Scholar] [CrossRef]
- Irwandhi, I.; Prihatiningsih, N.; Abraham, S.; Isroni, M.; Sativa, R.G.; Kamaluddin, N.N.; Khumairah, F.H.; Maulana, H.; Sofyan, E.T.; Simarmata, T. Diversity of bacterial isolates as biocontrol agents against Fusarium oxysporum f. sp. lycopersici. Biodivers. J. Biol. Divers. 2024, 25, 3403–3411. [Google Scholar] [CrossRef]
- Hasegawa, T.; Sakurai, G.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Masui, T. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2021, 2, 587–595. [Google Scholar] [CrossRef]
- McDermid, S.S.; Kanter, D. The role of crop cultivation in contributing to climate change. In Climate Change and Agriculture; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 137–166. [Google Scholar]
- Bhatnagar, S.; Chaudhary, R.; Sharma, S.; Janjhua, Y.; Thakur, P.; Sharma, P.; Keprate, A. Exploring the Dynamics of Climate-Smart Agricultural Practices for Sustainable Resilience in a Changing Climate. Environ. Sustain. Indic. 2024, 24, 100535. [Google Scholar] [CrossRef]
- Irwandhi, I.; Khumairah, F.H.; Sofyan, E.T.; Ukit, U.; Satria, R.E.; Salsabilla, A.; Sauri, M.S.; Simarmata, T. Innovative Regenerative Technologies for Enhancing Resilience in Salinity-Stressed Rice Fields Along the Indonesian Coast: Promoting Net-Zero Farming Practices to Adapt to Climate Change. J. Sustain. Agric. Environ. 2024, 3, e70026. [Google Scholar] [CrossRef]
- Sharma, K.; Shivandu, S.K. Integrating artificial intelligence and internet of things (IoT) for enhanced crop monitoring and management in precision agriculture. Sens. Int. 2024, 5, 100292. [Google Scholar] [CrossRef]
- Mohanty, T.; Pattanaik, P.; Dash, S.; Tripathy, H.P.; Holderbaum, W. Smart robotic system guided with YOLOv5 based machine learning framework for efficient herbicide usage in rice (Oryza sativa L.) under precision agriculture. Comput. Electron. Agric. 2025, 231, 110032. [Google Scholar] [CrossRef]
- Pramanik, M.; Khanna, M.; Singh, M.; Singh, D.; Sudhishri, S.; Bhatia, A.; Ranjan, R. Automation of soil moisture sensor-based basin irrigation system. Smart Agric. Technol. 2022, 2, 100032. [Google Scholar] [CrossRef]
- Manvi, S.; Pardhi, K.; Kadam, S.; Kadam, Y.; Patil, Y.; Bahulikar, R.A.; Rahalkar, M.C. Efficacy of a Methanotroph (Methylomonas Strain Kb3) as a Potential Bio-Inoculant for Promoting Rice Grain Yield and Height in a Small-Scale Rice-Field Experiment. Preprints 2025. [Google Scholar]
- Simarmata, T.; Irwandhi, I.; Khumairah, F.; Hibatullah, F.; Ambarita, D.; Herdiyantoro, D.; Kamaludin, N.; Nurbaity, A.; Adinata, K.; Stöber, S. Implementation of Regenerative Technologies for Sustainable and Net-Zero Rice Farming in Adapting to Climate Change in Indonesian Coastal Areas. BIO Web Conf. 2025, 176, 01007. [Google Scholar] [CrossRef]
- Sofyan, E.T.; Citraresmini, A.; Marganingrum, D.; Mulyono, A.; Djuwansah, R.; Bachtiar, T.; Nurjayati, R.; Rachmawati, V.; Hidawati, H.; Irwandhi, I. Assessment of silica-enriched biochar for enhancing soil fertility and mitigating methane emissions in acid-stressed rice fields. J. Ecol. Eng. 2025, 26, 148–160. [Google Scholar] [CrossRef]
- Hairmansis, A.; Nafisah, N.; Jamil, A. Towards developing salinity tolerant rice adaptable for coastal regions in Indonesia. KnE Life Sci. 2017, 2, 72–79. [Google Scholar] [CrossRef]
- Rasmira, R.; Lubis, D.P.; Sumardjo, S.; Fatchiya, A.; Supriyanto, S. Adapting to smart farming: Communication media and local knowledge in overcoming technical challenges. BIO Web Conf. 2025, 171, 04007. [Google Scholar] [CrossRef]
- Islam, M.H.; Anam, M.Z.; Hoque, M.R.; Nishat, M.; Bari, A.M. Agriculture 4.0 adoption challenges in the emerging economies: Implications for smart farming and sustainability. J. Econ. Technol. 2024, 2, 278–295. [Google Scholar] [CrossRef]
- Rahman, N.; Rahman, M.; Baten, M.; Hossain, M.; Hassan, S.; Ahmed, R.; Hossain, M.; Hossain, A.; Aziz, M.; Haque, M. Weather forecast based rice advisory services in Bangladesh. Bangladesh Rice J. 2021, 25, 51–74. [Google Scholar] [CrossRef]
- Li, Q.; Mizuki, A.; Imoto, T. Understanding Japanese rice farmers’ preferences for adopting organic agricultural system and uptaking innovative machinery using best-worst scaling method. Smart Agric. Technol. 2025, 10, 100863. [Google Scholar] [CrossRef]
- Sowmiya, S.; Hemalatha, M.; Joseph, M.; Jothimani, S.; Srinivasan, S.; Pushpam, A. Revolutionizing weed management through smart herbicide technology on boosting wet direct-seeded rice productivity. Plant Sci. Today 2025, 12, 5989. [Google Scholar] [CrossRef]
- Rahman, N.M.F.; Malik, W.A.; Baten, M.A.; Kabir, M.S.; Rahman, M.C.; Ahmed, R.; Hossain, A.Z.; Hossain, M.M.; Halder, T.; Bhuiyan, M.K.A. Sustaining rice productivity through weather-resilient agricultural practices. J. Sci. Food Agric. 2024, 104, 2303–2313. [Google Scholar] [CrossRef]
- Pame, A.R.P.; Vithoonjit, D.; Meesang, N.; Balingbing, C.; Gummert, M.; Van Hung, N.; Singleton, G.R.; Stuart, A.M. Improving the sustainability of rice cultivation in Central Thailand with biofertilizers and laser land leveling. Agronomy 2023, 13, 587. [Google Scholar] [CrossRef]
- Cao, M.; Ye, S.; Jin, C.; Cheng, J.; Xiang, Y.; Song, Y.; Xin, G.; He, C. The communities of arbuscular mycorrhizal fungi established by different winter green manures in paddy fields promote post-cropping rice production. J. Integr. Agric. 2025, 24, 1588–1605. [Google Scholar] [CrossRef]
- Kumar, S.R.; David, E.M.; Pavithra, G.J.; Kumar, G.S.; Lesharadevi, K.; Akshaya, S.; Basavaraddi, C.; Navyashree, G.; Arpitha, P.S.; Sreedevi, P. Methane-derived microbial biostimulant reduces greenhouse gas emissions and improves rice yield. Front. Plant Sci. 2024, 15, 1432460. [Google Scholar] [CrossRef]
- Setiawati, M.R.; Sugiyono, L.; Kamaluddin, N.N.; Simarmata, T. The use of endophytic growth-promoting bacteria to alleviate salinity impact and enhance the chlorophyll, N uptake, and growth of rice seedling. Open Agric. 2021, 6, 798–806. [Google Scholar] [CrossRef]
- Khadka, R.B.; Uphoff, N. Effects of Trichoderma seedling treatment with System of Rice Intensification management and with conventional management of transplanted rice. PeerJ 2019, 7, e5877. [Google Scholar] [CrossRef] [PubMed]
- Tyasmoro, S.; Saitama, A. Analysis Plant Growth, Yield and Efficiency of Nitrogen Fertilization in Paddy using Green Manure of Azolla. OnLine J. Biol. Sci. 2023, 23, 94–102. [Google Scholar] [CrossRef]
- Ganesan, K.; Anilkumar, B.; Suganthy, M.; Venugopal, S.; Manivannan, V.; Soundararajan, R.P.; Murugan, M.; Sangeetha, S.V. Bio-efficacy of cow-urine-based neem, nochi and adhatoda extracts against sucking pests and impact on natural enemies in organic rice. Plant Sci. Today 2025, 12, 1–8. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Gong, Z.; Li, T.; Nie, T.; Chen, P.; Han, Y.; Xue, L. Biochar Application Combined with Water-Saving Irrigation Enhances Rice Root Growth and Nitrogen Utilization in Paddy Fields. Agronomy 2024, 14, 889. [Google Scholar] [CrossRef]
- Qin, S.; Rong, F.; Zhang, M.; Su, G.; Wang, W.; Wu, L.; Wu, A.; Chen, F. Biochar can partially substitute fertilizer for rice production in acid paddy field in Southern China. Agronomy 2023, 13, 1304. [Google Scholar] [CrossRef]
- Mosharrof, M.; Uddin, M.K.; Jusop, S.; Sulaiman, M.F.; Shamsuzzaman, S.; Haque, A.N.A. Changes in acidic soil chemical properties and carbon dioxide emission due to biochar and lime treatments. Agriculture 2021, 11, 219. [Google Scholar] [CrossRef]
- Kim, Y.-N.; Cho, Y.-S.; Lee, J.-H.; Seo, H.-R.; Kim, B.-H.; Lee, D.-B.; Lee, Y.B.; Kim, K.-H. Short-term responses of soil organic carbon pool and crop performance to different fertilizer applications. Agronomy 2022, 12, 1106. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Ali, I.; Yuan, P.; Khan, A.; Hua, Z.; Wei, S.; Jiang, L. Partial substation of organic fertilizer with chemical fertilizer improves soil biochemical attributes, rice yields, and restores bacterial community diversity in a paddy field. Front. Plant Sci. 2022, 13, 895230. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, H.; Wang, H.; Du, X.; Bashir, M.A.; Zhang, X.; Sun, W.; An, M.; Liu, H. Optimizing Nitrogen Fertilizer Application for Synergistic Enhancement of Economic and Ecological Benefits in Rice–Crab Co-Culture Systems. Agronomy 2024, 14, 2219. [Google Scholar] [CrossRef]
- Li, Y.; Wu, T.; Ku, X.; Wang, S.; Pan, G.; Xu, Q.; Liu, H.; Li, J. Feasibility analysis of rice-crayfish farming in Hainan province based on its development trend in Hubei province over the past 10 years. Trop. Plants 2023, 2, 4. [Google Scholar] [CrossRef]
- Van Hung, N.; Thach, T.N.; Hoang, N.N.; Binh, N.C.Q.; Tâm, D.M.; Hau, T.T.; Anh, D.T.T.; Khuong, T.Q.; Chi, V.T.B.; Lien, T.T.K. Mechanized wet direct seeding for increased rice production efficiency and reduced carbon footprint. Precis. Agric. 2024, 25, 2226–2244. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Cheng, H.; Xu, J.; Liu, X. New Vision on Mulching: Rice Growth and Nitrogen Transformation Under the Control of Paper Film Thickness. Environ. Technol. Innov. 2025, 38, 104119. [Google Scholar] [CrossRef]
- Zhao, Z.; He, W.; Chen, G.; Yan, C.; Gao, H.; Liu, Q. Dry Direct-Seeded Rice Yield and Water Use Efficiency as Affected by Biodegradable Film Mulching in the Northeastern Region of China. Agriculture 2024, 14, 170. [Google Scholar] [CrossRef]
- Machekposhti, M.F.; Shahnazari, A.; Yousefian, M.; Ahmadi, M.Z.; Sarjaz, M.R.; Arabzadeh, B.; Akbarzadeh, A.; Leib, B.G. The effect of alternate partial root-zone drying and deficit irrigation on the yield, quality, and physiochemical parameters of milled rice. Agric. Water Manag. 2023, 289, 108546. [Google Scholar] [CrossRef]
- Pham, V.B.; Diep, T.T.; Fock, K.; Nguyen, T.S. Using the Internet of Things to promote alternate wetting and drying irrigation for rice in Vietnam’s Mekong Delta. Agron. Sustain. Dev. 2021, 41, 43. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, D.; Chen, X.; Niu, Z.; Cao, Q. Impact of climate change on rice growth and yield in China: Analysis based on climate year type. Geogr. Sustain. 2024, 5, 548–560. [Google Scholar] [CrossRef]
- Suresh, A.; Krishnan, P.; Jha, G.K.; Reddy, A.A. Agricultural sustainability and its trends in India: A macro-level index-based empirical evaluation. Sustainability 2022, 14, 2540. [Google Scholar] [CrossRef]
- Sumaryanto, S.; Susilowati, S.H.; Saptana, S.; Sayaka, B.; Suryani, E.; Agustian, A.; Ashari, A.; Purba, H.J.; Sumedi, S.; Dermoredjo, S.K. Technical efficiency changes of rice farming in the favorable irrigated areas of Indonesia. Open Agric. 2023, 8, 20220207. [Google Scholar] [CrossRef]
- Kuswanto, H.; Rahadiyuza, D. Multi model calibration of rainfall forecasts in east Nusa Tenggara using ensemble model output statistics. J. Phys. Conf. Ser. 2018, 1028, 012231. [Google Scholar] [CrossRef]
- Veloo, K.; Kojima, H.; Takata, S.; Nakamura, M.; Nakajo, H. Interactive cultivation system for the future IoT-based agriculture. In Proceedings of the 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW), Nagasaki, Japan, 26–29 November 2019; pp. 298–304. [Google Scholar] [CrossRef]
- Esposito, M.; Crimaldi, M.; Cirillo, V.; Sarghini, F.; Maggio, A. Drone and sensor technology for sustainable weed management: A review. Chem. Biol. Technol. Agric. 2021, 8, 18. [Google Scholar] [CrossRef]
- Upadhyay, A.; Zhang, Y.; Koparan, C.; Rai, N.; Howatt, K.; Bajwa, S.; Sun, X. Advances in ground robotic technologies for site-specific weed management in precision agriculture: A review. Comput. Electron. Agric. 2024, 225, 109363. [Google Scholar] [CrossRef]
- Kumar, S.; Sindhu, S.S.; Kumar, R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr. Res. Microb. Sci. 2022, 3, 100094. [Google Scholar] [CrossRef]
- Istiqomah, D.; Subandrio, H.; Rakhman, H.; Nugroho, I.; Islamiati, A. Degradation ability of indigenous bacteria from pesticide-contaminated water and soil in Brebes Regency, Indonesia. J. Phys. Conf. Ser. 2021, 1960, 012012. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, M.; Liu, Y.; Zhang, F.; Hodge, A.; Feng, G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol. 2016, 210, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Shi, F.; Zheng, X.; Pan, H.; Wen, Y.; Song, F. Effects of AMF compound inoculants on growth, ion homeostasis, and salt tolerance-related gene expression in Oryza sativa L. under salt treatments. Rice 2023, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Paranavithana, T.; Marasinghe, S.; Perera, G.; Ratnayake, R. Effects of crop rotation on enhanced occurrence of arbuscular mycorrhizal fungi and soil carbon stocks of lowland paddy fields in seasonaly dry tropics. Paddy Water Environ. 2021, 19, 217–226. [Google Scholar] [CrossRef]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Chen, G.; Wang, X.; Zhang, R. Decomposition temperature sensitivity of biochars with different stabilities affected by organic carbon fractions and soil microbes. Soil Tillage Res. 2019, 186, 322–332. [Google Scholar] [CrossRef]
- Yu, H.-L.; Gu, W.; Tao, J.; Huang, J.-Y.; Lin, H.-S. Impact of addition of FGDB as a soil amendment on physical and chemical properties of an alkali soil and crop yield of maize in Northern China Coastal Plain. J. Chem. 2015, 2015, 540604. [Google Scholar] [CrossRef]
- Zhu, S.; Tong, W.; Li, H.; Li, K.; Xu, W.; Liang, B. Temporal Variations in Rice Water Requirements and the Impact of Effective Rainfall on Irrigation Demand: Strategies for Sustainable Rice Cultivation. Water 2025, 17, 656. [Google Scholar] [CrossRef]
- Makarov, I.S.; Golova, L.K.; Bondarenko, G.N.; Anokhina, T.S.; Dmitrieva, E.S.; Levin, I.S.; Makhatova, V.E.; Galimova, N.Z.; Shambilova, G.K. Structure, morphology, and permeability of cellulose films. Membranes 2022, 12, 297. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, Y.; Xiao, D.; Cheng, J.; Zhao, J. A biodegradable water-triggered chitosan/hydroxypropyl methylcellulose pesticide mulch film for sustained control of Phytophthora sojae in soybean (Glycine max L. Merr.). J. Clean. Prod. 2020, 245, 118943. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; AbdRahman, M.K.I.; Otuoze, A.O.; Ramli, M.S.A.; Ijike, O.D. IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment. Inf. Process. Agric. 2021, 8, 270–283. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; De Barros, J. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Mataia, A.B.; Malasa, R.B.; Beltran, J.C.; Bordey, F.H.; Launio, C.C.; Litonjua, A.C.; Manalili, R.G.; Moya, P.F. Labor and mechanization. In Competitiveness of Philippine Rice in Asia; Bordey, F.H., Moya, P.F., Beltran, J.C., Dawe, D.C., Eds.; Philippine Rice Research Institute: Manila, Philippines, 2016; pp. 75–86. [Google Scholar]
- Vaiknoras, K.; Larochelle, C.; Alwang, J. Measuring the impact of stress-tolerant rice variety adoption: Evidence on input use and yield in Nepal. Agric. Econ. 2025, 56, 145–160. [Google Scholar] [CrossRef]
- Irwandhi, I.; Kamaluddin, N.N.; Khumairah, F.H.; Prihatiningsih, N.; Simarmata, T. Assessment of local wisdom biofertilizer formulas on enhancing microbial diversity and photosynthate allocation in acid-stressed maize. Asian J. Agric. 2025, 9, 112–121. [Google Scholar] [CrossRef]
- Han, G.; Arbuckle, J.G.; Grudens-Schuck, N. Motivations, goals, and benefits associated with organic grain farming by producers in Iowa, US. Agric. Syst. 2021, 191, 103175. [Google Scholar] [CrossRef]
- Mariano, M.J.; Villano, R.; Fleming, E. Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines. Agric. Syst. 2012, 110, 41–53. [Google Scholar] [CrossRef]
- Chiaradia, E.A.; Facchi, A.; Masseroni, D.; Ferrari, D.; Bischetti, G.B.; Gharsallah, O.; Cesari de Maria, S.; Rienzner, M.; Naldi, E.; Romani, M. An integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes. Environ. Monit. Assess. 2015, 187, 586. [Google Scholar] [CrossRef]
- Verburg, R.W.; Verberne, E.; Negro, S.O. Accelerating the transition towards sustainable agriculture: The case of organic dairy farming in the Netherlands. Agric. Syst. 2022, 198, 103368. [Google Scholar] [CrossRef]
- Zollet, S.; Maharjan, K.L. Overcoming the barriers to entry of newcomer sustainable farmers: Insights from the emergence of organic clusters in Japan. Sustainability 2021, 13, 866. [Google Scholar] [CrossRef]
- Wollni, M.; Andersson, C. Spatial patterns of organic agriculture adoption: Evidence from Honduras. Ecol. Econ. 2014, 97, 120–128. [Google Scholar] [CrossRef]
- Tiwari, K.R.; Sitaula, B.K.; Nyborg, I.L.; Paudel, G.S. Determinants of farmers’ adoption of improved soil conservation technology in a middle mountain watershed of central Nepal. Environ. Manag. 2008, 42, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; McDermid, S.S.; Valdivia, R.O.; Sundaram, P. Climate change mitigation and adaptation for rice-based farming systems in the Red River Delta, Vietnam. CABI Agric. Biosci. 2024, 5, 109. [Google Scholar] [CrossRef]
- Altalb, A.A.T. Farmers’ Knowledge towards the Role of Extension Services in Agricultural Development in Opolski County, Lubelskie Province of Poland. Asian J. Agric. Ext. Econ. Sociol. 2017, 15, 1–8. [Google Scholar] [CrossRef]
Search Strategy | Scopus |
---|---|
new AND rice AND field AND development AND technology | 17 |
technological AND innovation AND rice AND farming | 4 |
farming AND paddy AND fields | 194 |
environmental AND sustainability AND rice AND farming | 54 |
ecological AND effects AND agricultural AND land AND development | 201 |
sustainable AND land AND use AND rice AND farming | 66 |
yield AND improvement AND rice AND paddy AND development | 12 |
technology AND productivity AND rice AND agriculture | 59 |
farmer AND livelihoods AND rice AND field | 35 |
economic AND benefits AND rice AND farming | 61 |
Criteria | Inclusion | Exclusion |
---|---|---|
Relevance topics | Journal with a focus on technologies for sustainable rice farming | Journal without a core focus on technologies for sustainable rice farming |
Date of publication | 2015–2025 | Years before 2015 |
Type of publication | Research article | Book chapters, Encyclopedia, News, and Conference abstracts |
Language of publication | English | All other languages |
Access | Open access | No open access |
Databases | Scopus | Articles that are not indexed by Scopus |
Environmental Change | Farmers’ Livelihoods and Adoption | Technology and Productivity |
---|---|---|
Agricultural land, change, characteristic, China, climate, community, development, diversity, ecosystem, farmland, forest, importance, index, influence, insight, land, land use change, landscape, policy, scenario, sustainable development, understanding | Access, adoption, Bangladesh, farm, farmer, fish, government, household, income, Indonesia, knowledge, lack, livelihood, perception, rice productivity, rice variety, seed, smallholder farmer, transition, variety, village | Cost, efficiency, emission, fertilizer, greenhouse gas emission, growth, India, input, irrigation, nitrogen, organic farming, paddy field, productivity, profitability, rice, soil, technology, yield |
No | Type of Technology | Specifications | Main Findings | Contribution to Sustainability | Suggestions | References |
---|---|---|---|---|---|---|
1 | Precision Agriculture and Digital Farming | Smart Robotic System + YOLOv5 | Reduced herbicide use, increased yield, and high efficiency in weed control | Increase input efficiency, reduce the ecological impact of chemicals | Increasing stakeholder engagement and testing across agro-climatic conditions | [14] |
2 | Precision Agriculture and Digital Farming | Robot AIGAMO | Reducing weeds in organic farming and improving yield quality | Promotion of organic farming, labor efficiency | Long-term impact studies on organic agroecosystems | [23] |
3 | Precision Agriculture and Digital Farming | Nanoencapsulated herbicide (ethyl pyrazosulfuron) | Effectively controls weeds and increases rice yield | Reduces herbicide toxicity and improves agroecotoxicity | Explore large-scale field validation and environmental impact | [24] |
4 | Precision Agriculture and Digital Farming | Weather forecast-based advisory service (WFBAS) | 7% yield increase and 16% fertilizer and 23% water reduction | Optimizes input use and improves decision-making | Integrate remote sensing, machine learning, long-term adaptability | [25] |
5 | Precision Agriculture and Digital Farming | CROP + Biofertilizer + Laser Land Leveling | Net profit increase of 79% and reduced inputs and costs | Reduces chemical inputs and improves economic returns | Scalability across diverse agroecosystems | [26] |
6 | Biofertilizer | Arbuscular Mycorrhizal Fungi (AMF) + Green manure | Increase crop yields, grain quality, and soil health | Biological improvement of soil fertility and increased productivity | Specific identification of AMF strains for tropical agro-climatic conditions | [27] |
7 | Biofertilizer | Methane-based microbial biostimulants | Increase yield up to 39% and reduce CH4 up to 60% and N2O up to 50% | Mitigation of GHG emissions, increasing N efficiency and plant photosynthesis | Scalability and effectiveness studies in various agroecosystems | [28] |
8 | Biofertilizer | Endofit halotolerant | Increasing chlorophyll, dry weight, and N uptake of rice plants in saline soil | Adaptation to salinity, N fertilization efficiency | Long-term effects test of salt accumulation and microbial 9 interactions in saline soil | [29] |
9 | Biofertilizer | Trichoderma + System of Rice Intensification (SRI) | Increase crop yields by up to 31% and strengthen biotic and abiotic tolerance | High productivity, reduced environmental stress, sustainable intensive farming system | Evaluation of Trichoderma interactions with different varieties and cultivation methods | [30] |
10 | Biofertilizer | Azolla | Increase soil N, P, K and increase productivity by 10–20% | Environmentally friendly fertilizer alternatives, increasing soil fertility | Azolla combination test with a water-saving planting system | [31] |
11 | Biofertilizer | Azolla | Enhances soil pH, NPK availability, and organic carbon and increases productivity by 10–20.5% | Environmentally friendly nitrogen source, increasing soil and plant productivity | Study integration with other sustainable practices | [4] |
12 | Biopesticides | Cow urine extract + neem, nochi, adhatoda | Effective against brown plant hopper and green leaf hopper (up to 72.48%), environmentally friendly | Alternative to chemical pesticides, suitable for organic farming | Ecological sustainability assessment and interactions with natural enemies | [32] |
13 | Organic Agriculture | Organic rice farming systems | Higher land quality index and soil fertility | Improves soil health and organic matter content | Compare productivity under varied organic practices | [3] |
14 | Soil amendment | Biochar + water-saving irrigation | Increases root growth, N uptake, crop yield, and N efficiency | Waste utilization, increasing nutrient and water efficiency | Long-term evaluation of the impact of biochar on soil microbes | [33] |
15 | Soil amendment | Biochar on acidic suboptimal soils | Increase NPK efficiency up to 166% and increase rice yield | Reduction of inorganic fertilization, increase of agronomic efficiency | Study of biochar effectiveness on acidic tropical soils and high rainfall | [34] |
16 | Soil amendment | Rice husk biochar + lime on acidic soil | Increase soil pH, organic C content, and reduce CO2 emissions | Acid soil remediation, carbon emission mitigation | Synergy test with water management technology and soil microbes | [35] |
17 | Soil Amendment | Manure + rice husk | Increase soil fertility and improve soil structure and biological function | Enhances soil carbon and reduces dependency on chemical fertilizers | Long-term studies and integration with local food crop rotations | [36] |
18 | Soil Amendment | Combined organic and chemical fertilizers | Increases soil fertility and microbial diversity | Restores bacterial community and improves yield | Microbial interaction studies and long-term soil health | [37] |
19 | Carbon and Methane Mitigation | Rice–crab co-culture system | Improves yield by 0.4% and reduces CH4 emissions by 13.3% | Enhances ecological benefits with optimized nitrogen | Synergistic N-application models, long-term soil impact studies | [38] |
20 | Climate-Resilient Varieties | Inpari 34 dan Inpari 35 | Increase farmer income by up to 93% compared to conventional farming practices | Adaptation to salinity, increasing yields and income | Exploration of yield gaps and adoption strategies for climate-resilient varieties | [6] |
21 | Integrated Farming Systems | Rice-crayfish farming | 16.3% higher rice yield vs. monoculture | Improves nitrogen use efficiency and income diversification | Long-term productivity and ecological assessment | [39] |
22 | Mechanization | Mechanized direct seeding | Reduce seed rate and costs, increase N productivity and income | Increase production efficiency and reduce carbon footprint | Cross-seasonal and agroecosystem testing. | [40] |
23 | Sustainable Water and Irrigation Technologies | Paper Film Mulching | Suppresses weeds, increases yield by 20.2%, and maintains soil moisture | Supporting high crop yields with reduced chemical and water inputs | Further exploration of optimal thickness and energy efficiency | [41] |
24 | Sustainable Water and Irrigation Technologies | Mulch Biodegradable | Increases water productivity by 30–60% and increases leaf area and water efficiency. | Reduce pollution, increase water efficiency. | Long-term studies and spatiotemporal effects of decomposition | [42] |
25 | Sustainable Water and Irrigation Technologies | Intelligent irrigation system | Water savings up to 19.3% with no yield compromise | Efficient water use and resource management | AI integration, real-time field data utilization | [7] |
26 | Sustainable Water and Irrigation Technologies | Alternate partial root-zone drying irrigation | Reduces methane emissions by 78.7% | Minimizes GHG emissions while maintaining yield | Cultivar-specific responses, long-term water stress effects | [43] |
27 | Sustainable Water and Irrigation Technologies | Sensor-based alternate wetting and drying irrigation system | Save 13–20% water, reduce irrigation costs by 25%, and increase yields by up to 11% | Data-driven high resource efficiency and productivity | Adoption challenges and cost–benefit analysis | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sule, M.I.S.; Siswanto, S.Y.; Suriadikusumah, A.; Banerjee, S. Advancing Innovative Climate-Resilient and Net-Zero Technologies to Enhance Rice Productivity and Sustainability Amidst Climate Change. Sustainability 2025, 17, 9322. https://doi.org/10.3390/su17209322
Sule MIS, Siswanto SY, Suriadikusumah A, Banerjee S. Advancing Innovative Climate-Resilient and Net-Zero Technologies to Enhance Rice Productivity and Sustainability Amidst Climate Change. Sustainability. 2025; 17(20):9322. https://doi.org/10.3390/su17209322
Chicago/Turabian StyleSule, Marenda Ishak Sonjaya, Shantosa Yudha Siswanto, Abraham Suriadikusumah, and Saon Banerjee. 2025. "Advancing Innovative Climate-Resilient and Net-Zero Technologies to Enhance Rice Productivity and Sustainability Amidst Climate Change" Sustainability 17, no. 20: 9322. https://doi.org/10.3390/su17209322
APA StyleSule, M. I. S., Siswanto, S. Y., Suriadikusumah, A., & Banerjee, S. (2025). Advancing Innovative Climate-Resilient and Net-Zero Technologies to Enhance Rice Productivity and Sustainability Amidst Climate Change. Sustainability, 17(20), 9322. https://doi.org/10.3390/su17209322