Greenhouse Gas Analysis of Sustainable Sugar Beet Cultivation, Taking into Account the Technological Value and Quality of Various Varieties
Abstract
1. Introduction
- -
- dextran—a polysaccharide with a very high molecular weight, containing mainly α-1,6 glycosidic bonds of glucose residues,
- -
- levan—a polysaccharide with a high molecular weight [approx. 50 million], containing D-fructose residues linked by β-2,6 bonds,
- -
- raffinose—belonging to the group of carbohydrates, a trisaccharide composed of glucose, fructose, and galactose, interfering with the technological process, mainly during filtration and crystallization of sucrose,
- -
- galactan—a polysaccharide composed of several dozen D-galactose molecules linked by β-1,4-glycosidic bonds,
- -
2. Research Material
3. Research Methodology
3.1. Experimental Sugar Beet Cultivation System—Agrotechnical Standards, Fertilization Rates, Sowing Parameters
3.2. Measurement of Sugar Beet Photosynthesis Parameters
3.3. Chemical Characterization of Sugar Beet
3.4. Technological Value of Sugar Beet
3.5. Assimilation During the Sugar Beet Growing Season
3.6. GHG Emissions Analysis
4. Results and Discussion
4.1. Characteristics of the Chemical Quality Parameters of Sugar Beet
4.2. Assessment of Sugar Beet Technological Value Indicators
4.3. Assimilation During the Growing Season for Sugar Beet
4.4. Greenhouse Gas (GHG) Emissions Analysis
4.4.1. Direct GHG Emissions Related to Fuel Combustion
4.4.2. Direct GHG Emissions Associated with Fertilizer Use
4.4.3. Analysis of Total GHG Emissions
4.5. Limitations and Future Work
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, A Green Deal Industrial Plan for the Net-Zero Age COM/2023/62. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52023DC0062 (accessed on 5 August 2025).
- Dixon, K.A.; Michelsen, M.K.; Carpenter, C.L. Modern Diets and the Health of Our Planet: An Investigation into the Environmental Impacts of Food Choices. Nutrients 2023, 15, 692. [Google Scholar] [CrossRef]
- Al-Mansour, F.; Jejcic, V. A model calculation of the carbon footprint of agricultural products: The case of Slovenia. Energy 2017, 136, 7–15. [Google Scholar] [CrossRef]
- Guimarães, N.S.; Reis, M.G.; Costa, B.V.d.L.; Zandonadi, R.P.; Carrascosa, C.; Teixeira-Lemos, E.; Costa, C.A.; Alturki, H.A.; Raposo, A. Environmental Footprints in Food Services: A Scoping Review. Nutrients 2024, 16, 2106. [Google Scholar] [CrossRef]
- Atmaca, A. Chapter Twenty-Two—Understanding carbon footprint: Impact, assessment, and greenhouse gas emissions. In Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion; Rahimpour, M.R., Makarem, M.A., Meshksar, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 497–516. [Google Scholar] [CrossRef]
- Conti, A.; Opizzi, A.; Binala, J.G.; Cortese, L.; Barone-Adesi, F.; Panella, M. Evaluation of the Climate Impact and Nutritional Quality of Menus in an Italian Long-Term Care Facility. Nutrients 2024, 16, 2815. [Google Scholar] [CrossRef] [PubMed]
- Borsato, E.; Tarolli, P.; Marinello, F. Sustainable patterns of main agricultural products combining different footprint parameters. J. Clean. Prod. 2018, 179, 357–367. [Google Scholar] [CrossRef]
- Pınarlı Falakacılar, Ç.; Yücecan, S. The Impact of Sustainability Courses: Are They Effective in Improving Diet Quality and Anthropometric Indices? Nutrients 2024, 16, 1700. [Google Scholar] [CrossRef]
- Baryga, A.; Ogłaza, I.; Waleriańczyk, E.; Żero, M.; Toboła, A. Development of a Method for Purifying Raw Juice with Sediment Separation After Preliminary Liming. Documentation of Research Work with the Symbol PW-20, Carried out in 2007–2010; IBPRS Institute: Warsaw, Poland, 2010. (In Polish) [Google Scholar]
- Malec, J.; Kositorna, J. Sugar Beet—Cultivation, Protection, Storage, Raw Material Management; SIM Publishing and Printing Center: Warsaw, Poland, 2007. (In Polish) [Google Scholar]
- Sumińska, T.; Sierakowska, M.; Baryga, A.; Kowalska, M.; Sajek, M. Compendium of Knowledge on the Production of White Sugar from Sugar Beet; SGGW Publishing House: Warsaw, Poland, 2019. (In Polish) [Google Scholar]
- Dobrzycki, J. Chemical Foundations of Sugar Technology; Warsaw WNT: Warsaw, Poland, 1984. (In Polish) [Google Scholar]
- Gruska, R.; Baryga, A.; Kunicka-Syczyńska, A.J.; Brzeziński, S.; Rosicka-Kaczmarek, J.; Miśkiewicz, K.; Sumińska, T. Fresh and Stored Sugar Beet Roots as a Source of Various Types of Mono- and Oligosaccharides. Molecules 2022, 27, 5125. [Google Scholar] [CrossRef]
- Jaśkiewicz, A.; Kunicka-Styczyńska, A.; Baryga, A.; Gruska, M.R.; Brzeziński, S.; Świącik, B. Evaluation of the Impact of an Enzymatic Preparation Catalyzing the Decomposition of Raffinose from Poor-Quality Beets During the White Sugar Production Process. Molecules 2024, 29, 3526. [Google Scholar] [CrossRef] [PubMed]
- Goodman, P.J. Physiological analysis of the effects of different soils on sugar beet crops in different years. J. App. Ecol. 1968, 5, 339–357. [Google Scholar] [CrossRef]
- Milford, G.F.J.; Pocock, T.O.; Jaggard, K.W.; Biscoe, P.V.; Armstrong, M.J.; Last, P.J.; Goodman, P.J. An analysis of leaf growth in sugar beet. IV. The expansion of the leaf canopy in relation to temperature and nitrogen. Ann. Appl. Biol. 1985, 107, 335–347. [Google Scholar] [CrossRef]
- Baryga, A.; Rusinowski, S.; Krzyżak, J.; Kunicka-Styczyńska, A.; Świącik, B.; Stec, R.; Smykała, K.; Małkowski, E.; Sitko, K. Sugar management and photosynthesis of sugar beet after infection by Cercospora beticola. Sci. Rep. 2025, 15, 19444. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhao, M.; Li, Y.; He, Y.; Han, X.; Ma, X.; Ma, F. Spatiotemporal Trends of the Carbon Footprint of Sugar Production in China. Sustain. Prod. Consum. 2024, 46, 502–511. [Google Scholar] [CrossRef]
- González, M.N.G.; Björnsson, L. Life cycle assessment of the production of beet sugar and its by-products. J. Clean. Prod. 2022, 346, 131211. [Google Scholar] [CrossRef]
- Wróbel-Jędrzejewska, M.; Przybysz, Ł.; Włodarczyk, E. Carbon footprint analysis of sugar production in Poland. Food Bioprod. Process. 2024, 148, 88–94. [Google Scholar] [CrossRef]
- Cech, R.; Leisch, F.; Zaller, J.G. Pesticide Use and Associated Greenhouse Gas Emissions in Sugar Beet, Apples, and Viticulture in Austria from 2000 to 2019. Agriculture 2022, 12, 879. [Google Scholar] [CrossRef]
- García, C.A.; García-Treviño, E.S.; Aguilar-Rivera, N.; Armendáriz, C. Carbon footprint of sugar production in Mexico. J. Clean. Prod. 2016, 112 Pt 4, 263–264. [Google Scholar] [CrossRef]
- Yuttitham, M.; Gheewala, S.H.; Chidthaisong, A. Carbon footprint of sugar produced from sugarcane in eastern Thailand. J. Clean. Prod. 2011, 19, 2119–2127. [Google Scholar] [CrossRef]
- Nordzucker, A.G. Transparency and Measurability—For Results that Count. Available online: https://www.nordzucker.com/en/wp-content/uploads/2024/03/240305-NZ_Nh_Transparency_E.pdf?utm_source=chatgpt.com (accessed on 5 August 2025).
- Martindale, W.; Saeidan, A.; Tahernezhad-Javazm, F.; Hollands, T.; Duong, L.; Jagtap, S. Mapping the path to decarbonised agri-food products: A hybrid geographic information system and life cycle inventory methodology for assessing sustainable agriculture. Int. J. Food Sci. Technol. 2024, 59, 6078–6086. [Google Scholar] [CrossRef]
- Jamei, M.; Hassan, M.; Faroouqe, A.A.; Ali, M.; Karbasi, M.; Randhawa, G.S.; Yaseen, Z.M.; Dwyer, R. Monitoring of greenhouse gas emission drivers in Atlantic Canadian Potato production: A robust explainable intelligent glass-box. Res. Eng. 2024, 24, 103297. [Google Scholar] [CrossRef]
- Palosuo, T.; Heikkinen, J.; Hilasvuori, E.; Kulmala, L.; Launiainen, S.; Lehtilä, A.; Leinonen, I.; Liimatainen, M.; Salminen, M.; Shurpali, N.; et al. Demands and possibilities for field-scale estimation of agricultural greenhouse gas balances. CATENA 2025, 249, 108649. [Google Scholar] [CrossRef]
- Vetter, S.H.; Nayak, D.; McBey, D.; Dondini, M.; Kuhnert, M.; Oyesiku-Blakemore, J. 1.23—Environmental Issues: Greenhouse Gas Emissions. In Sustainable Food Science—A Comprehensive Approach; Ferranti, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 216–248. [Google Scholar] [CrossRef]
- Braun, O.; Coquery, C.; Kieffer, J.; Blondel, F.; Favero, C.; Besset, C.; Mesnager, J.; Voelker, F.; Delorme, C.; Matioszek, D. Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances. Molecules 2022, 27, 42. [Google Scholar] [CrossRef]
- Nazim, M.; Ghafoor, A.; Hussain, A.; Tabassum, M.; Nawaz, A.; Ahmad, M.; Muhammad, M.; Ali, M. Biochar as a Climate-Smart Agricultural Practice: Reducing Greenhouse Gas Emissions and Promoting Sustainable Farming. Phyton-Int. J. Exp. Bot. 2025, 94, 65–99. [Google Scholar] [CrossRef]
- Neale, E.; Balvert, T.; Crinnion, H.; Craddock, J.; Lambert, K.; Charlton, K. Application of Global Warming Potential Star (GWP*) Values to the AUSNUT 2011-13 Food Composition Database: Creation of the GWP*-AUSNUT 2011-13 Database. Nutrients 2025, 17, 464. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.M.; Hernandez-Tenorio, F.; Ocampo, D.; Vargas, G.J.; Sáez, A.A. Trends on CO2 Capture with Microalgae: A Bibliometric Analysis. Molecules 2022, 27, 4669. [Google Scholar] [CrossRef]
- Carrascal-Hernández, D.C.; Grande-Tovar, C.D.; Mendez-Lopez, M.; Insuasty, D.; García-Freites, S.; Sanjuan, M.; Márquez, E. CO2 Capture: A Comprehensive Review and Bibliometric Analysis of Scalable Materials and Sustainable Solutions. Molecules 2025, 30, 563. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Report NASA: NASA/GSFC Type III Final Report, Contract NAS5-21867; NASA Goddard Space Flight Center, Texas A&M University: College Station, TX, USA, 1973. [Google Scholar]
- Butwiłowicz, A. Analytical Methods for Production Control in Sugar Factories; Institute of Sugar Industry: Warsaw, Poland, 1997. (In Polish) [Google Scholar]
- PN-EN 12880:2004; Characteristics of Sewage Sludge—Determination of Dry Residue and Water Content. Polish Committee for Standardization: Warsaw, Poland, 2004.
- PN-EN 13342:2002; Characteristics of Sewage Sludge—Determination of Kjeldahl Nitrogen. Polish Committee for Standardization: Warsaw, Poland, 2002.
- Baryga, A.; Kowalska, M.; Sumińska, T.; Sierakowska, M. Development of Effective Methods for Eliminating Microorganisms that form Macromolecular Chemical Compounds in the Sugar Production Process. Report on the Implementation of Work BST 138-01, IBPRS, Sugar Industry Department, Warsaw 2020-2021; IBPRS Institute: Warsaw, Poland. (In Polish)
- Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- DEFRA. Available online: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2022 (accessed on 5 August 2025).
- KOBiZE, CO2, SO2, NOx, CO, and Total Dust Emission Factors for Electricity Based on Information Contained in the National Database on Greenhouse Gas Emissions and Other Substances for 2022, Warsaw. 2023. Available online: https://www.kobize.pl/uploads/materialy/materialy_do_pobrania/wskazniki_emisyjnosci/Wskazniki_emisyjnosci_2022.pdf (accessed on 5 August 2025). (In Polish).
- Wróbel-Jędrzejewska, M.; Klepacka, A.M.; Włodarczyk, E.; Przybysz, Ł. Carbon Footprint of Milk Processing—Case Study of Polish Dairy. Agriculture 2025, 15, 62. [Google Scholar] [CrossRef]
- Jarosz, Z.; Faber, A. Possibilities for reducing greenhouse gas emissions in the life cycle of biofuels. Stud. Rep. IUNG-PIB 2014, 39, 9–27. (In Polish) [Google Scholar] [CrossRef]
- Wieninger, L.; Kubadinow, N. Beziehungen zwischen Rübenanalysen und technischer Bewertung von Zuckerrüben. Comunication presenteé a la 14émé Assemblee Generate de la CITS, 1971. Troncoso, A., Cantos, M. Influence of nitrogen fertilization on sugarbeet (Beta vulgaris) quality in an area of southern Spain. In Plant Nutrition—Physiology and Applications. Developments in Plant and Soil Sciences; van Beusichem, M.L., Ed.; Springer: Dordrecht, The Netherlands, 1990; Volume 41. [Google Scholar] [CrossRef]
- Bowsher, C.; Steer, M.; Tobin, A. Photosynthetic Carbon Assimilation. Plant Biochemistry; Garland Science: New York, NY, USA, 2008; pp. 93–141. [Google Scholar]
- Moureaux, C.; Debacq, A.; Bodson, B.; Heinesch, B.; Aubinet, M. Annual net ecosystem carbon exchange by a sugar beet crop. Agric. For. Meteorol. 2006, 139, 25–39. [Google Scholar] [CrossRef]
- Verma, S.B.; Dobermann, A.; Cassman, K.; Walters, D.T.; Knops, J.; Arkebauer, J.T.; Suyker, E.A.; Burba, G.G.; Amos, B.; Yang, H.; et al. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agr. For. Meteo. 2005, 131, 77–96. [Google Scholar] [CrossRef]
- Suyker, E.A.; Verma, S.B. Coupling of carbon dioxide and water vapor exchanges of irrigated and rainfed maize–soybean cropping systems and water productivity. Agric. For. Meteorol. 2010, 150, 553–563. [Google Scholar] [CrossRef]
- Anthoni, P.M.; Freibauer, A.; Kolle, O.; Schulze, E.D. Winter wheat carbon exchange in Thuringia, Germany. Agric. For. Meteorol. 2010, 121, 55–67. [Google Scholar] [CrossRef]
- Ammann, C.; Flechard, R.C.; Leifeld, J.; Neftel, A.; Fuhrer, J. The carbon budget of newly established temperate grassland depends on management intensity. Agric. Ecosyst. Environ. 2007, 121, 5–20. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Finnigan, J.; Wilson, K.; Paw, K.T.U.; Eva Falge, E. On Measuring Net Ecosystem Carbon Exchange over Tall on Measuring Net Ecosystem Carbon Exchange over Tall Vegetation on Complex Terrain Vegetation on Complex Terrain. Bound.-Layer Meteorol. 2000, 96, 257–291. [Google Scholar] [CrossRef]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, Ü.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology. Adv. Ecol. Res. 1999, 30, 113–175. [Google Scholar]
- Reichstein, M.; Papale, D. Inter-Annual Variation (IAV) in Global Terrestrial Carbon-Water Balance Derived from Network of Eddy Covariance Flux Sites: Magnitude, Controlling Processes and Climate Factors. 2007. Available online: https://fluxnet.org/data/la-thuile-dataset/lathuile-proposals/reichstein-inter-annual-variation-in-global-terrestrial-carbon-water-balance/ (accessed on 5 August 2025).
- Reichstein, M.; Ciais, P.; Papale, D.; Valentini, R.; Running, S.; Viovy, N.; Cramer, W.; Granier, A.; Ogée, J.; Allard, V.; et al. A combined eddy covariance, remote sensing and modeling view on the 2003 European summer heatwave. Glob. Change Biol. 2007, 13, 634–651. [Google Scholar] [CrossRef]
- Żyłowski, T.; Kozyra, J. Environmental efficiency of root crop cultivation. Ann. Pol. Assoc. Agric. Agribus. Econ. 2020, 22, 208–217. [Google Scholar] [CrossRef]
- Available online: https://apps.carboncloud.com/climatehub/agricultural-reports/benchmarks/334d6dbe-4659-4814-8619-d55793be3b28 (accessed on 24 September 2025).
- Available online: https://apps.carboncloud.com/climatehub/agricultural-reports/benchmarks/4b4fc9d9-5af0-4b5e-9391-e91ae846be0d (accessed on 24 September 2025).
- Klenk, I.; Landquist, B.; Imana, O. The Product Carbon Footprint of EU beet sugar (Part I). Zuckerindustrie 2012, 137, 169–177. [Google Scholar] [CrossRef]
Authors/Year | Country/Region | Raw Material | Scope of Analysis | CF [kg CO2eq/kg] | Main Sources of Emissions | Comments |
---|---|---|---|---|---|---|
Li et al., 2024 [18] | China/EU (comparison) | Beet/Cane | Field-to-gate | 0.24–0.77 (beet) 0.21–0.68 (cane) | Nitrogen fertilizers, energy in sugar mills | Beet often has a higher CF than cane, depending on energy and fertilization |
González et al., 2022 [19] | Spain | Beet | Full LCA (field-to-market) | 0.43–0.61 | N2O from fertilization, fuel in transport | Allocation of by-products (molasses, pulp) taken into account |
Wróbel-Jędrzejewska et al., 2024 [20] | Poland | Beet | Field-to-gate | 0.14–0.60 | Fertilization, thermal energy in sugar factories | Empirical studies in Polish sugar factories |
Cech et al., 2022 [21] | Central Europe | Beet | Farm-gate | 0.06–0.12 | Mineral fertilizers, pesticides | Analysis of agricultural emissions, excluding the processing stage |
García et al., 2016 [22] | Mexico | Cane | Full LCA | 0.45–0.63 | 59–74% of emissions from the agricultural stage | Remains as a reference point |
Yuttitham et al., 2011 [23] | Thailand | Cane | Field-to-gate | 0.55 | Fertilization, biomass combustion | Results consistent with the global range |
Indicator | Symbol | Formula |
---|---|---|
expected purity of thick juice | Czsg | Czsg = 99.36 − 0.1427 (Na + K + α − N) |
purity of raw material | Ck | Ck × 100/Ss % |
expected sugar content in molasses | Ckm | Ckm = 0.349 (Na + K) |
alkalinity, including invert sugar | WAI | WAI = Na + K/α − N + I |
ash content | - | Ck/Pp sol. |
α-amino nitrogen | Nα | Nα = Ck/α − N |
amide nitrogen | - | Ck/N amide |
reducing substances | - | Ck/I |
non-sugars | - | Ck/Nc sol. |
potassium alkalinity | - | K/α − N |
ash alkalinity | - | Pp sol./α − N |
Fertilizers | Unit | Value |
---|---|---|
Manure | kg CO2/kg | 0.025 |
Potassium salt | kg CO2/kg | 0.24 |
Urea | kg CO2/kg | 3.68 |
Nitrogen (1 kg) | kg CO2/kg | 5.00 |
Polidap 18:46 (ammonium phosphate) | kg CO2/kg | 2.89 |
Fosforan DAB | kg CO2/kg | 0.50 |
Parameter [%] | V1 | J1 | P1 | P2 | Optimal Value |
---|---|---|---|---|---|
dry matter content | 24.73 ± 0.01 a | 22.25 ± 0.01 d | 24.15 ± 0.15 c | 24.19 ± 0.01 b,c | ~25.00 |
pulp content | 4.05 ± 0.13 b | 3.80 ± 0.04 c | 5.15 ± 0.21 a | 4.15 ± 0.20 b | 4.00–5.00 |
sugar content | 19.16 ± 0.17 a | 16.65 ± 0.11 d | 18.10 ± 0.05 c | 18.39 ± 0.01 b | 14.00–19.00 |
invert sugar content | 0.09 ± 0.01 a | 0.05 ± 0.01 b | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.02–0.10 |
ash content | 0.39 ± 0.02 c | 0.83 ± 0.15 a | 0.34 ± 0.02 d | 0.50 ± 0.04 b | 0.40–0.60 |
potassium content | 0.24 ± 0.01 b | 0.27 ± 0.01 a | 0.13 ± 0.01 d | 0.21 ± 0.01 c | 0.10–0.30 |
sodium content | 0.006 ± 0.001 c | 0.016 ± 0.001 a | 0.008 ± 0.001 b | 0.007 ± 0.000 b,c | 0.010–0.100 |
α-amino acid nitrogen content | 0.010 ± 0.001 b | 0.013 ± 0.001 a | 0.007 ± 0.001 c | 0.014 ± 0.001 a | ~0.030 |
amide nitrogen content | 0.015 ± 0.001 c | 0.018 ± 0.001 b | 0.009 ± 0.001 d | 0.022 ± 0.002 a | ~0.015 |
Indicator | V1 | J1 | P1 | P2 | Optimal Value |
---|---|---|---|---|---|
purity of thick juice (%) | 94.1 ± 0.2 b | 92.0 ± 0.3 c | 96.2 ± 0.3 a | 94.2 ± 0.1 b | >92.0 |
purity of raw material | 77 ± 1 a | 75 ± 1 a | 75 ± 1 a | 76 ± 1 a | >70 |
sugar in molasses (%) | 2.1 ± 0.0 b | 2.7 ± 0.2 a | 1.2 ± 0.2 d | 2.0 ± 0.0 c | <2.0 |
alkalinity (WAI) | 4.4 ± 0.2 b | 5.8 ± 0. 3 a | 3.1 ± 0.2 d | 3.5 ± 0.1 c | 1.8–2.3 |
ash content | 50 ± 5 a | 20 ± 1 c | 53 ± 2 a | 37 ± 4 b | >40 |
α-amino nitrogen | 1916 ± 20 b | 1281 ± 40 c | 2586 ± 36 a | 1314 ± 21 c | >800 |
amide nitrogen | 1312 ± 14 b | 920 ± 12 c | 2105 ± 15 a | 836 ± 13 d | >750 |
reducing substances | 213 ± 3 c | 333 ± 1 a | 226 ± 3 b | 230 ± 1 b | >100 |
non-sugars | 13 ± 1 b | 9 ± 0 c | 20 ± 2 a | 11 ± 1 b | >10 |
potassium alkalinity | 24 ± 1 a | 21 ± 1 b | 18 ± 1 c | 15 ± 1 d | >8 |
ash alkalinity | 39 ± 2 c | 64 ± 6 a | 49 ± 3 b | 36 ± 3 c | >15 |
Farmer 1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variety | Month | A [µmol CO2 m−2 s−1 ] | Time [s] | LAI [-] | Area [ha] | Area [m2] | Crop Efficiency [t/ha] | Crop [kg] | CO2 Assimilation [µmol/m2] | CO2 Assimilation [g/m2] | CO2 Assimilation [kg] | Total CO2 Assimilation for a Given variety [kg] | CO2 Assimilation on ha [kg/ha] | CO2 Assimilation on kg [kg/kg] |
V1 | VI | 21.48 | 714,000.00 | 4.19 | 5.00 | 50,000.00 | 101.00 | 505,000.00 | 15,336,720.00 | 674.82 | 33,740.78 | 154,823.1 | 30,964.61 | 0.3066 |
VII | 21.48 | 714,000.00 | 3.91 | 15,336,720.00 | 674.82 | 33,740.78 | ||||||||
VIII | 17.49 | 714,000.00 | 4.87 | 12,487,860.00 | 549.47 | 27,473.29 | ||||||||
IX | 18.50 | 714,000.00 | 3.84 | 13,210,428.00 | 581.26 | 29,062.94 | ||||||||
X | 10.01 | 714,000.00 | 2.98 | 7,145,140.80 | 314.39 | 15,719.31 | ||||||||
XI | 9.60 | 714,000.00 | 2.73 | 6,857,256.00 | 301.72 | 15,085.96 | ||||||||
J1 | VI | 20.70 | 714,000.00 | 2.63 | 15.00 | 150,000.00 | 86.00 | 1,290,000.00 | 14,779,800.00 | 650.31 | 97 546.68 | 443,819.2 | 29,587.94 | 0.3440 |
VII | 20.70 | 714,000.00 | 2.63 | 14,779,800.00 | 650.31 | 97,546.68 | ||||||||
VIII | 20.27 | 714,000.00 | 2.73 | 14,472,780.00 | 636.80 | 95,520.35 | ||||||||
IX | 17.85 | 714 000.00 | 2.56 | 12,746,849.22 | 560.86 | 84,129.20 | ||||||||
X | 8.16 | 714,000.00 | 2.64 | 5,824,240.80 | 256.27 | 38,439.99 | ||||||||
XI | 6.50 | 714,000.00 | 1.65 | 4,641,856.80 | 204.24 | 30,636.25 | ||||||||
P1 | VI | 20.90 | 714,000.00 | 3.85 | 12.00 | 120,000.00 | 86.00 | 1,032,000.00 | 14,922,600.00 | 656.59 | 78,791.33 | 345,213.1 | 28,767.76 | 0.3345 |
VII | 20.90 | 714,000.00 | 3.73 | 14,922,600.00 | 656.59 | 78,791.33 | ||||||||
VIII | 15.26 | 714,000.00 | 3.52 | 10,895,640.00 | 479.41 | 57,528.98 | ||||||||
IX | 17.63 | 714,000.00 | 3.78 | 12,590,676.00 | 553.99 | 66,478.77 | ||||||||
X | 10.66 | 714,000.00 | 3.52 | 7,610,383.20 | 334.86 | 40,182.82 | ||||||||
XI | 6.22 | 714,000.00 | 2.11 | 4,439,366.40 | 195.33 | 23,439.85 | ||||||||
Farmer 2 | ||||||||||||||
Variety | Month | A [µmol CO2 m−2 s−1 ] | Time [s] | LAI [-] | Area [ha] | Area [m2] | Crop Efficiency [t/ha] | Crop [kg] | CO2 Assimilation [µmol/m2] | CO2 Assimilation [g/m2] | CO2 Assimilation [kg] | Total CO2 Assimilation for a Given Variety [kg] | CO2 Assimilation on ha [kg/ha] | CO2 Assimilation on kg [kg/kg] |
P2 | VI | 20.90 | 714,000.00 | 3.85 | 8.00 | 80,000.00 | 43.00 | 344,000.00 | 14,922,600.00 | 656.59 | 52,527.55 | 230,142.1 | 28,767.76 | 0.67 |
VII | 20.90 | 714,000.00 | 3.73 | 14,922,600.00 | 656.59 | 52,527.55 | ||||||||
VIII | 15.26 | 714,000.00 | 3.52 | 10,895,640.00 | 479.41 | 38,352.65 | ||||||||
IX | 17.63 | 714,000.00 | 3.78 | 12,590,676.00 | 553.99 | 44,319.18 | ||||||||
X | 10.66 | 714,000.00 | 3.52 | 7,610,383.20 | 334.86 | 26,788.55 | ||||||||
XI | 6.22 | 714,000.00 | 2.11 | 4,439,366.40 | 195.33 | 15,626.57 |
Crop/Ecosystem | CO2 Assimilation [t/ha/Year] | Data Source |
---|---|---|
Sugar beet | 22.4 t CO2/ha | [46] |
Corn (C4) | 25–30 t CO2/ha | [47,48] |
Winter wheat (C3) | 5–10 t CO2/ha | [49,50] |
Deciduous forest | 10–15 t CO2/ha | [51,52] |
Coniferous forest (pine) | 5–12 t CO2/ha | [53,54] |
Farmer 1 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variety | Period | Area [ha] | Crop [kg] | Requirement [L/ha] | Use [L] | Emission [kg CO2] | |||||||
V1 | VI–XI | 5 | 505,000.00 | 80 | 400 | 1080 | |||||||
J1 | 15 | 1,290,000.00 | 80 | 1200 | 3240 | ||||||||
P1 | 12 | 1,032,000.00 | 80 | 960 | 2592 | ||||||||
Farmer 2 | |||||||||||||
Variety | Period | Area [ha] | Crop [kg] | Requirement [L/ha] | Use [L] | Emission [kg CO2] | |||||||
Before Sowing | Sowing | Spraying | Before Sowing | Sowing | Spraying | Before Sowing | Sowing | Spraying | Total | ||||
P2 | VI–XI | 8 | 344,000 | 25 | 40 | 10 | 200 | 320 | 80 | 540 | 864 | 216 | 1620 |
Farmer 1 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cattle Manure | Potassium Salt | Korn Kali | Polidap 18:46 | RSM 32N | ZAKSAN 33,5 N | ||||||||||||||||
Variety | Area [ha] | Requirement [t/ha] | Use [kg] | Emission [kg CO2] | Requirement [kg/ha] | Use [kg] | Emission [kg CO2] | Requirement [kg/ha] | Use [kg] | Emission [kg CO2] | Requirement [kg/ha] | Use [kg] | Emission [kg CO2] | Requirement [l/ha] | Use [kg] | Emission [kg CO2] | Requirement [kg/ha] | N Requirement [kg/ha] | N Use [kg] | Emission [kg CO2] | Total Emissions from Fertilizers [kg CO2] |
V1 | 5 | 35 | 175,000 | 4375 | 100 | 500 | 120 | 300 | 1500 | 360 | 130 | 650 | 1878.5 | 140 | 700 | 2023 | 150 | 50.25 | 251.25 | 1256.25 | 10,012.75 |
J1 | 15 | 525,000 | 13,125 | 1500 | 360 | 4500 | 1080 | 1950 | 5635.5 | 2100 | 6069 | 753.75 | 3768.75 | 30,038.25 | |||||||
P1 | 12 | 420,000 | 10,500 | 1200 | 288 | 3600 | 864 | 1560 | 4508.4 | 1680 | 4855.2 | 603 | 3015 | 24,030.60 | |||||||
Farmer 2 | |||||||||||||||||||||
Potassium Salt | DAB Phosphate | RSM 32% | Urea 46% | ||||||||||||||||||
Variety | Area [ha] | Requirement [kg/ha] | Use [kg] | Emission [kg CO2] | Requirement [kg/ha] | Use [kg] | Emission [kg CO2] | Requirement [kg] | Requirement N [kg] | Emission [kg CO2] | Requirement [kg] | Requirement N [kg] | Emission [kg CO2] | Total Emissions from Fertilizers [kg CO2] | |||||||
P2 | 8 | 200 | 1600 | 384 | 120 | 960 | 480 | 270 | 86.4 | 432 | 150 | 69 | 345 | 1641 |
Farmer 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Variety | Period | Area [ha] | Area [m2] | Crop Efficiency [t/ha] | Crop [kg] | Total Emission [kg CO2] | CF [kg CO2/kg] | Emission Factor [kg CO2/ha] |
V1 | VI-XI | 5.00 | 50,000.00 | 101.00 | 505,000.00 | 11,092.75 | 0.0220 | 2218.55 |
J1 | 15.00 | 150,000.00 | 86.00 | 1,290,000.00 | 33,278.25 | 0.0258 | 2218.55 | |
P1 | 12.00 | 120,000.00 | 86.00 | 1,032,000.00 | 26,622.60 | 0.0258 | 2218.55 | |
Farmer 2 | ||||||||
Variety | Period | Area [ha] | Area [m2] | Crop Efficiency [t/ha] | Crop [kg] | Total Emission [kg CO2] | CF [kg CO2/kg] | Emission Factor [kg CO2/ha] |
P2 | VI-XI | 8.00 | 80,000.00 | 43.00 | 344,000.00 | 3261.00 | 0.00948 | 407.625 |
Country/Source | Scope of Analysis | CF—Value/Range |
---|---|---|
Poland [55] | sugar beet cultivation to field | 0.06 kg CO2eq/kg beet |
Finland [56] | beet cultivation (farm gate) | 0.12 kg CO2eq/kg beet |
Sweden [57] | beet cultivation | 0.06 kg CO2eq/kg beet |
EU [58] | full cycle of sugar production from beet (field-to-sugar) | 0.242–0.771 kg CO2eq/kg sugar |
Poland [20] | from field to sugar production line in three sugar factories | 0.14–0.27 kg CO2eq/kg sugar; average 0.18–0.19 kg CO2eq/kg sugar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel-Jędrzejewska, M.; Przybysz, Ł.; Włodarczyk, E.; Baryga, A.; Jaśkiewicz, A.; Ściubak, Ł.; Sitko, K. Greenhouse Gas Analysis of Sustainable Sugar Beet Cultivation, Taking into Account the Technological Value and Quality of Various Varieties. Sustainability 2025, 17, 9316. https://doi.org/10.3390/su17209316
Wróbel-Jędrzejewska M, Przybysz Ł, Włodarczyk E, Baryga A, Jaśkiewicz A, Ściubak Ł, Sitko K. Greenhouse Gas Analysis of Sustainable Sugar Beet Cultivation, Taking into Account the Technological Value and Quality of Various Varieties. Sustainability. 2025; 17(20):9316. https://doi.org/10.3390/su17209316
Chicago/Turabian StyleWróbel-Jędrzejewska, Magdalena, Łukasz Przybysz, Ewelina Włodarczyk, Andrzej Baryga, Andrzej Jaśkiewicz, Łukasz Ściubak, and Krzysztof Sitko. 2025. "Greenhouse Gas Analysis of Sustainable Sugar Beet Cultivation, Taking into Account the Technological Value and Quality of Various Varieties" Sustainability 17, no. 20: 9316. https://doi.org/10.3390/su17209316
APA StyleWróbel-Jędrzejewska, M., Przybysz, Ł., Włodarczyk, E., Baryga, A., Jaśkiewicz, A., Ściubak, Ł., & Sitko, K. (2025). Greenhouse Gas Analysis of Sustainable Sugar Beet Cultivation, Taking into Account the Technological Value and Quality of Various Varieties. Sustainability, 17(20), 9316. https://doi.org/10.3390/su17209316