Bimodal Habitat Changes and Associated Changes in Ecosystem Functions in European Biodiversity Coldspots
Abstract
1. Introduction
2. Materials and Methods
2.1. The BIOPRESS Method
2.2. Study Area
2.3. Preparation of Habitat Maps
2.4. Ecosystem Functions and Pressures
3. Results
3.1. Habitat Dynamics
3.2. Identifying Pressures
- Conversion (CV): the use of natural or semi-natural areas for anthropogenic activities such as agriculture, building commercial units, industries, etc.
- Deforestation (DF): cutting of forests for timber production or the extraction of other forest products.
- Degradation (DE): the degeneration of vegetation via a decrease in species richness, diversity, and/or biomass.
- Encroachment (EN): the advancement of woody vegetation into inland marshes, inland water bodies, and peat bogs.
- Wetting (WT): the conversion of natural/ semi-natural classes into wetlands and/or water bodies.
- Range shift (RS): the spatiotemporal change in distribution limits of habitat types along altitudinal or latitudinal gradients. This pressure excludes changes in and around inland aquatic habitat (wetting, encroachment) and any changes resulting directly from land conversion for human use (conversion).
- Regrowth (RG): the growth of vegetation on formerly bare land or abandoned agricultural land, regrowth of vegetation after natural or anthropogenic stressors (fire, clearcutting, etc.), natural change (or succession) in vegetation from non-woody to woody vegetation.
3.3. Habitat Types and Associated Pressures
3.4. Ecosystem Functions
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner Gregory, P.; Barford, C.; Bonan, G.; Carpenter Stephen, R.; Chapin, F.S.; Coe Michael, T.; Daily Gretchen, C.; Gibbs Holly, K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Levers, C.; Erb, K.; Estel, S.; Jepsen, M.R.; Müller, D.; Plutzar, C.; Stürck, J.; Verkerk, P.J.; Verburg, P.H.; et al. Hotspots of land use change in Europe. Environ. Res. Lett. 2016, 11, 064020. [Google Scholar] [CrossRef]
- Gonzalez, A.; Cardinale, B.J.; Allington, G.R.H.; Byrnes, J.; Arthur Endsley, K.; Brown, D.G.; Hooper, D.U.; Isbell, F.; O’Connor, M.I.; Loreau, M. Estimating local biodiversity change: A critique of papers claiming no net loss of local diversity. Ecology 2016, 97, 1949–1960. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Rowhani, P.; Scharlemann, J.P.W. Impacts of past abrupt land change on local biodiversity globally. Nat. Commun. 2019, 10, 5474. [Google Scholar] [CrossRef] [PubMed]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Kareiva, P.; Marvier, M. Conserving Biodiversity Coldspots Recent calls to direct conservation funding to the world’s biodiversity hotspots may be bad investment advice. Am. Sci. 2003, 91, 344–351. [Google Scholar] [CrossRef]
- Smithers, R.; Watts, K. Should we focus on biodiversity hotspots or biodiversity coldspots? In Proceedings of the Spatial Ecology & Conservation; University of Bristol: Bristol, UK, 2015. [Google Scholar]
- Dobrowski, S.Z.; Littlefield, C.E.; Lyons, D.S.; Hollenberg, C.; Carroll, C.; Parks, S.A.; Abatzoglou, J.T.; Hegewisch, K.; Gage, J. Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun. Earth Environ. 2021, 2, 198. [Google Scholar] [CrossRef]
- Schrotter, M.; Kraemer, R.; CeauAyu, S.; Rusch, G.M. Incorporating threat in hotspots and coldspots of biodiversity and ecosystem services. Ambio 2017, 46, 756–768. [Google Scholar] [CrossRef] [PubMed]
- Bingham, H.; Lewis, E.; Belle, E.; Stewart, J.; Klimmek, H.; Wicander, S.; Bhola, N.; Bastin, L. Protected Planet Report 2020: Tracking Progress Towards Global Targets for Protected and Conserved Areas; Aston University: Birmingham, UK, 2021. [Google Scholar]
- Pimm, S.L.; Jenkins, C.N.; Li, B.V. How to protect half of Earth to ensure it protects sufficient biodiversity. Sci. Adv. 2018, 4, eaat2616. [Google Scholar] [CrossRef]
- Abeli, T.; Gentili, R.; Rossi, G.; Bedini, G.; Foggi, B. Can the IUCN criteria be effectively applied to peripheral isolated plant populations? Biodivers. Conserv. 2009, 18, 3877–3890. [Google Scholar] [CrossRef]
- Gerard, F.; Bugár, G.; Gregor, M.; Halada, L.; Hazue, G.; Huitu, H.; Kohler, R.; Kolar, J.; Luque, S.; Mucher, S.; et al. BIOPRESS: Linking pan-European land cover change to pressures on biodiversity. Available online: http://www.creaf.uab.es/biopress/index2.htm (accessed on 14 October 2025).
- Jaeger, J.; Soukup, T.; Schwick, C.; Madriñán, L.; Kienast, F. Chapter 20 Landscape Fragmentation in Europe: CORINE Land Cover Data; CRC Press: Boca Raton, FL, USA, 2016; pp. 157–198. [Google Scholar]
- Abdul Malak, D. Landscapes in Transition An Account of 25 Years of Land Cover Change in Europe; European Environment Agency: Copenhagen, Denmark, 2017. [Google Scholar]
- Luoto, M.; Pykälä, J.; Kuussaari, M. Decline of landscape-scale habitat and species diversity after the end of cattle grazing. J. Nat. Conserv. 2003, 11, 171–178. [Google Scholar] [CrossRef]
- Caballero, R.; Fernández-González, F.; Pérez-Badia, R.; Molle, G.; Roggero, P.P.; Bagella, S.; D’Ottavio, P.; Papanastasis, V.; Fotiadis, G.; Sidiropoulou, A.; et al. Grazing Systems and Biodiversity in Mediterranean Areas: Spain, Italy and Greece. Pastos 2009, 39, 9–154. [Google Scholar]
- Stoate, C.; Baldi, A.; Beja, P.; Boatman, N.D.; Herzon, I.; Van Doorn, A.; De Snoo, G.R.; Rakosy, L.; Ramwell, C. Ecological impacts of early 21st century agricultural change in Europe–a review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef]
- Pach, M.; Sansone, D.; Ponette, Q.; Barreiro, S.; Mason, B.; Bravo-Oviedo, A.; Löf, M.; Bravo, F.; Pretzsch, H.; Lesiński, J. Silviculture of mixed forests: A European overview of current practices and challenges. Dyn. Silvic. Manag. Mix. For. 2018, 185–253. [Google Scholar] [CrossRef]
- Pohjanmies, T.; Triviño, M.; Le Tortorec, E.; Mazziotta, A.; Snäll, T.; Mönkkönen, M. Impacts of forestry on boreal forests: An ecosystem services perspective. Ambio 2017, 46, 743–755. [Google Scholar] [CrossRef] [PubMed]
- EEA. State of Nature in the EU: Results from Reporting Under the Nature Directives 2013–2018; European Environment Agency Publications Office: Copenhagen, Denmark, 2020. [Google Scholar]
- Cole, B.; Smith, G.; De La Barreda-Bautista, B.; Hamer, A.; Payne, M.; Codd, T.; Johnson, S.C.M.; Chan, L.Y.; Balzter, H. Dynamic Landscapes in the UK Driven by Pressures from Energy Production and Forestry—Results of the CORINE Land Cover Map 2018. Land 2022, 11, 192. [Google Scholar] [CrossRef]
- Smeets, E.; Weterings, R. Environmental Indicators: Typology and Overview; European Environment Agency Copenhagen: Copenhagen, Denmark, 1999; Volume 19. [Google Scholar]
- Connor, E.F.; McCoy, E.D. The statistics and biology of the species-area relationship. Am. Nat. 1979, 113, 791–833. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Moilanen, A.; Wintle, B.A.; Thomas, C.D. Habitat area, quality and connectivity: Striking the balance for efficient conservation. J. Appl. Ecol. 2011, 48, 148–152. [Google Scholar] [CrossRef]
- McIntosh, A.R.; McHugh, P.A.; Plank, M.J.; Jellyman, P.G.; Warburton, H.J.; Greig, H.S. Capacity to support predators scales with habitat size. Sci. Adv. 2018, 4, eaap7523. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Lefebvre, V.; Peres, C.A.; Banks-Leite, C.; Wearn, O.R.; Marsh, C.J.; Butchart, S.H.M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; et al. Creation of forest edges has a global impact on forest vertebrates. Nature 2017, 551, 187–191. [Google Scholar] [CrossRef]
- Fletcher, R.J.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I.; et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 2018, 226, 9–15. [Google Scholar] [CrossRef]
- Jung, M.; Scharlemann, J.P.W.; Rowhani, P. Landscape-wide changes in land use and land cover correlate with, but rarely explain local biodiversity change. Landsc. Ecol. 2020, 35, 2255–2273. [Google Scholar] [CrossRef]
- Sharma, R.; Nehren, U.; Rahman, S.; Meyer, M.; Rimal, B.; Aria Seta, G.; Baral, H. Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Thomson, A.G.; Manchester, S.J.; Swetnam, R.D.; Smith, G.M.; Wadsworth, R.A.; Petit, S.; Gerard, F.F. The use of digital aerial photography and CORINE-derived methodology for monitoring recent and historic changes in land cover near UK Natura 2000 sites for the BIOPRESS project. Int. J. Remote Sens. 2007, 28, 5397–5426. [Google Scholar] [CrossRef]
- Hazeu, G.W.; Mücher, C.A. Historic Land Use Dynamics in and Around Natura2000 Sites as Indicators for Impact on Biodiversity; Phase 1 of the BIOPRESS Project for the Netherlands; Alterra: Wageningen, The Netherlands, 2005; pp. 1568–1874. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide-Addendum 2000; European Environmental Agengy: Copenhagen, Denmark, 2000. [Google Scholar]
- Wehberg, J.; Thannheiser, D.; Meier, K. Vegetation of the Mountain Birch Forest in Northern Fennoscandia; Springer: Berlin/Heidelberg, Germany, 2005; p. 180. [Google Scholar] [CrossRef]
- Ruuhijärvi, R. The Finnish mire types and their regional distribution. In Mires: Swamp, Bog, Fen and Moor; Elsevier: Amsterdam, The Netherland, 1983; pp. 47–49. [Google Scholar]
- Venäläinen, A.; Lehtonen, I.; Laapas, M.; Ruosteenoja, K.; Tikkanen, O.-P.; Viiri, H.; Ikonen, V.-P.; Peltola, H. Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. Glob. Change Biol. 2020, 26, 4178–4196. [Google Scholar] [CrossRef]
- Luoto, M.; Heikkinen, R.K.; Carter, T.R. Loss of palsa mires in Europe and biological consequences. Environ. Conserv. 2004, 31, 30–37. [Google Scholar] [CrossRef]
- Nagy, G.; Nagy, L.; Kopecskó, K. Examination of the Physico-chemical Composition of Dispersive Soils. Period. Polytech. 2016, 60, 269–279. [Google Scholar] [CrossRef]
- Gábor, F.; Molnár, Z.; Magyari, E.; Somodi, I.; Zoltán, V. A new framework for understanding Pannonian vegetation patterns: Regularities, deviations and uniqueness. Community Ecol. 2014, 15, 12–26. [Google Scholar] [CrossRef]
- Molnár, Á.a.B.; Dániel; Széll; Antal; Biró; Marianna. Vegetation and vegetation changes of the Dévaványa-Ecsegi steppes in the last 15 years. In Crisicum; Periodical of The Körös—Maros National Park Directorate: Szarvas, Hungary, 2016; pp. 65–91. [Google Scholar]
- Fekete, G.; Király, G.; Molnár, Z. Delineation of the Pannonian vegetation region. Community Ecol. 2016, 17, 114–124. [Google Scholar] [CrossRef]
- Morán-Ordóñez, A.; Suárez-Seoane, S.; Elith, J.; Calvo, L.; De Luis, E. Satellite surface reflectance improves habitat distribution mapping: A case study on heath and shrub formations in the Cantabrian Mountains (NW Spain). Divers. Distrib. 2012, 18, 588–602. [Google Scholar] [CrossRef]
- García-Llamas, P.; Geijzendorffer, I.R.; García-Nieto, A.P.; Calvo, L.; Suárez-Seoane, S.; Cramer, W. Impact of land cover change on ecosystem service supply in mountain systems: A case study in the Cantabrian Mountains (NW of Spain). Reg. Environ. Change 2019, 19, 529–542. [Google Scholar] [CrossRef]
- Pallavicini, Y.; Alday, J.G.; Martínez-Ruiz, C. Factors Affecting Herbaceous Richness and Biomass Accumulation Patterns of Reclaimed Coal Mines. Land Degrad. Dev. 2015, 26, 211–217. [Google Scholar] [CrossRef]
- Jungqvist, G.; Oni, S.K.; Teutschbein, C.; Futter, M.N. Effect of Climate Change on Soil Temperature in Swedish Boreal Forests. PLoS ONE 2014, 9, e93957. [Google Scholar] [CrossRef]
- Giesecke, T. Holocene dynamics of the southern boreal forest in Sweden. Holocene 2005, 15, 858–872. [Google Scholar] [CrossRef]
- Borgmark, A.; Wastegård, S. Regional and local patterns of peat humification in three raised peat bogs in Värmland, south-central Sweden. GFF 2008, 130, 161–176. [Google Scholar] [CrossRef]
- Lindbladh, M.; Axelsson, A.-L.; Hultberg, T.; Brunet, J.; Felton, A. From broadleaves to spruce—the borealization of southern Sweden. Scand. J. For. Res. 2014, 29, 686–696. [Google Scholar] [CrossRef]
- Angelstam, P.; Manton, M.; Green, M.; Jonsson, B.-G.; Mikusiński, G.; Svensson, J.; Maria Sabatini, F. Sweden does not meet agreed national and international forest biodiversity targets: A call for adaptive landscape planning. Landsc. Urban Plan. 2020, 202, 103838. [Google Scholar] [CrossRef]
- Moss, D. EUNIS Habitat Classification–A Guide for Users; European Topic Centre on Biological Diversity: Paris, France, 2008. [Google Scholar]
- Zeng, L.; Liu, X.; Li, W.; Ou, J.; Cai, Y.; Chen, G.; Li, M.; Li, G.; Zhang, H.; Xu, X. Global simulation of fine resolution land use/cover change and estimation of aboveground biomass carbon under the shared socioeconomic pathways. J. Environ. Manag. 2022, 312, 114943. [Google Scholar] [CrossRef] [PubMed]
- Sriwongsitanon, N.; Taesombat, W. Effects of land cover on runoff coefficient. J. Hydrol. 2011, 410, 226–238. [Google Scholar] [CrossRef]
- Cecchi, G.; Munafò, M.; Baiocco, F.; Andreani, P.; Mancini, L. Estimating river pollution from diffuse sources in the Viterbo province using the potential non-point pollution index. Ann. Dell’Istituto Super. Di Sanità 2007, 43, 295–301. [Google Scholar]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-Ground Biomass for the Year 2017, v1. 2019; Centre for Environmental Data Analysis: Chilton, UK, 2019. [Google Scholar]
- Emerson, R.W. Causation and Pearson’s Correlation Coefficient. J. Vis. Impair. Blind. 2015, 109, 242–244. [Google Scholar] [CrossRef]
- Teng, S.N.; Svenning, J.-C.; Santana, J.; Reino, L.; Abades, S.; Xu, C. Linking Landscape Ecology and Macroecology by Scaling Biodiversity in Space and Time. Curr. Landsc. Ecol. Rep. 2020, 5, 25–34. [Google Scholar] [CrossRef]
- Pellerin, S.; Lavoie, M.; Talbot, J. Rapid broadleave encroachment in a temperate bog induces species richness increase and compositional turnover. Écoscience 2021, 28, 283–300. [Google Scholar] [CrossRef]
- Dieleman, C.M.; Branfireun, B.A.; McLaughlin, J.W.; Lindo, Z. Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability. Glob. Change Biol. 2015, 21, 388–395. [Google Scholar] [CrossRef]
- Butler, C.D.; Oluoch-Kosura, W. Linking future ecosystem services and future human well-being. Ecol. Soc. 2006, 11. [Google Scholar] [CrossRef]
- Magnússon, R.Í.; Limpens, J.; Kleijn, D.; van Huissteden, K.; Maximov, T.C.; Lobry, S.; Heijmans, M.M.P.D. Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Sci. Total Environ. 2021, 782, 146877. [Google Scholar] [CrossRef]
- Radford, J.Q.; Bennett, A.F. The relative importance of landscape properties for woodland birds in agricultural environments. J. Appl. Ecol. 2007, 44, 737–747. [Google Scholar] [CrossRef]
- Mimet, A.; Houet, T.; Julliard, R.; Simon, L. Assessing functional connectivity: A landscape approach for handling multiple ecological requirements. Methods Ecol. Evol. 2013, 4, 453–463. [Google Scholar] [CrossRef]
- Mimet, A.; Pellissier, V.; Houet, T.; Julliard, R.; Simon, L. A Holistic Landscape Description Reveals That Landscape Configuration Changes More over Time than Composition: Implications for Landscape Ecology Studies. PLoS ONE 2016, 11, e0150111. [Google Scholar] [CrossRef]
- Telwala, Y.; Brook, B.W.; Manish, K.; Pandit, M.K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 2013, 8, e57103. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Brooker, R.W.; Travis, J.M.J.; Clark, E.J.; Dytham, C. Modelling species’ range shifts in a changing climate: The impacts of biotic interactions, dispersal distance and the rate of climate change. J. Theor. Biol. 2007, 245, 59–65. [Google Scholar] [CrossRef]
- Molnár, Z.; János, B.; Horvath, F. Threatening factors encountered: Actual endangerment of the Hungarian (semi-)natural habitats. Acta Bot. Hung. 2008, 50, 199–217. [Google Scholar] [CrossRef]
- Somodi, I.; Virágh, K.; Aszalós, R. The effect of the abandonment of grazing on the mosaic of vegetation patches in a temperate grassland area in Hungary. Ecol. Complex. 2004, 1, 177–189. [Google Scholar] [CrossRef]
- Guo, F.; Lenoir, J.; Bonebrake, T.C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 2018, 9, 1315. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Benavides, L.; Escudero, A.; García-Camacho, R.; García-Fernández, A.; Iriondo, J.M.; Lara-Romero, C.; Morente-López, J. How does climate change affect regeneration of Mediterranean high-mountain plants? An integration and synthesis of current knowledge. Plant Biol. 2018, 20, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Bussotti, F.; Ferrini, F.; Pollastrini, M.; Fini, A. The challenge of Mediterranean sclerophyllous vegetation under climate change: From acclimation to adaptation. Environ. Exp. Bot. 2014, 103, 80–98. [Google Scholar] [CrossRef]
- Michelsen, A.; Rinnan, R.; Jonasson, S. Two Decades of Experimental Manipulations of Heaths and Forest Understory in the Subarctic. Ambio 2012, 41, 218–230. [Google Scholar] [CrossRef]
- Press, M.C.; Potter, J.A.; Burke, M.J.W.; Callaghan, T.V.; Lee, J.A. Responses of a subarctic dwarf shrub heath community to simulated environmental change. J. Ecol. 1998, 86, 315–327. [Google Scholar] [CrossRef]
- Walther, G.-R. Plants in a warmer world. Perspect. Plant Ecol. Evol. Syst. 2003, 6, 169–185. [Google Scholar] [CrossRef]
- Nilsson, P.; Roberge, C.; Fridman, J. Skogsdata 2021: Aktuella Uppgifter Om de Svenska Skogarna Från SLU Riksskogstaxeringen; Institutionen för skoglig resurshushållning, Sveriges lantbruksuniversitet: Uppsala, Sweden, 2021. [Google Scholar]
- Liziniewicz, M.; Barbeito, I.; Zvirgzdins, A.; Stener, L.-G.; Niemisto, P.; Fahlvik, N.; Johansson, U.; Karlsson, B.; Nilsson, U. Production of genetically improved silver birch plantations in southern and central Sweden. Silva Fenn. 2022, 56, 10512. [Google Scholar] [CrossRef]
- Kumpula, J.; Stark, S.; Holand, Ø. Seasonal grazing effects by semi-domesticated reindeer on subarctic mountain birch forests. Polar Biol. 2011, 34, 441–453. [Google Scholar] [CrossRef]
- Heijmans, M.M.P.D.; Knaap, Y.A.M.; Holmgren, M.; Limpens, J. Persistent versus transient tree encroachment of temperate peat bogs: Effects of climate warming and drought events. Glob. Change Biol. 2013, 19, 2240–2250. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, M.; Lin, C.-Y.; Murillo, J.E.; Nieuwenhuis, A.; Penninkhof, J.; Sanders, N.; van Bart, T.; van Veen, H.; Vasander, H.; Vollebregt, M.E.; et al. Positive shrub–tree interactions facilitate woody encroachment in boreal peatlands. J. Ecol. 2015, 103, 58–66. [Google Scholar] [CrossRef]
- Zuidhoff, F.S.; Kolstrup, E. Palsa development and associated vegetation in northern Sweden. Arct. Antarct. Alp. Res. 2005, 37, 49–60. [Google Scholar] [CrossRef]
- Lindholm, T.; Heikkilä, R. Finland—Land of Mires; Finnish Environment Institute: Helsinki, Finland, 2006. [Google Scholar]
- EU. Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on Nature Restoration and Amending Regulation (EU) 2022/869 (Text with EEA Relevance). 2024. Available online: https://eur-lex.europa.eu/eli/reg/2024/1991/oj/eng (accessed on 14 October 2025).
- Borràs-Pentinat, S. The 2030 Biodiversity Strategy: The EU’s international commitment and responsibility to reverse the biodiversity loss 1. In Deploying the European Green Deal; Routledge: Abingdon, UK, 2024; pp. 52–76. [Google Scholar]
- EC. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives; Communication for the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions; European Commission: Brussels, Belgium, 2020; p. 25. [Google Scholar]
- Li, Z.; Liu, D.; Li, X.-Y.; Wu, H.; Li, G.-Y.; Li, Y.-T. Runoff coefficient characteristics and its dominant influencing factors in a riparian grassland in the Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Arab. J. Geosci. 2016, 9, 397. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Santoro, M.; Kay, H.; Quegan, S. CCI Biomass Product User Guide; ESA: Paris, France, 2021. [Google Scholar]
- Kovačević, J.; Cvijetinović, Ž.; Stančić, N.; Brodić, N.; Mihajlović, D. New Downscaling Approach Using ESA CCI SM Products for Obtaining High Resolution Surface Soil Moisture. Remote Sens. 2020, 12, 1119. [Google Scholar] [CrossRef]
Site A | Site B | Site C | Site D | Total | |
---|---|---|---|---|---|
Encroachment | 339.89 | 67.26 | - | 2031.256 | 2438.41 |
Degradation | 3164.65 | - | - | - | 3164.65 |
Conversion | 118.45 | 1738.64 | 2398.903 | 23.21558 | 4279.21 |
Wetting | 4619.32 | 413.47 | 9.854947 | 113.1377 | 5155.78 |
Deforestation | 414.1 | 199.72 | 270.67 | 7696.14 | 8580.63 |
Range shift | 2248.03 | 4630.34 | 4631.217 | 11,509.59 | |
Regrowth | 10,177.21 | 1650.5 | 3171.89 | 2606.129 | 17,605.73 |
Change in WY (ML) | Change in AGB (Mg/ha) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Site A. | Site B. | Site C. | Site D. | Total | Site A. | Site B. | Site C. | Site D. | Total | |
Conversion | 1.92 | 42.05 | 13.63 | 0.57 | 58.17 | −0.87 | −6.36 | −17.81 | −9.95 | −34.99 |
Degradation | 38.00 | 1.42 | 39.42 | −1.40 | −3.50 | −4.90 | ||||
Deforestation | 12.42 | 3.97 | 12.11 | 68.07 | 96.58 | −6.18 | −0.22 | −33.58 | −29.49 | −69.46 |
Encroachment | 9.18 | 0.01 | −0.19 | 8.99 | 5.07 | 33.24 | 39.50 | +77.80 | ||
Wetting | −37.74 | −6.35 | −0.50 | −5.80 | −50.39 | −8.75 | −11.86 | −9.91 | −62.63 | −93.15 |
Regrowth | −10.93 | −73.45 | −114.77 | −180.47 | −379.62 | −0.86 | 24.04 | 25.29 | 2.42 | +50.89 |
Range shift | 26.93 | −27.39 | −18.69 | −19.16 | −13.39 | 1.96 | −6.45 | −17.87 | ||
Total | 39.77 | −33.78 | −115.49 | −136.50 | −246.00 | −26.37 | 38.84 | −37.55 | −66.61 | −91.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Page, S.E.; Balzter, H. Bimodal Habitat Changes and Associated Changes in Ecosystem Functions in European Biodiversity Coldspots. Sustainability 2025, 17, 9283. https://doi.org/10.3390/su17209283
Khan A, Page SE, Balzter H. Bimodal Habitat Changes and Associated Changes in Ecosystem Functions in European Biodiversity Coldspots. Sustainability. 2025; 17(20):9283. https://doi.org/10.3390/su17209283
Chicago/Turabian StyleKhan, Asima, Susan E. Page, and Heiko Balzter. 2025. "Bimodal Habitat Changes and Associated Changes in Ecosystem Functions in European Biodiversity Coldspots" Sustainability 17, no. 20: 9283. https://doi.org/10.3390/su17209283
APA StyleKhan, A., Page, S. E., & Balzter, H. (2025). Bimodal Habitat Changes and Associated Changes in Ecosystem Functions in European Biodiversity Coldspots. Sustainability, 17(20), 9283. https://doi.org/10.3390/su17209283