Building Sustainable Financial Capacity: How Supply Chain Digitalization Facilitates Credit Access by Adjustment Capability
Abstract
1. Introduction
2. Literature Review
2.1. Supply Chain Digital Transformation and Commercial Credit Financing
2.2. The Mediating Role of Adjustment Capability in the Process of SCDT Affecting SCF
3. Research Design
3.1. Sample Selection and Data Source
3.2. Variable Definitions and Regression Model
3.2.1. Independent Variable: Supply Chain Digital Transformation
3.2.2. Dependent Variable: Commercial Credit Financing
3.2.3. Moderating Variable: Adjustment Capability
3.2.4. Control Variables
3.2.5. Regression Model
4. Empirical Results
4.1. Descriptive Analysis
4.2. Correlation Analysis
4.3. Main Regression Analysis
Supply Chain Digital Transformation and Commercial Credit Finance
4.4. Mediating Effect Analysis
4.4.1. The Analysis of Mediating Effect of Adjustment Capability(Cost Stickiness)
4.4.2. The Analysis of Mediating Effect of Adjustment Capability (Organization Resilience)
4.4.3. The Analysis of Cross Mediating Effect of Adjustment Capability (Organization Resilience & Cost Sticky)
4.5. Moderating Effect Analysis
4.5.1. The Analysis of Moderating Effect of External Governance
4.5.2. The Analysis of Moderating Effect of Internal Attribute
4.6. Robustness Test
5. Conclusions
5.1. Research Conclusions
5.2. Theoretical Implications
5.3. Policy Implications
5.4. Practical Value
5.5. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gereffi, G. What does the COVID-19 pandemic teach us about global value chains? The case of medical supplies. J. Int. Bus. Policy 2020, 3, 287–301. [Google Scholar] [CrossRef]
- Christopher, M.; Holweg, M. Supply Chain 2.0 revisited: A framework for managing volatility-induced risk in the supply chain. Int. J. Phys. Distr. Log. 2017, 47, 2–17. [Google Scholar] [CrossRef]
- Ivanov, D. Digital supply chain management and technology to enhance resilience by building and using end-to-end visibility during the COVID-19 pandemic. IEEE T. Eng. Manag. 2021, 71, 10485–10495. [Google Scholar] [CrossRef]
- Srai, J.S.; Lorentz, H. Developing design principles for the digitalisation of purchasing and supply management. J. Purch. Supply Manag. 2019, 25, 78–98. [Google Scholar] [CrossRef]
- UNDP. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, USA, 2015; p. 14. [Google Scholar]
- Gelsomino, L.M.; Mangiaracina, R.; Perego, A.; Tumino, A. Supply chain finance: A literature review. Int. J. Phys. Distr. Log. 2016, 46, 348–366. [Google Scholar] [CrossRef]
- Hofmann, E.; Kotzab, H. A supply chain-oriented approach of working capital management. J. Bus. Logist. 2010, 31, 305–330. [Google Scholar] [CrossRef]
- Hofmann, E. Supply Chain Finance: Some Conceptual Insights; Deutscher Universitätsverlag: Wiesbaden, Germany, 2005; pp. 203–214. [Google Scholar]
- Wuttke, D.A.; Blome, C.; Foerstl, K.; Henke, M. Managing the innovation adoption of supply chain finance-Empirical evidence from six European case studies. J. Bus. Logist. 2013, 34, 148–166. [Google Scholar] [CrossRef]
- Crosby, M.; Pattanayak, P.; Verma, S.; Kalyanaraman, V. Blockchain technology: Beyond bitcoin. Appl. Innov. Rev. 2016, 2, 71. [Google Scholar]
- Gomber, P.; Koch, J.A.; Siering, M. Digital Finance and FinTech: Current research and future research directions. J. Bus. Econ. 2017, 87, 537–580. [Google Scholar] [CrossRef]
- Cai, Y.J.; Choi, T.M.; Zhang, J. Platform supported supply chain operations in the blockchain era: Supply contracting and moral hazards. Decision Sci. 2021, 52, 866–892. [Google Scholar] [CrossRef]
- Treiblmaier, H. The impact of blockchain on the supply chain: A theory-based research framework and a call for action. Supply Chain Manag. 2018, 23, 545–559. [Google Scholar] [CrossRef]
- Wamba, S.F.; Queiroz, M.M.; Trinchera, L. Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation. Int. J. Prod. Econ. 2020, 229, 107791. [Google Scholar] [CrossRef]
- Tang, C.S.; Veelenturf, L.P. The strategic role of logistics in the industry 4.0 era. Transport. Res. E-Log. 2021, 144, 102170. [Google Scholar] [CrossRef]
- Saeed, K.A.; Malhotra, M.K.; Grover, V. Examining the impact of interorganizational systems on process efficiency and sourcing leverage in buyer-supplier dyads. Decision Sci. 2005, 36, 365–396. [Google Scholar] [CrossRef]
- Barratt, M.; Barratt, R. Exploring internal and external supply chain linkages: Evidence from the field. J. Oper. Manag. 2011, 29, 514–528. [Google Scholar] [CrossRef]
- Dolgui, A.; Ivanov, D.; Sokolov, B. Reconfigurable supply chain: The X-network. Int. J. Prod. Res. 2020, 58, 4138–4163. [Google Scholar] [CrossRef]
- Xu, L.; Li, B.; Ma, C.; Liu, J. Supply chain finance and firm diversification: Evidence from China. Aust. J. Manag. 2023, 48, 408–435. [Google Scholar] [CrossRef]
- Hill, M.D.; Kelly, G.W.; Highfield, M.J. Net operating working capital behavior: A first look. Financ. Manag. 2010, 39, 783–805. [Google Scholar] [CrossRef]
- Ng, C.K.; Smith, J.K.; Smith, R.L. Evidence on the determinants of credit terms used in interfirm trade. J. Financ. 1999, 54, 1109–1129. [Google Scholar] [CrossRef]
- Casey, E.; O’Toole, C.M. Bank lending constraints, trade credit and alternative financing during the financial crisis: Evidence from European SMEs. J. Corp. Financ. 2014, 27, 173–193. [Google Scholar] [CrossRef]
- Shenoy, J.; Williams, R. Trade credit and the joint effects of supplier and customer financial characteristics. J. Financ. Intermed. 2017, 29, 68–80. [Google Scholar] [CrossRef]
- Beck, T.; Demirgüç-Kunt, A.; Maksimovic, V. Financing patterns around the world: Are small firms different? J. Finan. Econ. 2008, 89, 467–487. [Google Scholar] [CrossRef]
- Fabbri, D.; Klapper, L.F. Bargaining power and trade credit. J. Corp. Financ. 2016, 41, 66–80. [Google Scholar] [CrossRef]
- Giannetti, M.; Burkart, M.; Ellingsen, T. What you sell is what you lend? Explaining trade credit contracts. Rev. Financ. Stud. 2011, 24, 1261–1298. [Google Scholar] [CrossRef]
- Duong, K.T.; Nguyen, N.; Vu, T. Risk, Reward, and Receivables: Unpacking the Impact of Overconfident CEOs. SSRN Preprint. 2024. Available online: https://ssrn.com/abstract=5041680 (accessed on 1 October 2025).
- Eccles, R.G.; Ioannou, I.; Serafeim, G. The impact of corporate sustainability on organizational processes and performance. Manag. Sci. 2017, 60, 2835–2857. [Google Scholar] [CrossRef]
- Luo, C.; Wei, D.; He, F. Corporate ESG performance and trade credit financing-Evidence from China. Int. Rev. Econ. Financ. 2023, 85, 337–351. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Q.; Li, L.; Teo, T.S.; Yang, S. Supply chain digitalization and performance improvement: A moderated mediation model. Supply Chain Manag. 2023, 28, 993–1008. [Google Scholar] [CrossRef]
- Ishfaq, R.; Davis-Sramek, B.; Gibson, B. Digital Supply Chains in Omnichannel Retail: A Conceptual Framework. J. Bus. Logist. 2021, 43, 169–188. [Google Scholar] [CrossRef]
- Chen, J.; Shen, L. A Synthetic Review on Enterprise Digital Transformation: A Bibliometric Analysis. Sustainability 2024, 16, 1836. [Google Scholar] [CrossRef]
- Al Tera, A.; Alzubi, A.; Iyiola, K. Supply chain digitalization and performance: A moderated mediation of supply chain visibility and supply chain survivability. Heliyon 2024, 10, e25584. [Google Scholar] [CrossRef]
- Dubey, R.; Bryde, D.J.; Blome, C.; Roubaud, D.; Giannakis, M. Facilitating artificial intelligence powered supply chain analytics through alliance management during the pandemic crises in the B2B context. Ind. Market. Manag. 2021, 96, 135–146. [Google Scholar] [CrossRef]
- Ronchini, A.; Guida, M.; Moretto, A.; Caniato, F. The role of artificial intelligence in the supply chain finance innovation process. Oper. Manag. Res. 2024, 17, 1213–1243. [Google Scholar] [CrossRef]
- Guan, Y.; Sun, N.; Wu, S.J.; Sun, Y. Supply Chain Finance, Fintech Development, and Financing Efficiency of SMEs in China. Adm. Sci. 2025, 15, 86. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Li, S.; Xing, C. The digital transformation effect in trade credit uptake: The buyer perspective. Emerg. Mark. Financ. Tr. 2023, 59, 2056–2078. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Zhou, J. Does firms’ digitalization affect trade credit provision? Asia-Pac. J. Account. E. 2025, 32, 329–357. [Google Scholar] [CrossRef]
- Akkermans, H.A.; Bogerd, P.; Yücesan, E.; Van Wassenhove, L.N. The Impact of ERP on Supply Chain Management: Exploratory Findings from a European Delphi Study. Eur. J. Oper. Res. 2003, 146, 284–301. [Google Scholar] [CrossRef]
- Petersen, M.A.; Rajan, R.G. Trade credit: Theories and evidence. Rev. Financ. Stud. 1997, 10, 661–691. [Google Scholar] [CrossRef]
- Fabbri, D.; Menichini, A.M.C. Trade credit, collateral liquidation, and borrowing constraints. J. Financ. Econ. 2010, 96, 413–432. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Lai, K.H.; Cheng, T.E. Responsive supply chain: A competitive strategy in a networked economy. Omega 2008, 36, 549–564. [Google Scholar] [CrossRef]
- Ning, Y.; Li, L.; Xu, S.X.; Yang, S. How do digital technologies improve supply chain resilience in the COVID-19 pandemic? Evidence from Chinese manufacturing firms. Front. Eng. Manag. 2023, 10, 39–50. [Google Scholar] [CrossRef]
- Zhao, N.; Hong, J.; Lau, K.H. Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model. Int. J. Prod. Econ. 2023, 259, 108817. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Newman, S.T.; Huang, G.Q.; Lan, S. Big Data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Comput. Ind. Eng. 2016, 101, 572–591. [Google Scholar] [CrossRef]
- Choi, T.M.; Wallace, S.W.; Wang, Y. Big data analytics in operations management. Prod. Oper. Manag. 2018, 27, 1868–1883. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A. Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. Int. J. Prod. Res. 2020, 58, 2904–2915. [Google Scholar] [CrossRef]
- Jensen, M.C.; Meckling, W.H. Theory of the firm: Managerial behavior, agency costs and ownership structure. J. Financ. Econ. 1976, 3, 305–360. [Google Scholar] [CrossRef]
- Zhu, C. The Impact of Digital Transformation on Cost Stickiness in Enterprises. J. Econ. Manag. Sci. 2025, 8, 98. [Google Scholar] [CrossRef]
- Li, M.; Guo, S.; Wang, X.; Liu, Y. Increase or decrease: Customer digital transformation and supplier cost stickiness. Pac.-Basin. Financ. J. 2024, 87, 102507. [Google Scholar] [CrossRef]
- Tang, H.; Zhu, J.; Li, N.; Wu, W. Impact of Enterprise Supply Chain Digitalization on Cost of Debt: A Four-Flows Perspective Analysis Using Explainable Machine Learning Methodology. Sustainability 2024, 16, 8702. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Z.; Vochozka, M.; Vozňáková, I. Enterprise digital transformation and debt financing cost in China’s A-share listed companies. Oecon. Copernic. 2022, 13, 783–829. [Google Scholar] [CrossRef]
- Wieland, A.; Durach, C.F. Two perspectives on supply chain resilience. J. Bus. Logist. 2021, 42, 315–322. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strategic Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Sriraman, S.; Wuttke, D.; Gernert, A.; Babich, V. Financing Supply Chain Resilience. Georgetown McDonough School of Business Research Paper 2024, No. 4739213. Available online: https://ssrn.com/abstract=4739213 (accessed on 1 October 2025).
- Huang, K.; Wang, K.; Lee, P.K.; Yeung, A.C. The impact of industry 4.0 on supply chain capability and supply chain resilience: A dynamic resource-based view. Int. J. Prod. Econ. 2023, 262, 108913. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Zhang, M. The Impact of Supply Chain Digitalization on Financing Efficiency of Small and Medium Enterprises: A Perspective of Supply Chain Resilience. Procedia Comput. Sci. 2024, 242, 35–42. [Google Scholar] [CrossRef]
- Teece, D.J. Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strateg. Manag. J. 2007, 28, 1319–1350. [Google Scholar] [CrossRef]
- Sharma, V.; Vijayaraghavan, T.A.S.; Tata, R.R.; Raj, A. Strengthening organizational resilience: Role of sustainable supply chain, digitalization and business model adaptation. J. Bus. Ind. Mark. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Zhao, H. The Impact of Digital Transformation on Organizational Resilience: The Role of Innovation Capability and Agile Response. Systems 2025, 13, 75. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, X.; Venkatesh, V.G.; Humdan, E.A.I.; Paul, S.K. The impact of digitalization on supply chain resilience: An empirical study of the Chinese manufacturing industry. J. Bus. Ind. Mark. 2023, 38, 1–11. [Google Scholar] [CrossRef]
- Mutascu, M. Operating Financial Sustainability in the German Car Industry: A New Approach. Transp. Policy 2025, 150, 103791. [Google Scholar] [CrossRef]
- Al-Moaid, N.A.A.; Almarhdi, S.G. Developing dynamic capabilities for successful digital transformation projects: The mediating role of change management. J. Innov. Entrep. 2024, 13, 85. [Google Scholar] [CrossRef]
- Cachon, G.P.; Lariviere, M.A. Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Manag. Sci. 2005, 51, 30–44. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J. Digital transformation and firm cost stickiness: Evidence from China. Financ. Res. Lett. 2023, 52, 103510. [Google Scholar] [CrossRef]
- Li, Y.; Feng, P.; Qi, T.; Yan, J.; Huang, Y. Enterprise digital transformation, managerial myopia and cost stickiness. Humanit. Soc. Sci. Commun. 2024, 11, 1389. [Google Scholar] [CrossRef]
- Xiao, T.; Sun, R.; Yuan, C.; Sun, J. Digital transformation, human capital structure adjustment and labor income share. J. Manag. World. 2022, 38, 220–237. [Google Scholar]
- Huang, L.; Ying, Q.; Yang, S.; Hassan, H. Trade Credit Financing and Sustainable Growth of Firms: Empirical Evidence from China. Sustainability 2019, 11, 1032. [Google Scholar] [CrossRef]
- Lv, W.; Wei, Y.; Li, X.; Lin, L. What Dimension of CSR Matters to Organizational Resilience? Evidence from China. Sustainability 2019, 11, 1561. [Google Scholar] [CrossRef]
- Sajko, M.; Boone, C.; Buyl, T. CEO greed, corporate social responsibility, and organizational resilience to systemic shocks. J. Manag. 2021, 47, 957–992. [Google Scholar] [CrossRef]
- Hamel, G.; Valikangas, L. The quest for resilience. Harvard Bus. Rev. 2003, 81, 56–57. Available online: https://europepmc.org/article/med/12964393 (accessed on 1 October 2025).
- Ortiz-de-Mandojana, N.; Bansal, P. The long-term benefits of organizational resilience through sustainable business practices. Strateg. Manag. J. 2016, 37, 1615–1631. [Google Scholar] [CrossRef]
- Kama, I.; Weiss, D. Do earnings targets and managerial incentives affect sticky costs? J. Account. Res. 2013, 51, 201–224. [Google Scholar] [CrossRef]
- Chen, C.X.; Lu, H.; Sougiannis, T. The agency problem, corporate governance, and the asymmetrical behavior of selling, general, and administrative costs. Contemp. Account. Res. 2012, 29, 252–282. [Google Scholar] [CrossRef]
- Anderson, M.C.; Banker, R.D.; Janakiraman, S.N. Are selling, general, and administrative costs “sticky”? J. Account. Res. 2003, 41, 47–63. [Google Scholar] [CrossRef]
- Weiss, D. Cost behavior and analysts’ earnings forecasts. Account. Rev. 2010, 85, 1441–1471. [Google Scholar] [CrossRef]
- Valta, P. Competition and the cost of debt. J. Financ. Econ. 2012, 105, 661–682. [Google Scholar] [CrossRef]
- Mu, W.; Liu, K.; Tao, Y.; Ye, Y. Digital finance and corporate ESG. Financ. Res. Lett. 2023, 51, 103426. [Google Scholar] [CrossRef]
- Gillan, S.L.; Koch, A.; Starks, L.T. Firms and social responsibility: A review of ESG and CSR research in corporate finance. J. Corp. Financ. 2021, 66, 101889. [Google Scholar] [CrossRef]
- Kim, E.H.; Lu, Y. Corporate governance reforms around the world and cross-border acquisitions. J. Corp. Financ. 2013, 22, 236–253. [Google Scholar] [CrossRef]
- Ding, X.; Kang, Y.; Narayan, P.K.; Fan, Y. Environmental credit regulatory policies and bank loans of heavily polluting firms. Energ. Econ. 2025, 141, 108049. [Google Scholar] [CrossRef]
- Allen, F.; Qian, J.; Qian, M. Law, finance, and economic growth in China. J. Financ. Econ. 2005, 77, 57–116. [Google Scholar] [CrossRef]
- Ayyagari, M.; Demirgüç-Kunt, A.; Maksimovic, V. Formal versus informal finance: Evidence from China. Rev. Financ. Stud. 2010, 23, 3048–3097. [Google Scholar] [CrossRef]
- Ge, Y.; Qiu, J. Financial development, bank discrimination and trade credit. J. Bank. Financ. 2007, 31, 513–530. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, Y.; Zhang, S. Internet development and productivity growth in manufacturing industry: Internal mechanism and China experiences. China Ind. Econ. 2019, 36, 5–23. [Google Scholar]
- Lerman, L.V.; Benitez, G.B.; Müller, J.M.; de Sousa, P.R.; Frank, A.G. Smart Green Supply Chain Management: A Configurational Approach to Enhance Green Performance through Digital Transformation. Supply Chain. Manag. Int. J. 2022, 27, 147–176. [Google Scholar] [CrossRef]
- Wu, F.; Hu, H.; Lin, H.; Ren, X. Enterprise digital transformation and capital market performance: Empirical evidence from stock liquidity. Manag. World. 2021, 37, 130–144. [Google Scholar]
| Dimension | Keyword |
|---|---|
| Planning digitalization | Intelligent Decision-Making, Intelligent Forecasting, Intelligent Planning, Intelligent Supply-Demand Matching, Demand Sensing, Demand Modeling, Planning Algorithm, Digital Planning, Planning Simulation Algorithm, Algorithm-Driven Supply Chain Planning, Agile Planning, Digital Decision-Making, Digital Business Planning, Digital Planning System, Digital Planning Platform, Automated Planning |
| Procurement digitalization | Digital Procurement, Intelligent Procurement, Procurement Platform, Procurement System, Online Procurement, Integrated Procurement, Procurement Visualization, Procurement Cloud, E-Procurement, Automated Procurement, Supplier Collaboration Platform |
| Production digitalization | Smart Manufacturing, Intelligent Equipment, Intelligent Control, Smart Production Line, Smart Workshop, Automatic Control, Automated Monitoring, Automated Production, Integrated System, Human–Machine Collaboration, Human-Machine Interaction, Industrial Intelligence, Industrial Cloud, Industrial Information, Industrial Automation, Industrial Robot, Industrial Internet, Virtual Manufacturing, Smart Factory, Unmanned Production, Future Factory, Digital Factory, Lighthouse Factory, Flexible Production, Intelligent Production Scheduling, Cloud Manufacturing |
| Sales digitalization | Internet Marketing, Smart Marketing, Digital Marketing, Unmanned Retail, E-Commerce, Customized Marketing, Big Data Marketing, Personalized Marketing, Digital Store, O2O, B2B, C2C, B2C, C2B, C2M |
| Logistics digitalization | Smart Transportation, Smart Warehousing, Smart Logistics, Digital Warehousing, Warehouse Management System (WMS), Logistics Automation, Digital Logistics, Online Logistics, Logistics Cloud, Digital Logistics Platform, Intelligent Fulfillment, Warehouse Robot, Inventory Counting Robot, Unmanned Truck, Autonomous Delivery Vehicle, Handling Robot, Logistics Robot, Smart Container, Online Freight Platform, Automated Sorting, Unmanned Warehouse |
| Variable Type | Variable Name | Quantitative Standard |
|---|---|---|
| Dependent variable | CCF | With reference to preceding sections |
| Independent variable | SCDT | With reference to preceding sections |
| Moderating variable | Resilience | With reference to preceding sections |
| Stick | With reference to preceding sections | |
| Control variables | Size | Log value of corporate total assets |
| Age | Listing Age | |
| TobinQ | Ratio of a company’s market value to its total assets | |
| Lev | Total Liability/Total Asset | |
| State | Ownership Type(State = 1) | |
| ROE | Return on Equity | |
| Indep | Proportion of independent directors on the board | |
| Dual | CEO/Chair Duality(Dual = 1) |
| Variable | Min | P50 | Max | SD |
|---|---|---|---|---|
| CCF | 0.00 | 0.10 | 0.46 | 0.10 |
| SCDT | 0.00 | 0.02 | 0.68 | 0.11 |
| Resilience | 0.09 | 0.80 | 3.36 | 0.63 |
| Stick | −3.57 | −0.01 | 2.77 | 0.95 |
| Size | 18.99 | 21.93 | 27.12 | 1.37 |
| Age | 0.00 | 2.20 | 3.37 | 0.97 |
| TobinQ | 0.84 | 1.59 | 9.20 | 1.32 |
| Lev | 0.05 | 0.40 | 0.97 | 0.21 |
| State | 0.00 | 0.00 | 1.00 | 0.46 |
| ROE | −0.98 | 0.07 | 0.45 | 0.16 |
| Indep | 0.00 | 0.36 | 0.60 | 0.09 |
| Dual | 0.00 | 0.00 | 1.00 | 0.42 |
| CCF | SCDT | Resilience | Stick | |
|---|---|---|---|---|
| CCF | 1.00 | |||
| SCDT | 0.081 *** | 1.00 | ||
| Resilience | 0.003 * | 0.017 *** | 1.00 | |
| Stick | −0.113 *** | −0.285 *** | −0.012 ** | 1.00 |
| (1) CCF | (2) CCF | (3) CCF | |
|---|---|---|---|
| SCDT | 0.076 *** (21.47) | 0.048 *** (13.97) | 0.043 *** (11.00) |
| Size | −0.006 *** (−12.91) | −0.006 *** (−13.99) | −0.004 *** (−6.39) |
| Age | −0.013 *** (−25.28) | −0.006 *** (−13.74) | −0.010 *** (−17.57) |
| TobinQ | −0.003 *** (−10.20) | −0.004 *** (−14.10) | −0.004 *** (−12.21) |
| Lev | 0.262 *** (98.35) | 0.258 *** (100.26) | 0.292 *** (91.17) |
| State | 0.000 (0.12) | 0.011 *** (11.73) | 0.015 *** (11.43) |
| ROE | 0.048 *** (13.88) | 0.057 *** (17.67) | 0.070 *** (15.77) |
| Indep | −0.003 (−0.56) | −0.014 *** (−2.90) | −0.013 ** (−2.12) |
| Dual | −0.001 (−0.65) | −0.003 *** (−3.20) | −0.001 (−1.41) |
| Cons | 0.171 *** (17.95) | 0.161 *** (18.93) | 0.122 *** (10.45) |
| Year FE | NO | YES | YES |
| Ind FE | NO | YES | NO |
| Manufacture | NO | NO | YES |
| N | 44,277 | 44,277 | 29,208 |
| Adj R2 | 0.248 | 0.413 | 0.332 |
| (1) Stick | (2) Stick | (3) Stick | (4) CCF | (5) CCF | (6) CCF | |
|---|---|---|---|---|---|---|
| SCDT | −0.106 *** (−2.82) | −0.133 *** (−3.31) | −0.163 *** (−3.42) | |||
| Stick | −0.001 *** (−3.24) | −0.001 * (−1.88) | −0.001 ** (−2.04) | |||
| Size | −0.029 *** (−6.17) | −0.030 *** (−6.14) | −0.026 *** (−4.22) | −0.006 *** (−12.58) | −0.006 *** (−14.07) | −0.004 *** (−6.46) |
| Age | −0.001 (−0.19) | −0.004 (−0.81) | −0.011 * (−1.65) | −0.012 *** (−24.64) | −0.006 *** (−13.52) | −0.010 *** (−17.32) |
| TobinQ | 0.009 ** (2.10) | 0.005 (1.15) | 0.000 (0.08) | −0.003 *** (−10.13) | −0.004 *** (−14.33) | −0.004 *** (−12.43) |
| Lev | 0.235 *** (8.21) | 0.206 *** (6.78) | 0.211 *** (5.73) | 0.262 *** (98.10) | 0.259 *** (100.74) | 0.294 *** (91.85) |
| State | 0.064 *** (5.62) | 0.056 *** (4.82) | 0.062 *** (4.19) | −0.001 (−1.27) | 0.011 *** (11.29) | 0.014 *** (11.11) |
| ROE | 0.947 *** (22.11) | 0.935 *** (21.59) | 0.900 *** (15.87) | 0.049 *** (13.97) | 0.059 *** (17.96) | 0.072 *** (16.08) |
| Indep | −0.007 (−0.10) | −0.012 (−0.20) | −0.090 (−1.19) | 0.000 (0.04) | −0.012 ** (−2.43) | −0.010 * (−1.70) |
| Dual | −0.008 (−0.73) | −0.005 (−0.46) | −0.001 (−0.09) | 0.001 (0.92) | −0.002** (−2.26) | −0.001 (−0.77) |
| Cons | 0.286 *** (2.83) | 0.345 *** (3.24) | 0.289 ** (2.15) | 0.171 *** (17.89) | 0.163 *** (19.20) | 0.123 *** (10.60) |
| Year FE | NO | YES | YES | NO | YES | YES |
| Ind FE | NO | YES | NO | NO | YES | NO |
| Manufacture | NO | NO | YES | NO | NO | YES |
| N | 44,277 | 44,277 | 29,208 | 44,343 | 44,343 | 29,248 |
| Adj R2 | 0.022 | 0.026 | 0.022 | 0.241 | 0.411 | 0.330 |
| (1) Resilience | (2) Resilience | (3) Resilience | (4) CCF | (5) CCF | (6) CCF | |
|---|---|---|---|---|---|---|
| SCDT | 1.524 *** (66.80) | 0.963 *** (45.56) | 1.101 *** (45.73) | |||
| Resilience | 0.024 *** (32.99) | 0.015 *** (18.07) | 0.025 *** (24.87) | |||
| Size | −0.268 *** (77.15) | 0.238 *** (72.39) | 0.221 *** (51.43) | −0.012 *** (−25.47) | −0.009 *** (−20.74) | −0.009 *** (−15.58) |
| Age | −0.101 *** (−29.20) | −0.076 *** (−26.22) | −0.090 *** (−24.54) | −0.010 *** (−19.58) | −0.006 *** (−11.72) | −0.008 *** (−13.71) |
| TobinQ | 0.085 *** (35.03) | 0.065 *** (30.78) | 0.059 *** (22.15) | −0.005 *** (−16.25) | −0.005 *** (−16.53) | −0.006 *** (−15.79) |
| Lev | −0.457 *** (−29.08) | −0.242 *** (−18.24) | −0.153 *** (−9.22) | 0.273 *** (101.03) | 0.262 *** (100.78) | 0.297 *** (92.13) |
| State | −0.071 *** (−11.12) | −0.015 *** (−2.65) | 0.014 * (1.86) | 0.001 (0.97) | 0.011 *** (11.87) | 0.015 *** (11.29) |
| ROE | −0.430 *** (−22.76) | −0.147 *** (−9.63) | −0.167 *** (−8.14) | 0.057 *** (16.02) | 0.059 *** (17.85) | 0.073 *** (16.10) |
| Indep | 0.280 *** (7.57) | 0.246 *** (8.00) | 0.250 *** (6.62) | −0.010 * (−1.82) | −0.018 *** (−3.77) | −0.019 *** (−3.25) |
| Dual | 0.077 *** (11.47) | 0.053 *** (10.03) | 0.062 *** (9.75) | −0.002 ** (−2.24) | −0.003 *** (−4.05) | −0.003 *** (−3.12) |
| Cons | −4.950 *** (−65.75) | −4.373 *** (−61.00) | −4.061 *** (−43.44) | 0.292 *** (29.33) | 0.230 *** (25.14) | 0.224 *** (18.74) |
| Year FE | NO | YES | YES | NO | YES | YES |
| Ind FE | NO | YES | NO | NO | YES | NO |
| Manufacture | NO | NO | YES | NO | NO | YES |
| N | 43,130 | 43,130 | 28,365 | 43,915 | 43,915 | 28,404 |
| Adj R2 | 0.264 | 0.518 | 0.370 | 0.259 | 0.416 | 0.343 |
| (1) Sticky | (2) Sticky | (3) CCF | (4) CCF | |
|---|---|---|---|---|
| High Resilience | Low Resilience | High Resilience | Low Resilience | |
| SCDT | −0.177 *** (−3.25) | −0.184 * (−1.65) | ||
| Sticky | −0.001 (−1.58) | −0.001 (−1.19) | ||
| Size | −0.268 *** (77.15) | 0.238 *** (72.39) | 0.221 *** (51.43) | −0.012 *** (−25.47) |
| Cons | −4.950 *** (−65.75) | −4.373 *** (−61.00) | −4.061 *** (−43.44) | 0.292 *** (29.33) |
| Year FE | NO | YES | YES | NO |
| Ind FE | NO | YES | NO | NO |
| Manufacture | NO | NO | YES | NO |
| N | 15,391 | 13,817 | 15,400 | 13,848 |
| Adj R2 | 0.022 | 0.022 | 0.356 | 0.296 |
| (1) CCF | (2) CCF | (3) CCF | (4) CCF | |
|---|---|---|---|---|
| High ESG | Low ESG | High HHI | Low HHI | |
| SCDT | 0.054 *** (9.21) | 0.031 *** (4.06) | 0.027 *** (4.81) | 0.056 *** (9.90) |
| Size | −0.006 *** (−7.26) | −0.001 (−0.85) | −0.005 *** (−6.07) | −0.002 ** (−2.10) |
| Age | −0.009 *** (−10.96) | −0.012 *** (−9.68) | −0.008 *** (−9.07) | −0.013 *** (−15.95) |
| TobinQ | −0.005 *** (−8.78) | −0.005 *** (−7.05) | −0.005 *** (−10.10) | −0.003 *** (−6.83) |
| Lev | 0.308 *** (64.36) | 0.263 *** (45.61) | 0.276 *** (56.76) | 0.304 *** (72.13) |
| State | 0.010 *** (5.57) | 0.022 *** (9.17) | 0.010 *** (4.93) | 0.019 *** (11.41) |
| ROE | 0.083 *** (9.96) | 0.053 *** (8.18) | 0.063 *** (9.46) | 0.076 *** (12.84) |
| Indep | −0.004 (−0.44) | −0.020 * (−1.65) | −0.018 ** (−1.98) | −0.009 (−1.13) |
| Dual | 0.000 (0.18) | −0.006 *** (−2.80) | −0.001 (−0.47) | −0.002 (−1.59) |
| Cons | 0.155 *** (9.73) | 0.087 *** (3.33) | 0.159 *** (9.46) | 0.073 *** (4.60) |
| Year FE | YES | YES | YES | YES |
| Manufacture | YES | YES | YES | YES |
| N | 13,544 | 8303 | 14,066 | 15,142 |
| Adj R2 | 0.348 | 0.295 | 0.287 | 0.379 |
| (1) CCF | (2) CCF | (3) CCF | (4) CCF | (5) CCF | (6) CCF | |
|---|---|---|---|---|---|---|
| High E-Rate | Low E-Rate | High S-Rate | Low S-Rate | High G-Rate | Low G-Rate | |
| SCDT | 0.056 *** (9.65) | 0.031 *** (5.75) | 0.038 *** (7.16) | 0.048 *** (7.99) | 0.045 *** (8.38) | 0.044 *** (7.66) |
| Size | −0.004 *** (−6.26) | −0.002 ** (−2.14) | −0.004 *** (−5.02) | −0.004 *** (−4.38) | −0.005 *** (−6.72) | −0.001 (−1.20) |
| Age | −0.010 *** (−12.19) | −0.011 *** (−12.66) | −0.011 *** (−12.76) | −0.009 *** (−11.74) | −0.009 *** (−11.96) | −0.012 *** (−12.31) |
| TobinQ | −0.004 *** (−7.78) | −0.004 *** (−8.81) | −0.004 *** (−8.70) | −0.004 *** (−8.67) | −0.004 *** (−7.88) | −0.005 *** (−8.69) |
| Lev | 0.292 *** (65.60) | 0.293 *** (63.19) | 0.310 *** (68.46) | 0.276 *** (61.40) | 0.291 *** (62.99) | 0.286 *** (61.60) |
| State | 0.013 *** (7.21) | 0.017 *** (9.09) | 0.013 *** (6.67) | 0.017 *** (9.62) | 0.004 ** (2.24) | 0.029 *** (14.26) |
| ROE | 0.075 *** (12.05) | 0.064 *** (10.07) | 0.079 *** (11.59) | 0.062 *** (10.54) | 0.087 *** (10.87) | 0.063 *** (11.62) |
| Indep | −0.023 *** (−2.74) | −0.000 (−0.01) | −0.025 *** (−2.97) | −0.001 (−0.06) | 0.011 (1.49) | −0.027 *** (−2.79) |
| Dual | 0.000 (0.07) | −0.003 ** (−2.10) | −0.001 (−0.61) | −0.002 (−1.44) | 0.001 (0.59) | −0.004 *** (−2.82) |
| Cons | 0.145 *** (9.63) | 0.083 *** (4.37) | 0.131 *** (8.14) | 0.119 *** (6.93) | 0.134 *** (8.97) | 0.083 *** (4.45) |
| Year FE | YES | YES | YES | YES | YES | YES |
| Manufacture | YES | YES | YES | YES | YES | YES |
| N | 16,028 | 13,180 | 14,383 | 14,825 | 15,677 | 13,531 |
| Adj R2 | 0.316 | 0.350 | 0.342 | 0.324 | 0.328 | 0.308 |
| (1) CCF | (2) CCF | (3) CCF | (4) CCF | |
|---|---|---|---|---|
| Pollute firm | Green firm | State-owned | Private | |
| SCDT | 0.030 *** (3.22) | 0.030 *** (6.84) | 0.064 *** (5.68) | 0.040 *** (9.71) |
| Size | −0.006 *** (−6.33) | −0.002 *** (−3.02) | −0.004 *** (−3.81) | −0.003 *** (−4.67) |
| Age | −0.007 *** (−6.51) | −0.011 *** (−15.75) | −0.003 ** (−2.26) | −0.012 *** (−17.94) |
| TobinQ | −0.005 *** (−7.10) | −0.005 *** (−13.21) | −0.004 *** (−5.48) | −0.004 *** (−9.98) |
| Lev | 0.221 *** (38.98) | 0.323 *** (85.24) | 0.301 *** (43.75) | 0.291 *** (80.31) |
| ROE | 0.031 *** (3.91) | 0.081 *** (15.14) | 0.081 *** (9.51) | 0.065 *** (12.44) |
| Indep | −0.013 (−1.24) | −0.014 ** (−2.00) | −0.083 *** (−5.42) | 0.009 (1.33) |
| Dual | −0.002 (−1.01) | −0.003 ** (−2.23) | −0.011 *** (−3.01) | −0.001 (−0.71) |
| Cons | 0.186 *** (9.58) | 0.086 *** (6.22) | 0.145 *** (6.75) | 0.106 *** (7.67) |
| Year FE | YES | YES | YES | YES |
| Manufacture | YES | YES | YES | YES |
| N | 8002 | 21,200 | 7172 | 22,036 |
| Adj R2 | 0.249 | 0.385 | 0.284 | 0.334 |
| (1) CCF | (2) CCF | (3) CCF | (4) CCF | |
|---|---|---|---|---|
| State-Owned | Private | |||
| Pollute Firm | Green Firm | Pollute Firm | Green Firm | |
| SCDT | 0.081 *** (3.05) | 0.014 (1.13) | 0.019 * (1.96) | 0.034 *** (7.46) |
| Size | −0.003 ** (−2.32) | −0.002 * (−1.80) | −0.008 *** (−6.51) | −0.001 * (−1.86) |
| Age | −0.008 *** (−3.63) | 0.000 (0.17) | −0.005 *** (−4.15) | −0.013 *** (−17.34) |
| TobinQ | −0.003 ** (−2.03) | −0.009 *** (−9.35) | −0.006 *** (−7.18) | −0.004 *** (−8.61) |
| Lev | 0.221 *** (21.38) | 0.347 *** (40.40) | 0.224 *** (32.49) | 0.315 *** (75.09) |
| ROE | 0.009 (0.72) | 0.114 *** (9.74) | 0.049 *** (4.54) | 0.070 *** (11.72) |
| Indep | −0.061 *** (−2.76) | −0.092 *** (−4.94) | 0.009 (0.71) | 0.006 (0.84) |
| Dual | −0.005 (−0.69) | −0.020 *** (−4.77) | −0.002 (−0.81) | −0.002 (−1.25) |
| Cons | 0.144 *** (4.77) | 0.114 *** (4.17) | 0.225 *** (8.62) | 0.069 *** (4.36) |
| Year FE | YES | YES | YES | YES |
| Manufacture | YES | YES | YES | YES |
| N | 2535 | 4637 | 5467 | 16,563 |
| Adj R2 | 0.238 | 0.365 | 0.248 | 0.367 |
| CCF | |
|---|---|
| SCDT | 1.635 *** (3.67) |
| Cons | 0.073 ** (2.53) |
| Control variables | Control |
| Anderson canon. corr. LM statistic (p-Value) | 15.274 (0.00) |
| Cragg-Donald Wald F statistic (p-Value) | 15.270 (0.00) |
| Year FE | YES |
| Ind FE | NO |
| Manufacture | YES |
| N | 26,697 |
| Adj R2 | 0.340 |
| (1) CCF | (2) CCF | (3) CCF | |
|---|---|---|---|
| Policy | 0.005 *** (3.95) | ||
| Policy2019 | 0.000 *** (2.77) | ||
| Policy2020 | 0.000 * (1.83) | ||
| Cons | 0.125 *** (10.72) | 0.139 *** (3.26) | 0.111 *** (3.03) |
| Control variables | Control | Control | Control |
| Year FE | YES | YES | YES |
| Ind FE | NO | NO | NO |
| Manufacture | YES | YES | YES |
| N | 29,247 | 2266 | 2539 |
| Adj R2 | 0.330 | 0.324 | 0.339 |
| (1) CCF | (2) CCF | (3) CCF | |
|---|---|---|---|
| SCDT | 0.066 *** (17.45) | 0.046 *** (12.38) | 0.039 *** (9.07) |
| Cons | 0.162 *** (15.66) | 0.156 *** (16.78) | 0.116 *** (9.25) |
| Control variables | Control | Control | Control |
| Year FE | NO | YES | YES |
| Ind FE | NO | YES | NO |
| Manufacture | NO | NO | YES |
| N | 38,624 | 38,624 | 25,852 |
| Adj R2 | 0.259 | 0.413 | 0.335 |
| (1) CCF | (2) CCF1 | (3) CCF1 | |
|---|---|---|---|
| L.SCDT | 0.074 *** (19.30) | 0.048 *** (12.61) | 0.046 *** (10.47) |
| Cons | 0.187 *** (18.60) | 0.168 *** (18.70) | 0.128 *** (10.39) |
| Control variables | Control | Control | Control |
| Year FE | NO | YES | YES |
| Ind FE | NO | YES | NO |
| Manufacture | NO | NO | YES |
| N | 39,137 | 39,137 | 25,621 |
| Adj R2 | 0.243 | 0.412 | 0.325 |
| (1) CCF1 | (2) CCF1 | (3) CCF1 | |
|---|---|---|---|
| SCDT | 0.028 *** (6.00) | 0.025 *** (5.37) | 0.035 *** (6.59) |
| Cons | −0.369 *** (−36.97) | −0.369 *** (−35.50) | −0.450 *** (−32.17) |
| Control variables | Control | Control | Control |
| Year FE | NO | YES | YES |
| Ind FE | NO | YES | NO |
| Manufacture | NO | NO | YES |
| N | 44,277 | 44,277 | 29,208 |
| Adj R2 | 0.175 | 0.228 | 0.169 |
| (1) CCF2 | (2) CCF2 | (3) CCF2 | |
|---|---|---|---|
| SCDT | 0.056 *** (17.40) | 0.041 *** (12.44) | 0.033 *** (8.64) |
| Cons | 0.022 *** (2.86) | 0.023 *** (2.77) | 0.008 (0.76) |
| Control variables | Control | Control | Control |
| Year FE | NO | YES | YES |
| Ind FE | NO | YES | NO |
| Manufacture | NO | NO | YES |
| N | 44,277 | 44,277 | 29,208 |
| Adj R2 | 0.229 | 0.267 | 0.295 |
| (1) CCF | (2) CCF | (3) CCF | |
|---|---|---|---|
| DT | 0.008 *** (28.15) | 0.006 *** (17.44) | 0.008 *** (21.06) |
| Cons | 0.198 *** (20.79) | 0.176 *** (20.65) | 0.143 *** (12.29) |
| Control variables | Control | Control | Control |
| Year FE | NO | YES | YES |
| Ind FE | NO | YES | NO |
| Manufacture | NO | NO | YES |
| N | 44,301 | 44,301 | 29,218 |
| (1) CCF | (2) CCF | (3) CCF | (4) CCF | (5) CCF | |
|---|---|---|---|---|---|
| DT_plan | 1.165 *** (3.39) | ||||
| DT_purc | 0.242 ** (2.17) | ||||
| DT_prod | 0.116 *** (18.89) | ||||
| DT_sale | −0.045 *** (−5.73) | ||||
| DT_logi | 0.341 *** (6.13) | ||||
| Cons | 0.125 *** (10.67) | 0.125 *** (10.73) | 0.119 *** (10.30) | 0.124 *** (10.63) | 0.124 *** (10.67) |
| Year FE | YES | YES | YES | YES | YES |
| Manufacture | YES | YES | YES | YES | YES |
| N | 29,208 | 29,208 | 29,208 | 29,208 | 29,208 |
| Adj R2 | 0.330 | 0.330 | 0.338 | 0.330 | 0.330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Duan, K. Building Sustainable Financial Capacity: How Supply Chain Digitalization Facilitates Credit Access by Adjustment Capability. Sustainability 2025, 17, 9265. https://doi.org/10.3390/su17209265
Wu F, Duan K. Building Sustainable Financial Capacity: How Supply Chain Digitalization Facilitates Credit Access by Adjustment Capability. Sustainability. 2025; 17(20):9265. https://doi.org/10.3390/su17209265
Chicago/Turabian StyleWu, Fan, and Kaifeng Duan. 2025. "Building Sustainable Financial Capacity: How Supply Chain Digitalization Facilitates Credit Access by Adjustment Capability" Sustainability 17, no. 20: 9265. https://doi.org/10.3390/su17209265
APA StyleWu, F., & Duan, K. (2025). Building Sustainable Financial Capacity: How Supply Chain Digitalization Facilitates Credit Access by Adjustment Capability. Sustainability, 17(20), 9265. https://doi.org/10.3390/su17209265

