Sustainable Financial Performance Analysis of Logistics Companies Listed on Borsa Istanbul: An Integrated Multi-Criteria Decision-Making Approach
Abstract
1. Introduction
- Second-Party Logistics (2PL) refers to companies that primarily provide commodity capacity and engage in fundamental logistics functions, including transportation, warehousing, and transshipment.
- Third-Party Logistics (3PL) refers to companies that offer comprehensive logistics services, including transportation, warehousing, cross-docking, inventory management, packaging, and labeling. These services are more complex than those provided by Second-Party Logistics (2PL) providers, incorporate advanced information technology, and are frequently delivered under long-term contractual agreements.
- Fourth-Party Logistics (4PL) represents one of the most comprehensive outsourcing models within logistics and supply chain management. Providers of 4PL services extend beyond operational functions such as transportation and warehousing; they assume responsibility for the integration, coordination, and strategic management of these services. Additionally, they frequently deliver more extensive services to companies across various sectors by employing virtual planning and optimization processes.
2. Theoretical Framework
Contributions of the Research to the Literature
3. Materials and Methods
3.1. Simple Weight of Criteria (SIWEC) Method
- Step 1: Constructing the Initial Decision Matrix
- Step 2: Normalization of the Initial Decision Matrix
- Step 3: Calculation of the Standard Deviation for Normalized Values
- Step 4: Multiplying normalized values by their corresponding standard deviation values
- Step 5: Calculating the Sum of Weighted Values for the Criteria
- Step 6: Calculation of the Final Criteria Weights
3.2. Method Based on the Removal Effects of Criteria (MEREC)
- Step 1: Developing the Decision Matrix
- Step 2: Normalization of the Decision Matrix
- Step 3: Calculation of the Total Performance Value
- Step 4: Determination of the Performance Values of the Alternatives
- Step 5: Calculation of the Sum of Absolute Deviations
- Step 6: Determination of Criteria Importance Weights.
3.3. Logarithmic Objective Decomposition Index (LODECI) Method
- Step 1: Construction of the Initial Decision Matrix
- Step 2: Maximum Normalization Approach
- Step 3: Calculation of the Decomposition Value for Elements of the Normalized Decision Matrix.
- Step 4: Determining the Logarithmic Decomposition Values for the Criteria
- Step 5: Determination of Criteria Importance Levels
3.4. Combined Compromise Solution (CoCoSo) Method
- Step 1: Constructing the Decision Matrix
- Step 2: Construction of the Normalized Decision Matrix
- Step 3: Calculation of the Weighted Comparability Values and .
- Step 4: Calculation of the Relative Weights of the Alternatives
- Step 5: Determining the Rank Values of the Alternatives
4. Analysis and Findings
4.1. Dataset
Alternative Code | BIST Code | Company Name |
---|---|---|
A1 | BEYAZ | Beyaz Fleet Car Rental Inc. |
A2 | CLEBI | Çelebi Air Service Inc. |
A3 | GSDDE | GSD Maritime Real Estate Construction Industry and Trade Inc. |
A4 | GRSEL | Gür-Sel Tourism Transportation and Service Trade Inc. |
A5 | PGSUS | Pegasus Air Transportation Inc. |
A6 | RYSAS | Reysaş Transportation and Logistics Trade Inc. |
A7 | TLMAN | Trabzon Port Management Inc. |
A8 | TUREX | Tureks Tourism Transportation Inc. |
A9 | THYAO | Turkish Airlines Inc. |
Criterion Code | Ratio | Direction * | Sources |
---|---|---|---|
C1 | Current Ratio | B | [10,11,15,16,20,38,54] |
C2 | Asset Turnover | B | [10,15,16,20,38,54,55] |
C3 | Financial Leverage Ratio | C | [10,11,15,16,38,54] |
C4 | Receivables Turnover Ratio | B | [11,20,54] |
C5 | Operating Profit Margin | B | [54,56] |
C6 | Net Profit Margin | B | [11,20,38,54,55] |
C7 | Asset Return Ratio | B | [10,11,15,16,20,38,54,55,56] |
C8 | Return on Equity | B | [10,11,15,16,20,38,54,55,56] |
Year | Alternative/ Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|---|---|
2022 | A1 | 1.164 | 3.234 | 0.780 | 8.049 | 2.607 | 2.962 | 0.096 | 0.347 |
A2 | 1.492 | 0.899 | 0.596 | 13.011 | 25.939 | 19.005 | 0.171 | 0.469 | |
A3 | 5.381 | 0.272 | 0.257 | 419.018 | 61.127 | 69.168 | 0.188 | 0.409 | |
A4 | 1.175 | 0.997 | 0.407 | 5.605 | 14.381 | 14.672 | 0.146 | 0.260 | |
A5 | 0.998 | 0.574 | 0.812 | 56.516 | 22.642 | 16.615 | 0.095 | 0.570 | |
A6 | 0.946 | 0.447 | 0.627 | 9.293 | 40.245 | 18.059 | 0.081 | 0.223 | |
A7 | 3.423 | 0.741 | 0.224 | 24.779 | 54.931 | 93.922 | 0.696 | 0.910 | |
A8 | 1.056 | 1.606 | 0.410 | 7.183 | 11.088 | 8.869 | 0.142 | 0.229 | |
A9 | 0.877 | 0.668 | 0.686 | 20.114 | 15.686 | 15.243 | 0.102 | 0.349 | |
2023 | A1 | 1.372 | 4.685 | 0.661 | 13.133 | 2.730 | 0.747 | 0.035 | 0.120 |
A2 | 1.258 | 0.932 | 0.658 | 11.382 | 25.415 | 16.807 | 0.157 | 0.431 | |
A3 | 2.730 | 0.115 | 0.229 | 168.455 | 15.010 | −117.565 | −0.135 | −0.363 | |
A4 | 1.539 | 0.993 | 0.383 | 5.302 | 22.816 | 24.715 | 0.245 | 0.423 | |
A5 | 1.291 | 0.474 | 0.729 | 49.601 | 18.555 | 29.643 | 0.140 | 0.575 | |
A6 | 0.986 | 0.804 | 0.563 | 10.903 | 41.116 | 16.977 | 0.136 | 0.415 | |
A7 | 5.261 | 0.473 | 0.219 | 17.892 | 50.632 | 36.067 | 0.171 | 0.218 | |
A8 | 1.201 | 0.882 | 0.297 | 7.169 | 16.933 | 14.129 | 0.125 | 0.182 | |
A9 | 0.944 | 0.619 | 0.565 | 23.027 | 14.160 | 32.315 | 0.200 | 0.511 | |
2024 | A1 | 1.234 | 5.570 | 0.636 | 21.885 | 0.007 | −0.250 | −0.014 | −0.040 |
A2 | 1.312 | 1.101 | 0.608 | 11.488 | 22.209 | 18.711 | 0.206 | 0.557 | |
A3 | 3.108 | 0.177 | 0.276 | 186.341 | 44.936 | −6.285 | −0.011 | −0.015 | |
A4 | 1.690 | 0.989 | 0.341 | 4.442 | 26.916 | 20.943 | 0.207 | 0.324 | |
A5 | 1.276 | 0.461 | 0.736 | 51.197 | 18.607 | 11.881 | 0.055 | 0.205 | |
A6 | 1.132 | 0.657 | 0.500 | 10.094 | 46.509 | 22.629 | 0.149 | 0.314 | |
A7 | 4.232 | 0.389 | 0.177 | 14.449 | 19.292 | 19.815 | 0.077 | 0.096 | |
A8 | 1.174 | 0.703 | 0.336 | 5.857 | 10.132 | 4.022 | 0.028 | 0.041 | |
A9 | 1.007 | 0.609 | 0.514 | 26.110 | 10.785 | 15.207 | 0.093 | 0.199 |
4.2. Weighting of Criteria
4.3. Firm Rankings
4.4. Sensitivity and Comparative Analysis
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christopher, M. Logistics & Supply Chain Management, 6th ed.; FT Publishing: Santa Rosa, CA, USA, 2016. [Google Scholar]
- Ozguner, Z. Uretim İsletmelerinin Lojistik Faaliyetlerinde Süreçsel Etkinliğinin Başarı Dinamikleri; Hiperyayın: Istanbul, Turkey, 2019. [Google Scholar]
- Hanus, P. The business profile shaping and the logistics information systems of 2PL, 3PL, 4PL operators. J. Econ. Manag. 2013, 12, 5–21. [Google Scholar]
- Feng, C.M.; Wang, R.T. Performance evaluation for airlines including the consideration of financial ratios. J. Air Transp. Manag. 2000, 6, 133–142. [Google Scholar] [CrossRef]
- Wong, W.P.; Soh, K.L.; Chong, C.L.; Karia, N. Logistics firms performance: Efficiency and effectiveness perspectives. Int. J. Product. Perform. Manag. 2015, 64, 686–701. [Google Scholar] [CrossRef]
- Lee, T.W.; Lin, C.W.; Shin, S.H. A Comparative Study on Financial Positions of Shipping Companies in Taiwan and Korea Using Entropy and Grey Relation Analysis. Expert Syst. Appl. 2017, 39, 5649–5657. [Google Scholar] [CrossRef]
- Pineda, P.J.G.; Liou, J.J.H.; Hsu, C.-C.; Chuang, Y.-C. An integrated MCDM model for improving airline operational and financial performance. J. Air Transp. Manag. 2018, 68, 103–117. [Google Scholar] [CrossRef]
- Rosini, I.; Gunawan, J. Financial ratio and performance airlines industry with DEA and TOPSIS model. Int. J. Pure Appl. Math. 2018, 119, 367–374. Available online: https://acadpubl.eu/jsi/2018-119-10/articles/10a/34.pdf (accessed on 14 October 2025).
- Periokaitė, P.; Dobrovolskienė, N. The impact of COVID-19 on the financial performance: A case study of the Lithuanian transport sector. Insights Reg. Dev. 2021, 3, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Akgün, M.; Temür, A.S. BIST ulaştirma endeksine kayitli şirketlerin finansal performanslarinin TOPSIS yöntemi ile değerlendirilmesi. Int. J. Manag. Econ. Bus. 2016, 12, 173–186. [Google Scholar] [CrossRef]
- Kendirli, S.; Kaya, A. BIST-Ulaştırma endeksinde yer alan firmaların mali performanslarının ölçülmesi ve TOPSIS yönteminin uygulanması. MANAS J. Soc. Stud. 2016, 5, 34–63. [Google Scholar]
- Ayaydın, H.; Durmuş, S.; Pala, F. Gri İlişkisel Analiz Yöntemiyle Türk Lojistik Firmalarında Performans Ölçümü. Gümüshane Univ. Electron. J. Inst. Soc. Sci. 2017, 8, 76–94. [Google Scholar]
- Ozbek, A. Fortune 500 listesinde yer alan lojistik firmaların değerlendirilmesi. Afyon Kocatepe Univ. J. Econ. Adm. Sci. 2018, 20, 13–26. [Google Scholar] [CrossRef]
- Tufan, C.; Kılıç, Y. Borsa İstanbul’da İşlem Gören Lojistik İşletmelerinin Finansal Performanslarinin Topsis ve Vikor Yöntemleriyle Değerlendirilmesi. Cumhur. Univ. J. Econ. Adm. Sci. 2019, 20, 119–137. [Google Scholar]
- Oral, C.; Kıpkıp, E. Ulaştırma sektörünün finansal performans ölçümü için TOPSIS ve PROMETHEE yöntemlerinin kullanılması: BIST üzerine bir uygulama. Mehmet Akif Ersoy Univ. J. Soc. Sci. Inst. 2019, 11, 1005–1015. [Google Scholar] [CrossRef]
- Elmas, B.; Özkan, T. Ulaştırma ve depolama sektörü işletmelerinin finansal performanslarının SWARA-OCRA modeli ile değerlendirilmesi. J. Bus. Acad. 2021, 2, 240–253. [Google Scholar] [CrossRef]
- Alnıpak, S.; Kale, S. COVID-19 sürecinin ulaştırma sektörü finansal performansına etkileri. J. Res. Econ. Politics Financ. 2021, 6, 139–156. [Google Scholar] [CrossRef]
- Işık, Ö. Gri entropi, FUCOM ve EDAS-M yöntemleriyle Türk lojistik firmalarının çok kriterli performans analizi. J. Yasar Univesity 2022, 17, 472–489. [Google Scholar] [CrossRef]
- Kurt, G.; Kablan, A. COVID-19’un, BİST ulaştırma endeksinde faaliyet gösteren havayolu işletmelerinin finansal performansı üzerindeki etkilerinin, çok kriterli karar verme yöntemleri ile analizi. J. Bus. Acad. 2022, 3, 16–33. [Google Scholar] [CrossRef]
- Ersoy, N. Finansal performansın gri ilişkisel analiz yöntemi ile değerlendirilmesi: Borsa İstanbul Ulaştırma Endeksi’ndeki şirketler üzerine bir araştırma. J. Account. Financ. 2020, 86, 223–246. [Google Scholar] [CrossRef]
- Ersoy, N. Türk inşaat firmalarının finansal performansının SECA yöntemi ile değerlendirilmesi. Izmir J. Econ. 2022, 37, 1003–1021. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Li, E.; Xu, C. Assessment model of eco environmental vulnerability based on ımproved entropy weight method. Sci. World J. 2014, 797814. [Google Scholar] [CrossRef]
- Puška, A.; Nedeljković, M.; Pamučar, D.; Božanić, D.; Simić, V. Application of the new simple weight calculation (SIWEC) method in the case study in the sales channels of agricultural products. MethodsX 2024, 13, 102930. [Google Scholar] [CrossRef]
- Lukic, R. Application of Fuzzy SIWEC and Rough MABAC Methods in the Evaluation of Trade Performance Dynamics in Serbia. Manag. Econ. Rev. 2025, 10, 448–456. [Google Scholar] [CrossRef]
- Dung, H.T.; Bao, N.C.; Van Duc, D. A novel approach for determining criteria weights: Application in ranking materials for mechanical manufacturing processes. Manuf. Rev. 2025, 12, 16. [Google Scholar] [CrossRef]
- Yalçın, G.C.; Limon, E.G.; Kara, K.; Limon, O.; Gürol, P.; Deveci, M.; Demirayak, Ö.; Tomášková, H. A hybrid decision support system for transport policy selection: A case study on Russia’s Northern Sea route in Artic region. Socio-Econ. Plan. Sci. 2025, 98, 102171. [Google Scholar] [CrossRef]
- Cao, J.; Spulbar, C.; Eti, S.; Horobet, A.; Yüksel, S.; Dinçer, H. Innovative approaches to green digital twin technologies of sustainable smart cities using a novel hybrid decision-making system. J. Innov. Knowl. 2025, 10, 100651. [Google Scholar] [CrossRef]
- Puška, A.; Bosna, J. Selecting Social Network for Direct Consumer Communication Using Multi-criteria Analysis: The Case of Company Iceled. In Proceedings of the ICFE-BD, The Brcko, Bosnia and Herzegovina, 10–11 November 2024; Volume 10/2025, pp. 47–56. Available online: https://konferencija.efb.ues.rs.ba/documents/Zbornik%20Radova%20-%20Konferencija%2010%202025.pdf (accessed on 10 October 2025).
- Şimşek, E.; Eti, S.; Yüksel, S.; Dinçer, H. Evaluation of Purchasing Process in Solar Energy Investment Projects via SIWEC Methodology. Spectr. Oper. Res. 2026, 3, 81–86. [Google Scholar] [CrossRef]
- Katrancı, A.; Kundakcı, N.; Arman, K. Fuzzy SIWEC and Fuzzy RAWEC methods for sustainable waste disposal technology selection. Spectr. Oper. Res. 2026, 3, 87–102. [Google Scholar] [CrossRef]
- Yürüyen, A.A.; Altay, H. Evaluating the Logistics Performance of One Belt One Road Project Countries with Multi Criteria Decision Making Methods. J. Mehmet Akif Ersoy Univ. Econ. Adm. Sci. Fac. 2025, 12, 750–774. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry 2021, 13, 525. [Google Scholar] [CrossRef]
- Ayçin, E.; Arsu, T. Sosyal gelişme endeksine göre ülkelerin değerlendirilmesi: MEREC ve MARCOS yöntemleri ile bir uygulama. Izmir J. Manag. 2021, 2, 75–88. [Google Scholar] [CrossRef]
- Pelit, İ.; Avşar, İ.İ. Turkiye’s Carbon Emission Profile: A Global Analysis with the MEREC-PROMETHEE Hybrid Method. Sustainability 2025, 17, 6527. [Google Scholar] [CrossRef]
- Ertuğrul, M.; Özdarak, E. Measuring Airline Performance: An Integrated Balanced Scorecard-Based MEREC-CoCoSo Model. Sustainability 2025, 17, 5826. [Google Scholar] [CrossRef]
- Gamal, A.; Abdel-Basset, M.; Hezam, I.M.; Sallam, K.M.; Hameed, I.A. An interactive multi-criteria decision-making approach for autonomous vehicles and distributed resources based on logistic systems: Challenges for a sustainable future. Sustainability 2023, 15, 12844. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, K.; Srivastava, P.K.; Pandey, P.S. I-MEREC-T: Improved MEREC-TOPSIS scheme for optimal network selection in 5G heterogeneous network for IoT. Internet Things 2023, 22, 100748. [Google Scholar] [CrossRef]
- Pala, O. IDOCRIW ve MARCOS Temelli BIST Ulaştirma İşletmelerinin Finansal Performans Analizi. Kafkas Univ. J. Econ. Adm. Sci. Fac. 2021, 12, 263–294. [Google Scholar] [CrossRef]
- Tufan, D.; Ulutaş, A. Supplier Selection in the Food Sector: An Integrated Approach Using LODECI and CORASO Methods. Spectr. Decis. Mak. Appl. 2026, 3, 40–51. [Google Scholar] [CrossRef]
- Pala, O.; Atçeken, Ö.; Omurtak, H.; Şimşir, B. BİST çimento sektöründe LODECI ve CRADIS ile finansal performans analizi. Alanya Akad. Bakış 2024, 8, 956–970. [Google Scholar] [CrossRef]
- Demirhan, A.; Ulutaş, A.; Pala, O. BİST’te İşlem Gören Seçili Ticari Bankaların LODECI ve ARLON Yöntemleriyle Perfor-mansının Değerlendirilmesi. İzmir İktisat Derg. 2025, 40, 918–941. [Google Scholar] [CrossRef]
- Pala, O. Assessment of the social progress on European Union by logarithmic decomposition of criteria importance. Expert Syst. Appl. 2024, 238, 121846. [Google Scholar] [CrossRef]
- Tatar, V. Assessment of Ergonomic Risk Factors for Sustainable Agricultural Practices Based on Picture Fuzzy Lodeci-Artasi Approach. Bitlis Eren Üniversitesi Fen Bilim. Derg. 2025, 14, 1891–1920. [Google Scholar] [CrossRef]
- Ito, M. Estimations of the Lehmer mean by the Heron mean and their generalizations involving refined Heinz operator inequalities. Adv. Oper. Theory. 2018, 3, 763–780. [Google Scholar] [CrossRef]
- Yazdani, M.; Zarate, P.; Kazimieras Zavadskas, E.; Turskis, Z. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 2019, 57, 2501–2519. [Google Scholar] [CrossRef]
- Ulutaş, A.; Karakuş, C.B.; Topal, A. Location selection for logistics center with fuzzy SWARA and CoCoSo methods. J. Intell. Fuzzy Syst. 2020, 38, 4693–4709. [Google Scholar] [CrossRef]
- Peng, X.; Smarandache, F. A decision-making framework for China’s rare earth industry security evaluation by neutrosophic soft CoCoSo method. J. Intell. Fuzzy Syst. 2020, 39, 7571–7585. [Google Scholar] [CrossRef]
- Khan, S.; Haleem, A. Investigation of circular economy practices in the context of emerging economies: A CoCoSo approach. Int. J. Sustain. Eng. 2021, 14, 357–367. [Google Scholar] [CrossRef]
- Kumar, V.; Kalita, K.; Chatterjee, P.; Zavadskas, E.K.; Chakraborty, S. A SWARA-CoCoSo-based approach for spray painting robot selection. Informatica 2022, 33, 35–54. [Google Scholar] [CrossRef]
- KAP. 2025. Available online: https://kap.org.tr/tr/Endeksler (accessed on 2 April 2025).
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; Sage Publications: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Education Limited: London, UK, 2014. [Google Scholar]
- Kalaycı, Ş. SPSS Uygulamalı Çok Değişkenli Istatistik Teknikleri, 5. baskı; Asil Yayın Dağıtım: Ankara, Turkey, 2010. [Google Scholar]
- Durmuş, C.N. BIST ulaştırma endeksindeki firmaların finansal performanslarının ENTROPİ ve WASPAS tabanlı entegre model ile değerlendirilmesi. Muhasebe Denetime Bakış 2025, 24, 369–390. [Google Scholar] [CrossRef]
- Koç Özşahin, F. BIST ulaştırma ve depolama firmalarının finansal performansının DuPont analizi yöntemiyle değerlendirilmesi. Hitit J. Soc. Sci. 2024, 17, 225–242. [Google Scholar] [CrossRef]
- İyigün, İ. Borsa İstanbul XULAS endeksindeki firmaların finansal performanslarının değerlendirilmesi. Mali Çözüm Derg. 2014, 34, 1349–1372. [Google Scholar]
- Zavadskas, E.K.; Kaklauskas, A.; Šarka, V. The new method of multicriteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1994, 1, 131–139. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar] [CrossRef]
- Das, M.C.; Sarkar, B.; Ray, S. Decision making under conflicting environment: A new MCDM method. Int. J. Appl. Decis. Sci. 2012, 5, 142–162. [Google Scholar] [CrossRef]
- Chakraborty, S.; Zavadskas, E.K. Applications of WASPAS method in manufacturing decision making. Informatica 2014, 25, 1–20. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol. Econ. Dev. Econ. 2010, 16, 159–172. [Google Scholar] [CrossRef]
Author (Year) | Methodology | Financial Performance Variables |
---|---|---|
Feng and Wang [4] | GRA-TOPSIS | Labor Efficiency Measures, Fleet Efficiency, Flight Equipment Efficiency, Resource Efficiency, Short-Term Liquidation, Long-Term Solvency |
Wong et al. [5] | DEA-Tobit Regression | Assets, Operating Expenses, Current Liabilities, General and Administrative Expenses, Investments, Operating Income |
Akgün and Temür [10] | TOPSIS | Liquidity Ratios (Current Ratio (Current Assets/Short-Term Liabilities), Acid-Test Ratio, Cash Ratio) Financial Structure Ratios (Leverage Ratio, Equity/Total Assets, Net Profitability Ratio (SAV/Total Liabilities), Fixed Assets/Equity) Activity Ratios (Net Sales/Total Assets, Net Sales/Equity) Profitability Ratios (Return on Equity (Net Profit/Equity), Return on Assets (Net Profit/Total Assets)) |
Kendirli and Kaya [11] | TOPSIS | Liquidity Ratios (Current Ratio, Acid-test Ratio, Cash Ratio, Net Working Capital/Assets) Financial Structure Ratios (Debt Ratio, Financial Leverage Ratio, Short-Term Liabilities/Total Liabilities, Long-Term Liabilities/Total Liabilities, Fixed Assets/Permanent Capital Ratio, Tangible Fixed Assets/Equity Ratio) Activity Ratios (Inventory Turnover (days), Average Receivables Collection Period, Working Capital Turnover, Current Assets Turnover) Profitability Ratios (Net Profit/Equity, Net Profit/Sales Ratio, Net Profit/Assets) |
Ayaydın et al. [12] | GRA | Equity Size, Asset Size, Sales Size, EBITDA, Active Margin, Equity Margin, Asset Turnover Ratio |
Ozbek [13] | GRA, SWARA, COPRAS, TOPSIS | Net Sales, Net Sales Change, Interest, Earnings Before Tax (EBIT), EBIT Change, Total Assets, Equity, Exports, Number of Employees |
Pineda et al. [7] | DRSA, DEMATEL, DANP, VIKOR | Operational profit or loss/net income, Scheduling performance, Net income, Operating profit/loss, Baggage fees, Reservation fees, Operating costs, Stock price, Labor, Fuel consumption and cost, Operational variables related to air transportation, etc. |
Rosini and Gunawan [8] | TOPSIS-DEA | Asset size, equity amount, Revenue, Net Profit |
Tufan and Kılıç [14] | TOPSIS VIKOR | Current ratio, Cash ratio, Receivables Turnover, Inventory turnover, Financial Leverage ratio, Return on Assets Ratio, Return on Equity Ratio |
Oral and Kıpkıp [15] | TOPSIS PROMETHEE | Liquidity Ratios (Current Ratio (Current Assets/Short-Term Liabilities), Acid-Test Ratio, Cash Ratio) Financial Structure Ratios (Leverage Ratio, Equity/Total Assets, Net Profitability Ratio (SAV/Total Liabilities), Fixed Assets/Equity) Activity Ratios (Net Sales/Total Assets, Net Sales/Equity) Profitability Ratios (Return on Equity (Net Profit/Equity), Return on Assets (Net Profit/Total Assets)) |
Ersoy [20] | GRA | Liquidity Ratios (Current Ratio, Acid-test Ratio, Cash Ratio) Financial Structure Ratios (Foreign Resources/Equity, Foreign Resources/Total Liabilities, Short-Term Liabilities/Total Liabilities) Profitability Ratios (Gross Profit/Net Sales, Net Profit for the Period/Net Sales, Net Profit for the Period/Equity, Net Profit for the Period/Total Assets) Activity Ratios (Receivables Turnover Ratio, Equity Turnover Ratio, Asset Turnover Ratio) |
Periokaitė and Dobrovolskienė [9] | Ratio Analysis, Correlation | Gross Profitability, Net Profitability, Return on Assets, Return on Equity, Total debt ratio, Current Liquidity Ratio, Total solvency ratio |
Elmas and Özkan [16] | SWARA-OCRA | Current Ratio, Acid-Test Ratio, Equity/Total Assets, Revenue/Total Assets, Return on Assets, Return on Equity, Financial Leverage Ratio |
Alnıpak and Kale [17] | OCRA | Liquidity Ratios (Current Ratio, Liquid Ratio, Cash Ratio) Profitability Ratios (Operating Margin, Net Margin, Return on Equity (%)) Growth Ratios (Asset Growth Percentage, Net Sales Growth Percentage) Financial Structure Ratios (Financing Expenses/Gross Sales (%), EBITDA/Short-Term Debt, Total Debt/Equity, Cash Cycle) Activity Ratios (Receivables Turnover, Trade Payable Turnover) Market Multiples (Company Market Value/Net Profit, Company Market Value/Equity) |
Işık [18] | GRA FUCOM EDAS-M | Number of Employees, Net Sales, EBIT Change, Total Assets, Equity, Export Volume |
Kurt and Kablan [19] | TOPSIS-MABAC | Current Ratio, Cash Ratio, Asset Turnover, Return on Assets, Return on Equity, Net Profit Margin, Operating Profit Margin, Financial Leverage Ratio |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ||
---|---|---|---|---|---|---|---|---|---|
MEREC | 0.051 | 0.169 | 0.054 | 0.138 | 0.253 | 0.213 | 0.064 | 0.058 | |
0.121 | 0.120 | 0.040 | 0.119 | 0.148 | 0.153 | 0.150 | 0.150 | ||
0.130 | 0.132 | 0.032 | 0.124 | 0.149 | 0.159 | 0.135 | 0.139 | ||
SIWEC | 0.013 | 0.007 | 0.004 | 0.505 | 0.229 | 0.238 | 0.001 | 0.003 | |
0.056 | 0.059 | 0.138 | 0.048 | 0.115 | 0.218 | 0.181 | 0.185 | ||
0.080 | 0.061 | 0.165 | 0.058 | 0.156 | 0.205 | 0.150 | 0.124 | ||
LODECI | 0.125 | 0.126 | 0.102 | 0.148 | 0.125 | 0.135 | 0.132 | 0.107 | |
0.130 | 0.129 | 0.124 | 0.134 | 0.114 | 0.132 | 0.118 | 0.119 | ||
0.132 | 0.134 | 0.118 | 0.135 | 0.116 | 0.125 | 0.122 | 0.118 | ||
Heron Mean | 0.053 | 0.077 | 0.040 | 0.241 | 0.198 | 0.193 | 0.044 | 0.040 | |
0.099 | 0.100 | 0.094 | 0.096 | 0.125 | 0.166 | 0.149 | 0.150 | ||
0.113 | 0.106 | 0.095 | 0.103 | 0.140 | 0.161 | 0.136 | 0.127 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
---|---|---|---|---|---|---|---|---|
A1 | 0.071 | 1.000 | 0.178 | 0.096 | 0.000 | 0.209 | 0.000 | 0.000 |
A2 | 0.094 | 0.171 | 0.228 | 0.039 | 0.477 | 0.864 | 0.994 | 1.000 |
A3 | 0.651 | 0.000 | 0.824 | 1.000 | 0.966 | 0.000 | 0.013 | 0.042 |
A4 | 0.212 | 0.151 | 0.707 | 0.000 | 0.579 | 0.942 | 1.000 | 0.609 |
A5 | 0.083 | 0.053 | 0.000 | 0.257 | 0.400 | 0.628 | 0.311 | 0.410 |
A6 | 0.039 | 0.089 | 0.422 | 0.031 | 1.000 | 1.000 | 0.735 | 0.593 |
A7 | 1.000 | 0.039 | 1.000 | 0.055 | 0.415 | 0.903 | 0.411 | 0.228 |
A8 | 0.052 | 0.097 | 0.716 | 0.008 | 0.218 | 0.356 | 0.191 | 0.136 |
A9 | 0.000 | 0.080 | 0.397 | 0.119 | 0.232 | 0.743 | 0.482 | 0.401 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ||
---|---|---|---|---|---|---|---|---|---|
A1 | 0.008 | 0.107 | 0.017 | 0.010 | 0.000 | 0.033 | 0.000 | 0.000 | 0.175 |
A2 | 0.011 | 0.018 | 0.021 | 0.004 | 0.068 | 0.137 | 0.134 | 0.126 | 0.520 |
A3 | 0.075 | 0.000 | 0.077 | 0.105 | 0.137 | 0.000 | 0.002 | 0.005 | 0.400 |
A4 | 0.024 | 0.016 | 0.066 | 0.000 | 0.082 | 0.150 | 0.135 | 0.077 | 0.550 |
A5 | 0.010 | 0.006 | 0.000 | 0.027 | 0.057 | 0.100 | 0.042 | 0.052 | 0.292 |
A6 | 0.004 | 0.009 | 0.039 | 0.003 | 0.141 | 0.159 | 0.099 | 0.075 | 0.531 |
A7 | 0.115 | 0.004 | 0.093 | 0.006 | 0.059 | 0.143 | 0.056 | 0.029 | 0.505 |
A8 | 0.006 | 0.010 | 0.067 | 0.001 | 0.031 | 0.057 | 0.026 | 0.017 | 0.214 |
A9 | 0.000 | 0.009 | 0.037 | 0.013 | 0.033 | 0.118 | 0.065 | 0.051 | 0.324 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ||
---|---|---|---|---|---|---|---|---|---|
A1 | 0.737 | 1.000 | 0.852 | 0.781 | 0.000 | 0.780 | 0.000 | 0.000 | 4.149 |
A2 | 0.762 | 0.829 | 0.872 | 0.710 | 0.901 | 0.977 | 0.999 | 1.000 | 7.049 |
A3 | 0.952 | 0.000 | 0.982 | 1.000 | 0.995 | 0.000 | 0.554 | 0.669 | 5.153 |
A4 | 0.836 | 0.817 | 0.968 | 0.000 | 0.926 | 0.990 | 1.000 | 0.939 | 6.477 |
A5 | 0.751 | 0.731 | 0.000 | 0.867 | 0.878 | 0.929 | 0.854 | 0.894 | 5.904 |
A6 | 0.687 | 0.773 | 0.923 | 0.694 | 1.000 | 1.000 | 0.959 | 0.936 | 6.973 |
A7 | 1.000 | 0.708 | 1.000 | 0.737 | 0.883 | 0.984 | 0.887 | 0.829 | 7.029 |
A8 | 0.711 | 0.780 | 0.969 | 0.600 | 0.806 | 0.849 | 0.800 | 0.777 | 6.292 |
A9 | 0.000 | 0.764 | 0.918 | 0.799 | 0.813 | 0.954 | 0.906 | 0.891 | 6.045 |
Rank | BIST Code | |||||
---|---|---|---|---|---|---|
A1 | 0.074 | 2.000 | 0.569 | 1.319 | 9 | BEYAZ |
A2 | 0.129 | 4.678 | 0.996 | 2.779 | 2 | CLEBI |
A3 | 0.095 | 3.537 | 0.731 | 2.080 | 6 | GSDDE |
A4 | 0.120 | 4.711 | 0.925 | 2.724 | 4 | GRSEL |
A5 | 0.106 | 3.099 | 0.815 | 1.984 | 7 | PGSUS |
A6 | 0.128 | 4.723 | 0.987 | 2.788 | 1 | RYSAS |
A7 | 0.129 | 4.586 | 0.991 | 2.738 | 3 | TLMAN |
A8 | 0.111 | 2.743 | 0.856 | 1.876 | 8 | TUREX |
A9 | 0.109 | 3.317 | 0.838 | 2.092 | 5 | THYAO |
2022 | 2023 | 2024 | ||||
---|---|---|---|---|---|---|
Rank | Rank | Rank | ||||
BEYAZ | 1.4937 | 9 | 1.996 | 8 | 1.319 | 9 |
CLEBI | 2.1028 | 3 | 2.335 | 4 | 2.779 | 2 |
GSDDE | 3.4388 | 2 | 1.252 | 9 | 2.080 | 6 |
GRSEL | 1.7640 | 5 | 2.371 | 3 | 2.724 | 4 |
PGSUS | 1.6681 | 6 | 2.192 | 7 | 1.984 | 7 |
RYSAS | 1.5302 | 7 | 2.390 | 2 | 2.788 | 1 |
TLMAN | 3.7797 | 1 | 2.807 | 1 | 2.738 | 3 |
TUREX | 1.8320 | 4 | 2.294 | 5 | 1.876 | 8 |
THYAO | 1.5192 | 8 | 2.229 | 6 | 2.092 | 5 |
Criterion | Calculated Weight | ||
---|---|---|---|
C6 | 0.1589 | 1.0000 | |
C1 | 0.1152 | 0.1370 | 0.8411 |
C2 | 0.1066 | 0.1267 | 0.8411 |
C3 | 0.0931 | 0.1106 | 0.8411 |
C4 | 0.1052 | 0.1251 | 0.8411 |
C5 | 0.1414 | 0.1681 | 0.8411 |
C7 | 0.1349 | 0.1604 | 0.8411 |
C8 | 0.1263 | 0.1502 | 0.8411 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ||
---|---|---|---|---|---|---|---|---|---|
S1 | −0.1589 | 0.1370 | 0.1267 | 0.1106 | 0.1251 | 0.1681 | 0.0000 | 0.1604 | 0.1502 |
S2 | −0.1500 | 0.1358 | 0.1256 | 0.1096 | 0.1240 | 0.1666 | 0.0089 | 0.1590 | 0.1488 |
S3 | −0.1000 | 0.1289 | 0.1192 | 0.1041 | 0.1177 | 0.1582 | 0.0589 | 0.1510 | 0.1413 |
S4 | −0.0500 | 0.1221 | 0.1129 | 0.0986 | 0.1115 | 0.1498 | 0.1089 | 0.1430 | 0.1338 |
S5 | 0.0000 | 0.1152 | 0.1066 | 0.0931 | 0.1052 | 0.1414 | 0.1589 | 0.1349 | 0.1263 |
S6 | 0.0500 | 0.1084 | 0.1002 | 0.0875 | 0.0989 | 0.1330 | 0.2089 | 0.1269 | 0.1188 |
S7 | 0.1000 | 0.1015 | 0.0939 | 0.0820 | 0.0927 | 0.1246 | 0.2589 | 0.1189 | 0.1113 |
S8 | 0.1500 | 0.0947 | 0.0876 | 0.0765 | 0.0864 | 0.1162 | 0.3089 | 0.1109 | 0.1038 |
S9 | 0.2000 | 0.0878 | 0.0812 | 0.0709 | 0.0802 | 0.1078 | 0.3589 | 0.1029 | 0.0963 |
S10 | 0.2500 | 0.0810 | 0.0749 | 0.0654 | 0.0739 | 0.0994 | 0.4089 | 0.0948 | 0.0888 |
S11 | 0.3000 | 0.0741 | 0.0685 | 0.0599 | 0.0677 | 0.0910 | 0.4589 | 0.0868 | 0.0812 |
S12 | 0.3500 | 0.0673 | 0.0622 | 0.0543 | 0.0614 | 0.0826 | 0.5089 | 0.0788 | 0.0737 |
S13 | 0.4000 | 0.0604 | 0.0559 | 0.0488 | 0.0552 | 0.0742 | 0.5589 | 0.0708 | 0.0662 |
S14 | 0.4500 | 0.0536 | 0.0495 | 0.0433 | 0.0489 | 0.0657 | 0.6089 | 0.0627 | 0.0587 |
S15 | 0.5000 | 0.0467 | 0.0432 | 0.0377 | 0.0427 | 0.0573 | 0.6589 | 0.0547 | 0.0512 |
S16 | 0.5500 | 0.0399 | 0.0369 | 0.0322 | 0.0364 | 0.0489 | 0.7089 | 0.0467 | 0.0437 |
S17 | 0.6000 | 0.0330 | 0.0305 | 0.0267 | 0.0302 | 0.0405 | 0.7589 | 0.0387 | 0.0362 |
S18 | 0.6500 | 0.0262 | 0.0242 | 0.0211 | 0.0239 | 0.0321 | 0.8089 | 0.0307 | 0.0287 |
S19 | 0.7000 | 0.0193 | 0.0179 | 0.0156 | 0.0176 | 0.0237 | 0.8589 | 0.0226 | 0.0212 |
S20 | 0.7500 | 0.0125 | 0.0115 | 0.0101 | 0.0114 | 0.0153 | 0.9089 | 0.0146 | 0.0137 |
S21 | 0.8000 | 0.0056 | 0.0052 | 0.0045 | 0.0051 | 0.0069 | 0.9589 | 0.0066 | 0.0062 |
S22 | 0.8411 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
Alternatives | 2024 | 2023 | 2022 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COCOSO | COPRAS | TOPSIS | MOOSRA | WASPAS | ARAS | COCOSO | COPRAS | TOPSIS | MOOSRA | WASPAS | ARAS | COCOSO | COPRAS | TOPSIS | MOOSRA | WASPAS | ARAS | |
A1 | 9 | 7 | 6 | 9 | 9 | 8 | 8 | 8 | 7 | 9 | 9 | 8 | 9 | 6 | 6 | 8 | 9 | 6 |
A2 | 2 | 3 | 2 | 5 | 2 | 2 | 4 | 2 | 1 | 5 | 2 | 2 | 3 | 3 | 5 | 5 | 3 | 3 |
A3 | 6 | 2 | 1 | 2 | 7 | 5 | 9 | 5 | 5 | 2 | 7 | 5 | 2 | 2 | 1 | 2 | 6 | 2 |
A4 | 4 | 4 | 3 | 3 | 4 | 3 | 3 | 3 | 2 | 3 | 4 | 3 | 5 | 5 | 3 | 3 | 4 | 5 |
A5 | 7 | 6 | 8 | 8 | 5 | 6 | 7 | 6 | 8 | 8 | 5 | 6 | 6 | 7 | 7 | 9 | 5 | 7 |
A6 | 1 | 5 | 5 | 4 | 3 | 4 | 2 | 4 | 3 | 4 | 3 | 4 | 7 | 4 | 2 | 4 | 2 | 4 |
A7 | 3 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 |
A8 | 8 | 9 | 9 | 6 | 8 | 9 | 5 | 9 | 9 | 6 | 8 | 9 | 4 | 9 | 9 | 6 | 8 | 9 |
A9 | 5 | 8 | 7 | 7 | 6 | 7 | 6 | 7 | 6 | 7 | 6 | 7 | 8 | 8 | 8 | 7 | 7 | 8 |
rs | 0.566 | 0.516 | 0.6 | 0.883 | 0.816 | rs | 0.65 | 0.55 | 0.516 | 0.8 | 0.65 | rs | 0.633 | 0.35 | 0.733 | 0.5 | 0.633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oztemiz, H.H.; Vatansever, K.; Bayraktar, T. Sustainable Financial Performance Analysis of Logistics Companies Listed on Borsa Istanbul: An Integrated Multi-Criteria Decision-Making Approach. Sustainability 2025, 17, 9243. https://doi.org/10.3390/su17209243
Oztemiz HH, Vatansever K, Bayraktar T. Sustainable Financial Performance Analysis of Logistics Companies Listed on Borsa Istanbul: An Integrated Multi-Criteria Decision-Making Approach. Sustainability. 2025; 17(20):9243. https://doi.org/10.3390/su17209243
Chicago/Turabian StyleOztemiz, Hatice Handan, Kemal Vatansever, and Tuba Bayraktar. 2025. "Sustainable Financial Performance Analysis of Logistics Companies Listed on Borsa Istanbul: An Integrated Multi-Criteria Decision-Making Approach" Sustainability 17, no. 20: 9243. https://doi.org/10.3390/su17209243
APA StyleOztemiz, H. H., Vatansever, K., & Bayraktar, T. (2025). Sustainable Financial Performance Analysis of Logistics Companies Listed on Borsa Istanbul: An Integrated Multi-Criteria Decision-Making Approach. Sustainability, 17(20), 9243. https://doi.org/10.3390/su17209243