Hydrochemical Characterisation and Assessment of Groundwater Suitability for Drinking and Irrigation Purposes in Sângeorz-Băi Area, Bistrița-Năsăud County (Romania)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Methods
2.3. Water Suitability for Drinking Usage
2.4. Water Suitability for Agricultural Usage
3. Results and Discussions
3.1. Physico-Chemical Parameters
Parameter | Mineral Springs | Local Network | Private Wells | Romanian Standard (1,2) | WHO Standard (3) |
---|---|---|---|---|---|
pH | 6.5–7.1 (6.8) | 6.8–7.5 (7.1) | 6.5–7.6 (7.2) | 6.5–9.5 | 6.5–8.5 |
Eh (mV) | −24.9–11.8 (−6.5) | −47.7–7.9 (−24.3) | −54.3–7.5 (−29.9) | - | - |
EC (µS/cm) | 5280–7720 (6773) | 141.8–447.1 (205.3) | 98.6–731 (365.4) | 2500 | - |
TDS (mg/L) | 3379–5018 (4369) | 91–286 (129.4) | 63–468 (233.8) | - | 1000 |
Salinity (‰) | 2.9–4.3 (3.7) | 0.0–0.1 (0.01) | 0.0–0.3 (0.1) | - | - |
TH (mg/L of CaCO3) | 470.7–979.0 (709.5) | 51.5–243.5 (97.2) | 59.1–308.5 (143.4) | - | 1.5 |
Cl− (mg/L) | 1100.8–2160.1 (1773.3) | 9.2–34.2 (14.1) | 6.8–47.9 (26.8) | 250 | 250 |
F− (mg/L) | ND | 0.02–0.10 (0.04) | 0.04–0.07 (0.02) | 1.2 | 1.5 |
NO2− (mg/L) | ND | 0.01–0.02 (0.01) | 0.1–2.0 (0.7) | 0.5 | 0.5 |
NO3− (mg/L) | ND | 3.2–16.5 (6.4) | 2.2–71.3 (32.1) | 50 | 50 |
SO42− (mg/L) | 19.7–25.8 (22.3) | 15.8–85.9 (30.1) | 14.8–150.1 (41.2) | 250 | 250 |
HCO3− (mg/L) | 2453.1–3297.2 (2892.2) | 81.4–162.0 (108.6) | 101.2–330.1 (178.4) | - | - |
Na+ (mg/L) | 1571.5–2207.1 (1926.7) | 7.0–36.2 (12.8) | 7.4–37.3 (21.3) | 200 | 200 |
K+ (mg/L) | 60.1–180.9 (119.1) | 0.3–6.6 (4.6) | 0.7–41.7 (14.5) | - | - |
NH4+ (mg/L) | ND | ND | 0.1–0.7 (0.3) | 0.5 | - |
Mg2+ (mg/L) | 61.8–100.6 (76.7) | 3.0–19.6 (7.8) | 4.9–32.0 (10.7) | - | 50 |
Ca2+ (mg/L) | 46.4–265.1 (144.9) | 15.7–73.0 (26.0) | 14.7–95.2 (39.9) | - | 75 |
Fe (mg/L) | 1.1–1.4 (1.2) | 0.07–0.14 (0.09) | 0.05–0.68 (0.11) | 0.2 | 2 |
Cu (mg/L) | ND | ND–1.3 (0.2) | ND | 0.1 | 2 |
Zn(µg/L) | 2.2–28.4 (13.8) | 17.4–304.1 (63.1) | 6.9–1661.1 (13.4) | 5000 | 3000 |
Mn (µg/L) | ND | ND | ND | 50 | 400 |
Ni (µg/L) | 3.1–18.2 (11.7) | 5.6–17.4 (11.7) | 5.0–19.6 (14.2) | 20 | 70 |
Cr (µg/L) | ND | ND | ND | 50 | 50 |
Pb (µg/L) | ND | ND–3.5 (0.2) | 4.1–23.1 (13.9) | 10 | 10 |
Cd (µg/L) | ND | ND–0.8 (0.3) | 0.9–3.8 (2.1) | 5 | 3 |
222Rn (Bq/L) | 9.6–24.8 (16.6) | no data | 5.3–18.8 (11.1) | 100 (5) | 100 (3)/11.1 (4) |
226Ra (Bq/L) | 0.08–0.2 (0.18) | no data | 0.07–0.25 (0.14) | 0.1 (3)/0.185 (4) |
3.2. Major Ions Content
3.3. Total Content of Metals
3.4. Radon and Radium Activity
3.5. Water Suitability for Drinking Usage
Parameter | EDI (µg/kg bw/day) | Recommendation (µg/kg bw/day) | ||
---|---|---|---|---|
Mineral Springs | Local Supply System | Private Wells | ||
F− | ND | 0.67–3.33 (1.38) | 1.5–2.33 (2.1) | 56.66 (1) |
NO2− | ND | 0.3–0.5 (0.3) | 4.0–68.1 (23.8) | 60 (3)/70 (4) |
Fe | 37.9–42.8 (40.85) | 2.56–4.13 (3.02) | 2.18–12.9 (3.63) | 800 (9) |
Zn | 0.26–0.79 (0.46) | 0.50–9.06 (2.10) | 0.26–50.98 (4.46) | 300–1000 (9) |
Ni | 0.18–0.60 (0.39) | 0.21–0.52 (0.39) | 0.22–0.63 (0.48) | 11(10)/2.8 (11) |
Pb | ND | 0.01–0.12 (0.02) | 0.24–0.71 (0.47) | 3.57 (12) |
Cd | ND | 0.01–0.03 (0.01) | 0.02–0.12 (0.06) | 0.83 (13) |
EDI (mg/kg bw/day) | Recommendation (mg/kg bw/day) | |||
Cl− | 46.36–67.84 (59.11) | 0.34–0.79 (0.47) | 0.23–1.48 (0.89) | 38.3–41.7 (2) |
NO3− | ND | 0.13–0.46 (0.21) | 0.07–2.33 (1.07) | 3.7 (4) |
Na+ | 52.76–71.74 (64.22) | 0.29–0.81 (0.43) | 0.28–1.09 (0.71) | 25 (5) |
K+ | 2.59–5.29 (3.97) | 0.08–0.19 (0.11) | 0.09–1.22 (0.45) | 58.3 (6) |
Mg2+ | 2.16–3.19 (2.56) | 0.17–0.46 (0.26) | 0.18–0.88 (0.36) | 5.8 (7) |
Ca2+ | 2.67–5.82 (5.25) | 0.54–1.51 (0.87) | 0.50–2.48 (1.33) | 15.83 (8) |
Cu | ND | 0.00007–0.04 (0.006) | ND | 0.5 (9) |
3.6. Water Suitability for Agriculture Usage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, L.; Jiang, L.; Zhao, Y.; Li, Z.; Cao, G.; Zhao, C.; Liu, R.; Wang, H. Quantifying the influence of long-term overexploitation on deep groundwater resources across Cangzhou in the North China Plain using InSAR measurements. J. Hydrol. 2022, 605, 127368. [Google Scholar] [CrossRef]
- Taucare, M.; Viguier, B.; Figueroa, R.; Daniele, L. The alarming state of Central Chile’s groundwater resources: A paradigmatic case of a lasting overexploitation. Sci. Total Environ. 2024, 906, 167723. [Google Scholar] [CrossRef] [PubMed]
- El Alaoui, A.; Haidara, I.; Bouya, N.; Moussaid, B.; Faqeih, K.Y.; Alamri, S.M.; Alamery, E.R.; AlAmri, A.R.; Moussaid, Y.; Haddou, M.A. Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment. Sustainability 2025, 17, 5392. [Google Scholar] [CrossRef]
- Guettaia, S.; Boudjema, A.; Derdour, A.; Laoufi, A.; Almohamad, H.; Al-Mutiry, M.; Abdo, H.G. Hydrochemical Characterization and Predictive Modeling of Groundwater Quality in Karst Aquifers Under Semi-Arid Climate: A Case Study of Ghar Boumaaza, Algeria. Sustainability 2025, 17, 6883. [Google Scholar] [CrossRef]
- Halecki, W.; Kalarus, K.; Kowalczyk, A.; Garbowski, T.; Chudziak, J.; Grabowska-Polanowska, B. Reducing Water Resource Pressure and Determining Gross Nitrogen Balance of Agricultural Land in the European Union. Appl. Sci. 2025, 15, 9216. [Google Scholar] [CrossRef]
- Karandish, F.; Liu, S.; de Graaf, I. Global groundwater sustainability: A critical review of strategies and future pathways. J. Hydrol. 2025, 657, 133060. [Google Scholar] [CrossRef]
- Lu, T.; Luo, P.; Wang, J.; Lu, Y.; Huo, A.; Liu, L. Soil salinity accumulation and groundwater degradation due to overexploitation over recent 40-year period in Yaoba Oasis, China. Soil Tillage Res. 2025, 248, 106398. [Google Scholar] [CrossRef]
- Minea, I.; Chelariu, O.E.; Boicu, D.; Iosub, M.; Mărgărint, M.C. Assessing the rural social vulnerability associated with groundwater resources in Eastern Romania. Environ. Sustain. Indic. 2025, 28, 100910. [Google Scholar] [CrossRef]
- Tazhiyev, S.; Murtazin, Y.; Rakhimova, V.; Rakhmetov, I.; Adenova, D.; Koshpanova, K.; Sotnikov, Y.; Abdizhalel, M.; Akylbayeva, A.; Yerezhep, D. Applied Hydrogeological Assessment and GIS-Based Modeling of Transboundary Aquifers in the Shu River Basin. Water 2025, 17, 2476. [Google Scholar] [CrossRef]
- Zhao, L.; Geng, B.; Zhao, M.; Li, B.; Miao, Q.; Liu, S.; Zhao, Z.; Wang, H.; Li, Y.; Jin, W.; et al. Evaluation of Groundwater Quality and Health Risk Assessment During the Dry Season in the Xin’an River Basin, China. Water 2025, 17, 2412. [Google Scholar] [CrossRef]
- Roba, C.; Bălc, R.; Creța, F.; Andreica, D.; Pădurean, A.; Pogăcean, P.; Cherteș, P.; Moldovan, F.; Mocan, B.; Roșu, C. Assessment of groundwater quality in NW of Romania and its suitability for drinking and agricultural purposes. Environ. Eng. Manag. J. 2021, 20, 435–447. [Google Scholar] [CrossRef]
- Petruța, N.-L.; Sur, I.M.; Rusu, T.A.; Gabor, T.; Rusu, T. Integrated Assessment of Groundwater Vulnerability and Drinking Water Quality in Rural Wells: Case Study from Ceanu Mare Commune, Northern Transylvanian Basin, Romania. Sustainability 2025, 17, 6530. [Google Scholar] [CrossRef]
- Islam, R.; Kushwah, V.K.; Gupta, N.; Kumar, A.; Goyal, R.; Berwal, P.; Alfaisal, F.M.; Majdi, A.; Al-sareji, O.J.; Alsubih, M. Integrated evaluation of groundwater hydrochemistry using multivariate statistics and irrigation-based water quality indices. Sci. Rep. 2025, 15, 24923. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Zhu, Q.; Yang, Y.; Liang, C.; Fu, Y.; Meng, F.; Shi, Y.; Zhang, F.; Ren, L. Embedded slow-release materials for the remediation of organic pollutants in groundwater: A review. Desalination Water Treatement 2025, 322, 101108. [Google Scholar] [CrossRef]
- Gâștescu, P. Water resources from Romania. Potential, quality, teritorial distribution, management. In Water Resources from Romania. Vulnerability to the Pressure of Man’s Activities; Gâștescu, P., Zăvoianu, I., Driga, B., Ciupitu, D., Drăgoi, I.J., Eds.; Transversal Press: Târgoviște, Romania, 2010; pp. 10–30. [Google Scholar]
- Săndulescu, M. Geotectonics of Romania; Editura Tehnică: Bucuresti, Romania, 1984; p. 334. (In Romanian) [Google Scholar]
- Pécskay, Z.; Seghedi, I.; Kovacs, M.; Szakács, A.; Fülöp, A. Geochronology of the Neogene calc-alkaline intrusive magmatism in the “Subvolcanic Zone” of the Eastern Carpathians (Romania). Geol. Carpathica 2009, 60, 181–190. [Google Scholar] [CrossRef]
- Niţoi, E.; Munteanu, M.; Marincea, Ş.; Paraschivoiu, V. Magma–enclave interactions in the East Carpathian Subvolcanic Zone, Romania: Petrogenetic implications. J. Volcanol. Geotherm. Res. 2002, 118, 229–259. [Google Scholar] [CrossRef]
- Papp, D.C.; Ureche, I.; Dallai, L.; Seghedi, I.; Downes, H. Petrogenesis of convergent-margin calc-alkaline rocks and the significance of the low oxygen isotope ratios: The Rodna—Bârgău Neogene subvolcanic area (East Carpathian). Geol. Carpathica 2005, 56, 77–90. [Google Scholar]
- Fedele, L.; Seghedi, I.; Chung, S.-L.; Laiena, F.; Lin, T.-H.; Morra, V.; Lustrino, M. Post-collisional magmatism in the Late Miocene Rodna-Bîrgău district (East Carpathians, Romania): Geochemical constraints and petrogenetic models. Lithos 2016, 266–267, 367–382. [Google Scholar] [CrossRef]
- Miyashiro, A. Volcanic rock series in island arcs and active continental margins. Am. J. Sci. 1974, 274, 321–355. [Google Scholar] [CrossRef]
- Peltz, S.; Vasiliu, C.; Udrescu, C. Petrology of igneous rocks from the Neogene East Carpathian subvolcanic zone. Anu. Institutului Geol. Geofiz. 1972, 39, 177–218. (In Romanian) [Google Scholar]
- Seghedi, I.; Downes, H. Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondwana Res. 2011, 20, 655–672. [Google Scholar] [CrossRef]
- Vasiliță-Crăciun, I.-C.; Gavra, C.-I. The role of viticultural landscape and microregional differentiation. Comparative study: Alba and Bistrița-Năsăud Counties. Rom. Rev. Reg. Stud. 2016, XII, 79–90. [Google Scholar]
- Moisilu, I. The Alkaline-Muriatic Baths of Sângeorgiul Românesc Near Năseud, Bistriță-Năseud District in Transilvania; Tipo-Litografiei și Librăriei, N.D. Miloșescu: Târgu-Jiu, Romania, 1897. (In Romanian) [Google Scholar]
- Bélteki, S. Conspectus Systematics Practicae Aquarum Mineralium in Transylvaniae Principatu; Wimmer: Vienna, Austria, 1818. [Google Scholar]
- Pataki, S. Descriptio Physico-Chemica Aquar; M. P. Transsylvan.: Pestini, Romania, 1820. [Google Scholar]
- ISO 5667-2/1998; Water Quality. Sampling. Part 1: General Guidance on Sampling Techniques. International Organization for Standardization (ISO): Geneva, Switzerland, 1998. (In Romanian)
- ISO 5667-3/1998; Water Quality. Sampling. Part 1: General Guidance on Sample Preservation and Handling. International Organization for Standardization (ISO): Geneva, Switzerland, 1998. (In Romanian)
- Plch, J. Radon Detector LUK 3C. In Manual for Operating LUK 3C; Jiri PlchMEng SMM: Prague, Czech, 2002. [Google Scholar]
- Cosma, C.; Moldovan, M.; Dicu, T.; Kovacs, T. Radon in water from Transylvania (Romania). Radiat. Meas. 2008, 43, 1423–1428. [Google Scholar] [CrossRef]
- Moldovan, M.; Cosma, C.; Encian, I.; Dicu, T. Radium-226 concentration in Romanian bottled mineral waters. J. Radioanal. Nucl. Chem. 2009, 279, 487–491. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef] [PubMed]
- CAC/GL 3-1989; Guidelines for the Simple Evaluation of Dietary Exposure to Food Additives. International Food Standards. Revision 2014. Codex Alimentarius: Rome, Italy, 1989.
- Report to the General Assembly, Volume I: Sources. In Sources and Effects of Ionizing Radiation; UNSCEAR 2000; United Nations Scientific Committee on the Effects of Atomic Radiation: Vienna, Austria, 2000.
- IAEA (International Atomic Energy Agency). International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources; IAEA (International Atomic Energy Agency): Vienna, Austria, 1995; No. 115. [Google Scholar]
- NRCP. Measurement of Radon and Radon Daughters in Air; Report No: 97; National Council on Radiation Protection and Measurements: Bethesda, MD, USA, 1988. [Google Scholar]
- WHO. Health Criteria and Other Supporting Information, Addendum to Vol. 2. In Guidelines for Drinking-Water Quality, 2nd ed.; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Richards, L.A. Diagnosis and improvement of saline alkali soils: Agriculture. In Handbook 60; Department of Agriculture: Washington, DC, USA, 1954; Volume 160. [Google Scholar]
- Wilcox, L.V. Classification and Use of Irrigation Waters; U.S. Department of Agriculture: Washington, DC, USA, 1955. [Google Scholar]
- Kelley, W.P.; Brown, S.M.; Liebig, G.F. Chemical effects of saline irrigation water on soils. Soil Sci. 1940, 49, 95–107. [Google Scholar] [CrossRef]
- Eaton, F.M. Significance of carbonate in irrigation water. Soil Sci. 1950, 69, 123–133. [Google Scholar] [CrossRef]
- Paliwal, K.V. Irrigation with Saline Water; Monogram No. 2 (New Series); IARI: New Delhi, India, 1972. [Google Scholar]
- Doneen, L.D. Notes on Water Quality in Agriculture Published as a Water Science and Engineering Paper 4001; Department of Water Science and Engineering, University of California: Berkeley, CA, USA, 1964. [Google Scholar]
- Song, T.; Yang, F.; Chen, Y.; Du, S. Hydrogeochemical evolution and risk assessment of human health in a riverbank filtration site, Northeastern China. Hum. Ecol. Risk Assess. 2017, 23, 705–726. [Google Scholar] [CrossRef]
- Jain, C.K.; Vaid, U. Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Nalbari district of Assam, India. Environ. Earth Sci. 2018, 77, 254. [Google Scholar] [CrossRef]
- Todd, D.K. Groundwater Hydrology, 2nd ed.; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Rawat, K.S.; Singh, S.K.; Gautam, S.K. Assessment of groundwater quality for irrigation use: A peninsular case study. Appl. Water Sci. 2018, 8, 233. [Google Scholar] [CrossRef]
- He, X.; Wu, J.; He, S. Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Hum. Ecol. Risk Assess. 2019, 25, 32–51. [Google Scholar] [CrossRef]
- Law No. 458 of 8 July 2002 on the Quality of Drinking Water; The Official Gazette: Bucharest, Romania, 12 December 2011. No. 875. (In Romanian)
- Order No. 621/2014 on the Approval of Threshold Values for Groundwater in Romania; The Official Gazette: Bucharest, Romania, 18 July 2014. Part I, No. 535. (In Romanian)
- The Technical Norms for the Exploitation and Marketing of Natural Mineral Waters; The Official Gazette: Bucharest, Romania, 1 September 2005. Government Decision No. 1020. (In Romanian)
- WHO. Guidelines for Drinking Water Quality, 4th ed.; Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Bălc, R.; Roba, C.; Moldovan, M.; Vasilian, L. Quality assessment of mineral and underground water from an old spa resort from Romania (Sângeorz-Băi locality). In Proceedings of the XXI International Congress of Carpathian Balkan Geological Association (CBGA), Salzburg, Austria, 10–13 September 2018. [Google Scholar]
- WHO. Hardness in Drinking-water Background document for development. In WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Hoaghia, M.-A.; Moldovan, A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Brad, T.; Cadar, O.; Micle, V.; Levei, E.A.; Moldovan, O.T. Water Quality and Hydrogeochemical Characteristics of Some Karst Water Sources in Apuseni Mountains, Romania. Water 2021, 13, 857. [Google Scholar] [CrossRef]
- Moldovan, A.; Török, A.I.; Mirea, I.C.; Micle, V.; Moldovan, O.T.; Levei, E.A. Health Risk Assessment in Southern Carpathians Small Rural Communities Using Karst Springs as a Drinking Water Source. Int. J. Environ. Res. Public Health 2022, 19, 234. [Google Scholar] [CrossRef]
- Backman, B.; Bodiš, D.; Lahermo, P.; Rapant, S.; Tarvainen, T. Application of a groundwater contamination index in Finland and Slovakia. Environ. Geol. 1998, 36, 55–64. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking Water Quality, 3rd ed.; Incorporating the First and Second Addenda; Recommendation, NCW classifications WA675; World Health Organization: Geneva, Switzerland, 2008; Volume 1. [Google Scholar]
- EPA (US Environmental Protection Agency). National Primary Drinking Water Regulations; Federal Register, No. 211; Radon-222; Proposed Rules; EPA (US Environmental Protection Agency): Washington, DC, USA, 1999; Volume 64.
- Law/301/2015; Commission Recommendation of 27 November 2015 on the Establishment of Health Protection Requirements for the Population Regarding Radioactive Substances in Drinking Water. MO nr. 904/7.12.2015; European Commission: Brussels, Belgium, 2015.
- Bodor, K.; Tokos, B.; Bodor, Z.; Keresztesi, A.; László, S.; Garbacea, G.; Szép, R. Hydro-geochemical characterization of the main European mineral water brands. J. Food Compos. Anal. 2023, 122, 105438. [Google Scholar] [CrossRef]
- Chau, N.D.; Tomaszewska, B. 1-Mineral and bottled water as natural beverages. Bottled Packag. Water 2019, 4, 1–38. [Google Scholar]
- McGowan, W. Water Processing: Residential, Commercial, Light-Industrial, 3rd ed.; Water Quality Association: Lisle, IL, USA, 2000. [Google Scholar]
- Elzain, H.E.; Chung, S.Y.; Senapathi, V.; Sekar, S.; Lee, S.Y.; Roy, P.D.; Hassan, A.; Sabarathinam, C. Comparative study of machine learning models for evaluating groundwater vulnerability to nitrate contamination. Ecotoxicol. Environ. Saf. 2022, 229, 113061. [Google Scholar] [CrossRef]
- Boschetti, T.; Mohamed, Y.; Hadji, R.; Barbieri, M.; Gentilucci, M.; Rossi, M.; Khalil, R.; Khan, S.D.; Asghar, B.; Al-Omran, A.; et al. Using principal component analysis to distinguish sources of radioactivity and nitrates contamination in Southern Tunisian groundwater samples. J. Geochem. Explor. 2025, 271, 107670. [Google Scholar] [CrossRef]
- EEA (European Environmental Agency). Nitrate in Groundwater in Europe. 2024. Available online: https://www.eea.europa.eu/en/analysis/indicators/nitrate-in-groundwater-8th-eap (accessed on 16 August 2025).
- Krishna Kumar, S.; Logeshkumaran, A.; Magesh, N.S.; Godson, P.S.; Chandrasekar, N. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Appl. Water Sci. 2015, 5, 335–343. [Google Scholar] [CrossRef]
- Berlescu, E.; Chioreanu, T.; Cociasu, E.; Dene, A.; Dinculescu, T.; Ștefănescu, S.; Tătăranu, I. Guide for Referrals to the Balneo-Climatic Cure; Medical Publishing House: Bucharest, Romania, 1965; pp. 28–41, 172–173. (In Romanian) [Google Scholar]
- Feru, A. Natural Mineral Water Guide; Novis SRL Publishing House: Cluj Napoca, Romania, 2012. (In Romanian) [Google Scholar]
- Munteanu, C. Therapeutic Mineral Waters; Editura Balneară: Bucharest, Romania, 2013. [Google Scholar]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Da Costa, L.S.; Teixeira, D.S.; Bovendorp, R.S. Heavy metal accumulation in non-human primates: A global systematic review. Environ. Pollut. 2025, 385, 127042. [Google Scholar] [CrossRef]
- Siegel, F.R. Environmental Geochemistry of Potentially Toxic Metals; Springer: Berlin, Germany, 2002. [Google Scholar]
- Farzana, F.; Roy, T.K.; Hossain, S.A.; Mazrin, M.; Islam, S.; Mahiddin, N.A.; Jayoti, J.R.; Ghosh, R.; Al Bakky, A.; Ismail, Z.; et al. Assessment of groundwater quality and potential health risks related to heavy metals in a peri-urban area of a developing country. Sci. Rep. 2025, 15, 27970. [Google Scholar] [CrossRef]
- Aslani, R.; Esmaeili, S.; Akbari, M.E.; Aghaee, E.M.; Sadighara, P.; Nazmara, S.; Mahmoudi, B. Determination of heavy metals, nitrate and nitrite in mineral and drinking bottled water in Tehran, Iran: A health risk assessment by Monte-Carlo simulation method. Heliyon 2024, 10, e40714. [Google Scholar] [CrossRef]
- Salami, I.R.S.; Thufailah, N.A.; Fahimah, N.; Roosmini, D. Health risk assessment of physicochemical and heavy metals exposures of the usage of shallow groundwater located at the proximity to Citarum River, Indonesia. Case Stud. Chem. Environ. Eng. 2025, 11, 101153. [Google Scholar] [CrossRef]
- Abdipour, H.; Azari, A.; Kamani, H.; Pirasteh, K.; Mostafapour, F.K.; Rayegnnakhost, S. Human health risk assessment for fluoride and nitrate contamination in drinking water of municipal and rural areas of Zahedan, Iran. Appl. Water Sci. 2025, 15, 47. [Google Scholar] [CrossRef]
- Moradnia, M.; Attar, H.M.; Hajizadeh, Y.; Lundh, T.; Salari, M.; Darvishmotevalli, M. Assessing the carcinogenic and non-carcinogenic health risks of metals in the drinking water of Isfaha, Iran. Sci. Seport 2024, 14, 5029. [Google Scholar] [CrossRef]
- Moldovan, M.; Benea, V.; Niță, D.C.; Papp, B.; Burghele, B.D.; Bican-Brișan, N.; Cosma, C. Radon and radium concentration inwater from North-West of Romania and the estimated doses. Radiat. Prot. Dosim. 2014, 162, 96–100. [Google Scholar] [CrossRef]
- Moldovan, M.; Niță, D.C.; Cucoș-Dinu, A.; Dicu, T.; Bican-Brișan, N.; Cosma, C. Radon concentration in drinking water and supplementary exposure in Băița Ștei mining area, Bihor County (Romania). Radiat. Prot. Dosim. 2013, 158, 447–452. [Google Scholar] [CrossRef]
- Niță, D.C.; Moldovan, M.; Sferle, T.; Ona, V.D.; Burghele, B.D. Radon concentrations in water and indoor air in north–west regions of Romania. Rom. Journ. Phys. 2013, 58, 196–201. [Google Scholar]
- Chintăuan, I.; Rusu, I. Considerations regarding the history of the knowledge and use of carbonated water from northeastern Transylvania (Bistriţa-Năsăud County). Hist. Pap.-Bistrița Mus. 1989, 6, 238–275. (In Romanian) [Google Scholar]
- EC. Opinion on Nitrate and Nitrite; Reports of the Scientific Committee for Food (SCF); 26th Series: 21–28; European Commission: Brussels, Belgium, 1992; pp. 21–28. [Google Scholar]
- EC. Opinion on Nitrate and Nitrite; Reports of the Scientific Committee for Food (SCF); Report No: 197 38th Series; European Commission: Brussels, Belgium, 1997; pp. 1–33. [Google Scholar]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies); Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific opinion on Dietary Reference Values for sodium. EFSA J. 2011, 9, 2246. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Pelaez, C.; et al. Scientific opinion on Dietary Reference Values for chloride. EFSA J. 2019, 17, 5779. [Google Scholar] [CrossRef]
- EFSA. Nitrate in vegetables. Scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008, 689, 1–79. [Google Scholar]
- FAO-WHO. Nitrate (and Potential Endogenous Formation of N-Nitroso Compounds); WHO Food Additive Series 50; World Health Organisation: Geneva, Switzerland, 2003. [Google Scholar]
- EFSA. Overview on Dietary Reference Values for the EU population as derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). In Summary of Dietary Reference Values; Version 4 (September 2017); EFSA: Parma, Italy, 2017; p. 15. [Google Scholar]
- FAO-WHO. Codex alimentarius commission. In Proceedings of the Codex Committee on Contaminants in Foods 12th Session, Utrecht, The Netherlands, 12–16 March 2018. [Google Scholar]
- WHO. Nickel in Drinking Water—Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- EFSA. Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J. 2015, 13, 4002. [Google Scholar] [CrossRef]
- FAO-WHO. Food additives and contaminants. In Proceedings of the Codex Alimentarius Commission, Twenty-fourth Session, Geneva, Switzerland, 2–7 July 2001. [Google Scholar]
- Sharma, C.; Mahajan, A.; Garg, U.K. Fluoride and nitrate in groundwater of south-western Punjab, India—Occurrence, distribution and statistical analysis. Desalination Water Treat. 2016, 57, 3928–3939. [Google Scholar] [CrossRef]
- Singh, M.C. Groundwater pollution, causes, assessment methods and remedies for mitigation: A special attention to Indian Punjab. In Contaminants in Agriculture and Environment: Health Risks and Remediation; Kumar, V., Kumar, R., Singh, J., Kumar, P., Eds.; Agro. Environ. Media: Haridwar, India, 2019; Volume I, pp. 148–172. [Google Scholar]
- Lloyd, J.W.; Heathcoat, J.A. Natural Inorganic Chemistry in Relation to Groundwater; Clarendon Press: Oxford, UK, 1985. [Google Scholar]
Source | Average Value of Estimated Committed Effective Dose (mSv/year) | |
---|---|---|
222Rn | 226Ra | |
Mineral springs | 0.035–0.089 (0.060) (1) 0.012–0.031 (0.021) (2) | 0.009–0.022 (0.020) (3) 0.007–0.017 (0.015) (4) |
Private wells | 0.021–0.073 (0.043) (1) 0.007–0.025 (0.015) (2) | 0.007–0.025 (0.014) (3) 0.006–0.019 (0.011) (4) |
Recommendations (5) | 1 | 0.1 |
Parameter | Local Supply System | Private Wells | Suitability |
---|---|---|---|
EC (µS/cm) | 141.8–447.1 (205.3) | 98.6–731.0 (365.4) | excellent (<250), good (250–750), permissible (750–2000), doubtful (2000–3000), not suitable (>3000) [95,96] |
TDS (mg/L) | 91–286 (129.4) | 63–468 (233.8) | desirable (<500), permissible (50–1000), useful for irrigation (1000–3000), unfit for irrigation (>3000) [95,96] |
TH (mg/L of CaCO3) | 51.5–243.5 (97.2) | 59.1–308.5 (143.4) | soft (<75), moderately hard (75–150), hard (150–300), very hard (>300); or: soft (<60), moderately hard (60–120), hard (121–180), very hard (>180) [95,96] |
SAR | 0.4–0.8 (0.5) | 0.5–1.1 (0.8) | excellent (<10), good (10–18), doubtful (18–26), not safe (>26) [39,45,96] |
%Na | 22–27 (24) | 22–49 (31) | excellent (<20), good (20–40), permissible (40–60), doubtful (60–80), not safe (>80) [40,96] |
KR | 0.23–0.33 (0.27) | 0.18–0.65 (0.35) | suitable (<1), unsuitable (>1) [41,95,96] |
RSC | −1.07–0.45 (−0.17) | −1.49–1.26 (0.05) | suitable (<1.25), marginally suitable (1.25–2.5), not suitable (>2.5) [96,97] |
MAR | 29–39 (33) | 22–45 (32) | suitable (<50), not suitable (>50) [43,96] |
PI | 59–104 (81) | 46–107 (75) | good (<80), moderate (80–100), poor (10–20) [95,96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bălc, R.; Roba, C.-A.; Moldovan, M.; Zglobiu, O.R.; Roșian, G.; Vasilian, L. Hydrochemical Characterisation and Assessment of Groundwater Suitability for Drinking and Irrigation Purposes in Sângeorz-Băi Area, Bistrița-Năsăud County (Romania). Sustainability 2025, 17, 9238. https://doi.org/10.3390/su17209238
Bălc R, Roba C-A, Moldovan M, Zglobiu OR, Roșian G, Vasilian L. Hydrochemical Characterisation and Assessment of Groundwater Suitability for Drinking and Irrigation Purposes in Sângeorz-Băi Area, Bistrița-Năsăud County (Romania). Sustainability. 2025; 17(20):9238. https://doi.org/10.3390/su17209238
Chicago/Turabian StyleBălc, Ramona, Carmen-Andreea Roba, Mircea Moldovan, Octavia Raluca Zglobiu, Gheorghe Roșian, and Lidia Vasilian. 2025. "Hydrochemical Characterisation and Assessment of Groundwater Suitability for Drinking and Irrigation Purposes in Sângeorz-Băi Area, Bistrița-Năsăud County (Romania)" Sustainability 17, no. 20: 9238. https://doi.org/10.3390/su17209238
APA StyleBălc, R., Roba, C.-A., Moldovan, M., Zglobiu, O. R., Roșian, G., & Vasilian, L. (2025). Hydrochemical Characterisation and Assessment of Groundwater Suitability for Drinking and Irrigation Purposes in Sângeorz-Băi Area, Bistrița-Năsăud County (Romania). Sustainability, 17(20), 9238. https://doi.org/10.3390/su17209238