Manufacturing Agglomeration and Corporate Environmental, Social, and Governance Performance
Abstract
1. Introduction
2. Theoretical Model and Research Hypotheses
2.1. Theoretical Model Setup
2.2. Research Hypotheses
3. Research Design
3.1. Data and Sample
3.2. Model Specification
4. Empirical Results
4.1. Baseline Regression
4.2. Robustness Checks
4.3. Endogeneity Treatment
5. Further Analysis: Adverse Selection and Peer Effects
5.1. Internal Factor: Firm Productivity
5.2. External Factor: Compliance Pressure
6. Discussion
6.1. Summary
6.2. Policy Implications
6.3. Research Limitations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Placebo Test: Firm Registration Location | |
|---|---|
| Agglomeration | −0.0070 (0.0322) |
| CV | YES |
| Year FE | YES |
| Firm FE | YES |
| Stock-Yogo critical values (10% maximal IV size) | 16.38 |
| Cragg-Donald Wald F | 39.056 |
| Kleibergen–Paap rk Wald F | 0.513 |
References
- Ilhan, E.; Krueger, P.; Sautner, Z.; Starks, L.T. Climate risk disclosure and institutional investors. Rev. Financ. Stud. 2023, 36, 2617–2650. [Google Scholar] [CrossRef]
- Freeman, R.E. Strategic Management: A Stakeholder Approach; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Ott, T.E.; Eisenhardt, K.M.; Bingham, C.B. Strategy formation in entrepreneurial settings: Past insights and future directions. Strateg. Entrep. J. 2017, 11, 306–325. [Google Scholar] [CrossRef]
- Tang, Q.; Luo, L. Corporate ecological transparency: Theories and empirical evidence. Asian Rev. Account. 2016, 24, 498–524. [Google Scholar] [CrossRef]
- Alves, C.F.; Meneses, L.L. ESG scores and debt costs: Exploring indebtedness, agency costs, and financial system impact. Int. Rev. Financ. Anal. 2024, 94, 103240. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Song, Y. Trade networks and corporate ESG performance: Evidence from Chinese resource-based enterprises. J. Environ. Manag. 2024, 367, 122079. [Google Scholar] [CrossRef] [PubMed]
- Gu, J. Digitalization, spillover and environmental, social, and governance performance: Evidence from China. J. Environ. Dev. 2024, 33, 286–311. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L. Digital transformation, ESG performance and enterprise innovation. Sci. Rep. 2025, 15, 23874. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; He, L.; Su, F.; Zhou, X. Does directors’ and officers’ liability insurance improve corporate ESG performance? Evidence from China. Int. J. Financ. Econ. 2024, 29, 3713–3737. [Google Scholar] [CrossRef]
- Wei, R.; Yu, Z.; Zhen, D. The differentiated effect of China’s new environmental protection law on corporate ESG performance. Econ. Anal. Policy 2025, 85, 2126–2141. [Google Scholar] [CrossRef]
- Nie, S.; Liu, J.; Zeng, G.; You, J. Local government debt pressure and corporate ESG performance: Empirical evidence from China. Financ. Res. Lett. 2023, 58, 104416. [Google Scholar] [CrossRef]
- Lin, C.; Lu, S.; Su, X.; Wen, C. Can the greening of the tax system improve enterprises’ ESG performance? Evidence from China. Econ. Change Restruct. 2024, 57, 127. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L. Investor attention and corporate ESG performance. Financ. Res. Lett. 2024, 60, 104887. [Google Scholar] [CrossRef]
- Guo, D.; Jiang, K.; Xu, C.; Yang, X. Geographic clusters, regional productivity and resource reallocation across firms: Evidence from China. Res. Policy 2023, 52, 104691. [Google Scholar] [CrossRef]
- Alexander, A.; De Vito, A.; Menicacci, L. At what cost? Environmental regulation and corporate cash holdings. Financ. Res. Lett. 2024, 61, 104960. [Google Scholar] [CrossRef]
- Geng, Y.; Doberstein, B. Developing the circular economy in China: Challenges and opportunities for achieving ‘leapfrog development’. Int. J. Sustain. Dev. World Ecol. 2008, 15, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Alsaoudi, T.A.; Acquaye, A.; Swarnakar, V.; Khalfan, M. Exploring the intersection of Industry 4.0 technologies, circular economy, and sustainable performance: A systematic literature review and future research directions. Heliyon 2025, 11, e43529. [Google Scholar] [CrossRef]
- Melitz, M.J. The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica 2003, 71, 1695–1725. [Google Scholar] [CrossRef]
- Veeravel, V.; Sadharma, E.K.S.; Kamaiah, B. Do ESG performances lead to superior firm performance? A method of moments panel quantile regression approach. Corp. Soc. Responsib. Environ. Manag. 2024, 31, 741–754. [Google Scholar] [CrossRef]
- Anwar, R.; Malik, J.A. When does corporate social responsibility disclosure affect investment efficiency? A new answer to an old question. Sage Open 2020, 10, 2158244020931121. [Google Scholar] [CrossRef]
- Sun, X.; Shao, Y.; Han, J. ESG Performance Drives Enterprise High-Quality Development Through Financing Constraints: Based on the Background of China’s Digital Transformation. Sustainability 2025, 17, 6094. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z. Dynamic incentive contracts for ESG investing. J. Corp. Financ. 2024, 87, 102614. [Google Scholar] [CrossRef]
- Wang, B.; Wang, F.; Kong, X.; Liu, L.; Liu, C. Environmental, social, and governance disclosure and capital market mispricing. Corp. Soc. Responsib. Environ. Manag. 2024, 31, 2383–2401. [Google Scholar] [CrossRef]
- Krueger, P.; Sautner, Z.; Tang, D.Y.; Zhong, R. The effects of mandatory ESG performance around the world. J. Account. Res. 2024, 62, 1795–1847. [Google Scholar] [CrossRef]
- Zhou, B.; Ge, W. ESG in the headlines: Media-driven reputational risk and stock performance. Glob. Financ. J. 2025, 66, 101127. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, D.; Zhang, L. Green credit, supply chain transparency and corporate ESG performance: Evidence from China. Financ. Res. Lett. 2024, 59, 104769. [Google Scholar] [CrossRef]
- Giese, G.; Lee, L.E.; Melas, D.; Nagy, Z.; Nishikawa, L. Foundations of ESG investing: How ESG affects equity valuation, risk, and performance. J. Portf. Manag. 2019, 45, 69–83. [Google Scholar] [CrossRef]
- Maji, S.G.; Lohia, P. Assessing the effect of core and expanded ESG on corporate financial performance: COVID-19’s moderating role. J. Indian Bus. Res. 2024, 16, 244–264. [Google Scholar] [CrossRef]
- Xu, J.; Lu, J.; Chai, L.; Zhang, B.; Qiao, D.; Li, S. Untangling the impact of ESG performance on financing and value in the supply chain: A congruence theory perspective. Bus. Strategy Environ. 2025, 34, 2190–2206. [Google Scholar] [CrossRef]
- Qi, J.; Tan, Y.; Zhang, Z. The influence of industrial robots on firm-level pollution emissions: Evidence from China. Econ. Model. 2024, 133, 106686. [Google Scholar] [CrossRef]
- Miralles-Quirós, M.M.; Miralles-Quirós, J.L.; Valente Gonçalves, L.M. The value relevance of environmental, social, and governance performance: The Brazilian case. Sustainability 2018, 10, 574. [Google Scholar] [CrossRef]
- Zhou, R.; Hou, J.; Ding, F. Understanding the nexus between environmental, social, and governance (ESG) and financial performance: Evidence from Chinese-listed companies. Environ. Sci. Pollut. Res. 2023, 30, 73231–73253. [Google Scholar] [CrossRef]
- Le, A.T.; Tran, T.P. Corporate governance and labor investment efficiency: International evidence from board reforms. Corp. Gov. Int. Rev. 2022, 30, 555–583. [Google Scholar] [CrossRef]
- Yoon, B.; Lee, J.H.; Byun, R. Does ESG performance enhance firm value? Evidence from Korea. Sustainability 2018, 10, 3635. [Google Scholar] [CrossRef]
- Ye, B.; Lin, L. Environmental regulation and responses of local governments. China Econ. Rev. 2020, 60, 101421. [Google Scholar] [CrossRef]
- Yuan, R.; Sun, J.; Cao, F. Directors’ and officers’ liability insurance and stock price crash risk. J. Corp. Financ. 2016, 37, 173–192. [Google Scholar] [CrossRef]
- Manski, C.F. Dynamic choice in social settings: Learning from the experiences of others. J. Econom. 1993, 58, 121–136. [Google Scholar] [CrossRef]
| Variable | Indicator Description | Data Source |
|---|---|---|
| ESG | Average ESG score at the end of the quarter of the enterprise | Huazheng ESG report and Bloomberg ESG report |
| Agglomeration | Location Quotient calculated by the number of manufacturing employees | China Urban Statistical Yearbook |
| Environmental regulation | Logarithm of the sum of word frequency of environmental keywords in government report | Python government report keyword extraction, keyword lexicon: environmental protection, pollution, energy consumption, emission reduction, sewage, ecological, green, low carbon, air, chemical oxygen demand, sulfur dioxide, carbon dioxide, PM10, PM2.5 |
| Local government debt | Logarithm of local government debt balance | China Urban Statistical Yearbook |
| Supply Chain Innovation | Dummy variable indicating whether the city is a national-level demonstration city for supply chain innovation and application | Matching cities with the officially published list; 1 if yes, 0 otherwise |
| Total Market Value | Logarithm of the total market value of listed | CSMAR database |
| Return on Assets (ROA) | Net profit divided by average total assets | CSMAR database |
| Asset Turnover Ratio (ATO) | Operating revenue divided by average total assets | CSMAR database |
| Profit Margin | Net profit divided by operating revenue | CSMAR database |
| Board Size | Logarithm of the number of board members | CSMAR database |
| Ownership | Dummy variable indicating state-owned enterprises | CSMAR database; 1 for state-owned, 0 otherwise |
| Firm Age | Logarithm of (current year − establishment year + 1) | CSMAR database |
| Executive Compensation | Logarithm of the total annual salary of directors, supervisors, and senior management | CSMAR database |
| Firm Profit (FP) | Logarithm of the net profit of the enterprise | CSMAR database |
| (1) ESG | (2) ESG | |
|---|---|---|
| Agglomeration | 0.0907 *** (0.0137) | 0.0876 *** (0.0276) |
| Agglomeration2 | 0.1134 (0.1058) | |
| Total Market Value | 0.1078 (0.0996) | |
| ROA | 0.2378 * (0.1248) | |
| ATO | 0.0799 ** (0.0388) | |
| Profit Margin | 0.0001 (0.0008) | |
| Board Size | −0.0255 ** (0.0089) | |
| Ownership | 0.2756 ** (0.1039) | |
| Firm Age | −0.0289 (0.0227) | |
| Executive Compensation | −0.5611 * (0.3369) | |
| Environmental Regulation | −0.1552 ** (0.0614) | |
| Local Government Debt | −0.8131 (0.7789) | |
| Supply Chain Innovation | 0.2015 *** (0.0415) | |
| _Cons | 1.8669 *** (0.0347) | 2.1423 *** (0.0718) |
| Year FE | Yes | Yes |
| Firm FE | Yes | Yes |
| N | 9587 | 9587 |
| Adj. R2 | 0.0165 | 0.0189 |
| (1) Replace Dep. Var. ESG_PB | (2) Control Var. CSR ESG | (3) Different FE ESG | (4) Industry Clustered SE ESG | (5) Exclude Samples (HK Listed) ESG | (6) Exclude Samples (IPO < 3 Years) ESG | |
|---|---|---|---|---|---|---|
| Agglomeration | 0.0933 ** (0.0458) | 0.0959 *** (0.0263) | 0.0967 *** (0.0301) | 0.0967 *** (0.0422) | 0.0323 * (0.0165) | 0.0163 *** (0.0323) |
| CSR | 0.6980 ** (0.9265) | |||||
| _Cons | 1.8961 *** (0.6607) | 1.7696 *** (0.1118) | 1.8178 *** (0.2121) | 1.7067 *** (0.3281) | 1.2200 *** (0.9156) | 1.8235 *** (0.0461) |
| CV | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes | Yes | Yes | |
| Industry FE | Yes | |||||
| City FE | Yes | |||||
| N | 9587 | 9587 | 9587 | 9587 | 8626 | 8055 |
| Adj.R2 | 0.0189 | 0.0257 | 0.0213 | 0.0221 | 0.0152 | 0.0236 |
| (1) Heckman Stage II (OLS) | (2) IV: Topographic Relief | (3) IV: Railway Operation | (4) System GMM | |
|---|---|---|---|---|
| Agglomeration | 0.0816 ** (0.0248) | 0.0540 ** (0.1166) | 0.1025 *** (0.4197) | 0.0932 *** (0.0281) |
| L.ESG | 0.9321 *** (0.0117) | |||
| IMR | 1.3315 ** (0.2983) | |||
| CV | Yes | Yes | Yes | |
| Year FE | Yes | Yes | Yes | |
| Firm FE | Yes | Yes | Yes | |
| Stock-Yogo critical values (10% maximal IV size) | 16.38 | 16.38 | ||
| Cragg-Donald Wald F | 407.32 | 32.00 | ||
| Kleibergen–Paap rk Wald F | 1493.58 | 30.18 | ||
| first-stage R2 | 0.0147 | 0.0150 | ||
| χ2 (2) = 287.213 (p = 0.00) F statics = 30.183 (p = 0.00) | DWH = 424.92 (p = 0.00) | DWH = 28.93 (p = 0.00) | AR (1) = 0.007 AR (2) = 0.258 Sargen test (prob > chi2) = 0.172 Hansen test (prob > chi2) = 0.224 Number of instruments = 34 |
| (1) TFP | (2) ESG | |
|---|---|---|
| Agglomeration | 0.0698 *** (0.0077) | 0.0864 *** (0.0272) |
| TFP | 0.0794 * (0.0453) | |
| CV | Yes | Yes |
| Year FE | Yes | Yes |
| Firm FE | Yes | Yes |
| N | 8978 | 8978 |
| Wald | 189.11 *** | 521.78 *** |
| (1) 25th Quantile Discloser FP | (2) 25th Quantile Non-Discloser FP | (3) 50th Quantile Discloser FP | (4) 50th Quantile Non-Discloser FP | (5) 75th Quantile Discloser FP | (6) 75th Quantile Non-Discloser FP | |
|---|---|---|---|---|---|---|
| Agglomeration | 0.0319 ** (0.0187) | 0.0411 *** (0.0105) | 0.0451 *** (0.0137) | 0.0398 ** (0.0133) | 0.0288 ** (0.0135) | 0.0363 *** (0.0091) |
| CV | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes | Yes | Yes | Yes |
| N | 9587 | 6712 | 9587 | 6712 | 9587 | 6712 |
| Adj.R2 | 0.0219 | 0.0192 | 0.0211 | 0.0192 | 0.0281 | 0.0247 |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
|---|---|---|---|---|---|---|---|---|
| High Sensitivity E | Low Sensitivity E | High Sensitivity S | Low Sensitivity S | High Sensitivity G | Low Sensitivity G | High Sensitivity ESG | Low Sensitivity ESG | |
| Agglomeration | 0.0678 * (0.0341) | 0.0749 (0.0353) | 0.0554 ** (0.0147) | 0.0402 ** (0.0210) | 0.0322 ** (0.0087) | 0.0181 * (0.0096) | 0.0904 *** (0.0209) | 0.0871 * (0.0530) |
| CV | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| N | 4087 | 5418 | 4087 | 5418 | 4087 | 5418 | 4087 | 5418 |
| Adj.R2 | 0.0137 | 0.0540 | 0.0214 | 0.0965 | 0.0790 | 0.1110 | 0.0545 | 0.1195 |
| (1) | (2) | (3) | (4) | (5) | |
|---|---|---|---|---|---|
| Compliance Cost | ESG | Peer Effect | ESG | ESG | |
| Agglomeration | 0.0713 *** (0.0078) | 0.0858 *** (0.0271) | 0.0053 ** (0.0019) | 0.0886 *** (0.0198) | 0.0659 *** (0.0177) |
| Compliance Cost | 0.0858 (0.0538) | 0.0080 (0.1717) | |||
| Peer Effect | 0.3901 * (0.2411) | 0.3013 ** (0.1384) | |||
| CV | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes | Yes | Yes |
| N | 8978 | 8978 | 9074 | 9074 | 8826 |
| Adj.R2 | 0.7882 | 0.0146 | 0.7795 | 0.0188 | 0.0165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Liang, S. Manufacturing Agglomeration and Corporate Environmental, Social, and Governance Performance. Sustainability 2025, 17, 9224. https://doi.org/10.3390/su17209224
Ji Y, Liang S. Manufacturing Agglomeration and Corporate Environmental, Social, and Governance Performance. Sustainability. 2025; 17(20):9224. https://doi.org/10.3390/su17209224
Chicago/Turabian StyleJi, Yujun, and Shuang Liang. 2025. "Manufacturing Agglomeration and Corporate Environmental, Social, and Governance Performance" Sustainability 17, no. 20: 9224. https://doi.org/10.3390/su17209224
APA StyleJi, Y., & Liang, S. (2025). Manufacturing Agglomeration and Corporate Environmental, Social, and Governance Performance. Sustainability, 17(20), 9224. https://doi.org/10.3390/su17209224
