Peanut Growth and Yield Responses Are Influenced by Plant Density, Microbial Consortium Inoculation, and Amino Acid Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Growing Conditions
2.2. Vegetal Material
2.3. Experimental Design
2.4. Microbial Consortium and VIUSID® Agro Composition
2.5. Microbial Consortium and VIUSID® Agro Treatments
2.6. Sampling Procedures and Determination of Growth and Productive Parameters
2.7. Dates Analysis
3. Results
3.1. Impacts of Combining Plant Density, Bacterial Consortium Inoculation, and Foliar Application of VIUSID Agro on Peanut Plant Height and Relative Growth
3.2. Impacts of Combining Plant Density, Bacterial Consortium Inoculation, and Foliar Application of VIUSID Agro on Peanut Total Chlorophyll and Number of Stems per Plant
3.3. Impacts of Combining Plant Density, Bacterial Consortium Inoculation, and Foliar Application of VIUSID Agro on Peanut Productive Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
P | Plant density |
M | Microbial consortium |
A | Amino acid |
DAS | Days after seeding |
PH | Plant height |
RG | Relative growth |
TCC | Total chlorophyll content |
NTP | Number of stems per plant |
NMP | Number of matured pods per plant |
MP1 | Matured pod with one seed |
MP2 | Matured pod with two seeds |
MP3 | Matured pod with three seeds |
MP4 | Matured pod with four seeds |
NSP | Number of seeds per plant |
NGP | Number of seeds per pod |
MSP | Mass of the seeds per plant |
SY | Seed yield |
References
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Nimma, D.; Devi, O.R.; Laishram, B.; Ramesh, J.V.N.; Boddupalli, S.; Ayyasamy, R.; Tirth, V.; Arabil, A. Implications of Climate Change on Freshwater Ecosystems and Their Biodiversity. Desalination Water Treat. 2025, 321, 100889. [Google Scholar] [CrossRef]
- Outhwaite, C.L.; McCann, P.; Newbold, T. Agriculture and Climate Change Are Reshaping Insect Biodiversity Worldwide. Nature 2022, 605, 97–102. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Montalba, R.; Vieli, L.; Vazquez, L.L. Agroecology and the Limits to Resilience: Extending the Adaptation Capacity of Agroecosystems to Drought. Front. Agron. 2025, 7, 1534370. [Google Scholar] [CrossRef]
- Bertioli, D.J.; Seijo, G.; Freitas, F.O.; Valls, J.F.M.; Leal-Bertioli, S.C.M.; Moretzsohn, M.C. An Overview of Peanut and Its Wild Relatives. Plant Genet. Resour. 2011, 9, 134–149. [Google Scholar] [CrossRef]
- Akhtar, S.; Khalid, N.; Ahmed, I.; Shahzad, A.; Suleria, H.A.R. Physicochemical Characteristics, Functional Properties, and Nutritional Benefits of Peanut Oil: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1562–1575. [Google Scholar] [CrossRef] [PubMed]
- Meneely, J.P.; Kolawole, O.; Haughey, S.A.; Miller, S.J.; Krska, R.; Elliott, C.T. The Challenge of Global Aflatoxins Legislation with a Focus on Peanuts and Peanut Products: A Systematic Review. Expo. Health 2023, 15, 467–487. [Google Scholar] [CrossRef]
- Çiftçi, S.; Suna, G. Functional Components of Peanuts (Arachis hypogaea L.) and Health Benefits: A Review. Future Foods 2022, 5, 100140. [Google Scholar] [CrossRef]
- Cordeiro, C.F.d.S.; Pilon, C.; Echer, F.R.; Albas, R.; Tubbs, R.S.; Harris, G.H.; Rosolem, C.A. Adjusting Peanut Plant Density and Potassium Fertilization for Different Production Environments. Agron. J. 2023, 115, 817–832. [Google Scholar] [CrossRef]
- Cardoso, L.L.; de Souza, I.A.; Pereira, O.G.; Cecon, P.R.; Gomide, C.A.d.M.; Dubeux, J.C.B.; Ribeiro, K.G. Legume Proportion and Litter Deposition Rate in Signal Grass–Forage Peanut Mixed Pastures at Varying Planting Spacings. Sustainability 2025, 17, 7562. [Google Scholar] [CrossRef]
- Yang, H.; Sun, W.; Wu, F.; Xu, H.; Gu, F.; Hu, Z. Determination of Planting Pattern and Screening of Agricultural Machineries for Maize-Peanut Strip Intercropping: A Case Study in Henan Province of China. Sustainability 2023, 15, 8289. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, R.; Li, X.; Hu, G.; Dong, Y.; Liu, Z. Long-Term Adoption of Plow Tillage and Green Manure Improves Soil Physicochemical Properties and Optimizes Microbial Communities under a Continuous Peanut Monoculture System. Front. Microbiol. 2025, 15, 1513528. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liu, Y.; Wang, Y.; Gao, F.; Zhao, J.; Li, Y.; Li, X. Effects of Soil Tillage, Management Practices, and Mulching Film Application on Soil Health and Peanut Yield in a Continuous Cropping System. Front. Microbiol. 2020, 11, 570924. [Google Scholar] [CrossRef]
- Akimoto, M.; Sato, S.; Tanaka, I. The Influence of Planting Density on the Flowering Pattern and Seed Yield in Peanut (Arachis hypogea L.) Grown in the Northern Region of Japan. Agriculture 2024, 14, 1736. [Google Scholar] [CrossRef]
- González, Y.A.; Díaz, Y.P.; Hurtado, A.C.; Calzada, K.P. Plant densities and fertilizers improving sustainable peanut production. Rev. Fac. Cienc. 2025, 14, 23–38. [Google Scholar] [CrossRef]
- Li, R.; Xu, C.; Wu, Z.; Xu, Y.; Sun, S.; Song, W.; Wu, C. Optimizing Canopy-Spacing Configuration Increases Soybean Yield under High Planting Density. Crop J. 2025, 13, 233–245. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Zhao, J.; Nie, J.; Jiang, Y.; Shang, M.; Zang, H.; Yang, Y.; Brown, R.W.; Zeng, Z. Optimizing Sowing Date and Plant Density Improve Peanut Yield by Mitigating Heat and Chilling Stress. Agron. J. 2023, 115, 2521–2532. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, X.; Wang, Q.; Li, W.; Huang, M.; Zhou, Q.; Cai, J.; Wang, X.; Cao, W.; Dai, T.; et al. Increasing Plant Density Improves Grain Yield, Protein Quality and Nitrogen Agronomic Efficiency of Soft Wheat Cultivars with Reduced Nitrogen Rate. Field Crops Res. 2021, 267, 108145. [Google Scholar] [CrossRef]
- Yu, K.; Wang, J.; Sun, C.; Liu, X.; Xu, H.; Yang, Y.; Dong, L.; Zhang, D. High-Density QTL Mapping of Leaf-Related Traits and Chlorophyll Content in Three Soybean RIL Populations. BMC Plant Biol. 2020, 20, 470. [Google Scholar] [CrossRef]
- Minh, T.X.; Thanh, N.C.; Thin, T.H.; Tieng, N.T.; Giang, N.T.H. Effects of Plant Density and Row Spacing on Yield and Yield Components of Peanut (Arachis hypogaea L.) on the Coastal Sandy Land Area in Nghe An Province, Vietnam. Indian J. Agric. Res. 2021, 55, 468–472. [Google Scholar] [CrossRef]
- Bell, J.C.; Bound, S.A.; Buntain, M. Biostimulants in Agricultural and Horticultural Production. In Horticultural Reviews; John Wiley & Sons, Ltd.: London, UK, 2022; pp. 35–95. ISBN 978-1-119-85198-1. [Google Scholar]
- Castiglione, A.M.; Mannino, G.; Contartese, V.; Bertea, C.M.; Ertani, A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. Plants 2021, 10, 1533. [Google Scholar] [CrossRef]
- Krishna, R.; Jaiswal, D.K.; Ansari, W.A.; Singh, S.; Soumia, P.S.; Singh, A.K.; Kumari, B.; Singh, M.; Verma, J.P. Potential Microbial Consortium Mitigates Drought Stress in Tomato (Solanum lycopersicum L.) Plant by Up-Regulating Stress-Responsive Genes and Improving Fruit Yield and Soil Properties. J. Soil Sci. Plant Nutr. 2022, 22, 4598–4615. [Google Scholar] [CrossRef]
- Behera, B.; Das, T.K.; Raj, R.; Ghosh, S.; Raza, B.; Sen, S. Microbial Consortia for Sustaining Productivity of Non-Legume Crops: Prospects and Challenges. Agric. Res. 2021, 10, 1–14. [Google Scholar] [CrossRef]
- Travençoli Rossetim, M.F.; Vargas Motta, A.C.; Rocha Kondo, Y.; Santos Ruthes, B.E.; Hungria, M.; Falcão Salles, J.; Kaschuk, G. Enhancing Soybean Yield Through Inoculation of Multifunctional Microbial Consortia. Int. J. Agron. 2025, 2025, 9491715. [Google Scholar] [CrossRef]
- Gonçalves, O.S.; Fernandes, A.S.; Santana, M.F. The Reverse Ecology-Based Approach to Design a Bacterial Consortium as Soybean Bioinoculant. Curr. Microbiol. 2024, 81, 421. [Google Scholar] [CrossRef] [PubMed]
- Calero Hurtado, A.; Peña Calzada, K.; Fasoli, J.V.B.; Jiménez, J.; Sánchez López, L. Synergic Effects of the Microbial Consortium and Amino Acid-Based Growth Promoter in Sunflower Productivity Under Water-Deficit Conditions. Water 2025, 17, 1365. [Google Scholar] [CrossRef]
- Ahsan, T.; Tian, P.-C.; Gao, J.; Wang, C.; Liu, C.; Huang, Y.-Q. Effects of Microbial Agent and Microbial Fertilizer Input on Soil Microbial Community Structure and Diversity in a Peanut Continuous Cropping System. J. Adv. Res. 2024, 64, 1–13. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Liu, W.; Ji, J.; Zhang, K.; Li, H.; Feng, Y.; Xue, J.; Ji, C.; Zhang, L.; et al. Mechanisms of Branched Chain Amino Acids Promoting Growth and Lipid Accumulation in Camelina sativa Seedlings under Drought and Salt Stress. Sustain. Energy Technol. Assess. 2025, 75, 104201. [Google Scholar] [CrossRef]
- Peña-Calzada, K.; Calero-Hurtado, A.; Meléndrez-Rodríguez, J.F.; Rodríguez-Fernández, J.C.; Gutiérrez-Cádenas, O.G.; García-González, M.T.; Madrigal-Carmona, L.; Jiménez-Medina, A. Impacts of the Biostimulant VIUSID® Agro on Growth, Productivity, and Tolerance to Salt Stress in Crops: A Systematic Review. Horticulturae 2025, 11, 407. [Google Scholar] [CrossRef]
- Peña Calzada, K.; Olivera Viciedo, D.; Habermann, E.; Calero Hurtado, A.; Lupino Gratão, P.; De Mello Prado, R.; Lata-Tenesaca, L.F.; Martinez, C.A.; Ajila Celi, G.E.; Rodríguez, J.C. Exogenous Application of Amino Acids Mitigates the Deleterious Effects of Salt Stress on Soybean Plants. Agronomy 2022, 12, 2014. [Google Scholar] [CrossRef]
- Díaz, Y.P.; Hurtado, A.C.; Calzada, K.P.; Díaz, J.L.G.; González, V.R. Plant densities and foliar application of amino acids increasing sesame yield. Temas Agrar. 2024, 29, 100–112. [Google Scholar] [CrossRef]
- Calzada, K.P.; Hurtado, A.C.; Peistrup, V.; Mühlmann, I.; Miranda, D.R.; Coca, L.I.R.; González, M.R.; Fernández, J.C.R. Physiological and productive responses of sugar beet plants treated with amino acid solution. Temas Agrar. 2024, 29, 113–125. [Google Scholar] [CrossRef]
- Calero Hurtado, A.; Meléndrez Rodríguez, J.F.; Peña Calzada, K.; Pérez Díaz, Y.; Jiménez Medina, A. Foliar Application of a Mixture of Amino Acid-Based Growth Promoters Enhances Tomato Seedling Production. Horticulturae 2025, 11, 582. [Google Scholar] [CrossRef]
- Hurtado, A.C.; Díaz, Y.P.; Viciedo, D.O.; Rodríguez, E.Q.; Calzada, K.P.; Nedd, L.L.T.; Hernández, J.J. Effect of Different Application Forms of Efficient Microorganisms on the Agricultural Productive of Two Bean Cultivars. Rev. Fac. Nac. Agron. Medellín 2019, 72, 8927–8935. [Google Scholar] [CrossRef]
- Munger, P.; Bleiholder, H.; Hack, H.; Heß, M.; Stauss, R.; van den Boom, T.; Weber, E. Phenological Growth Stages of the Peanut Plant (Arachis hypogaea L.): Codification and Description According to the BBCH Scale1. J. Agron. Crop Sci. 1998, 180, 101–107. [Google Scholar] [CrossRef]
- R Team Core. A Language and Environment for Statistical Computing; R Team Core: Vienna, Austria, 2024. [Google Scholar]
- Calero-Hurtado, A.; Pérez-Díaz, Y.; Peña-Calzada, K.; Jiménez-Medina, A.; Kukurtcu, B. Soybean Responses to Foliar Amino Acid Application and High Plant Densities. Available online: https://revistas.udenar.edu.co/index.php/rfacia/article/view/8656 (accessed on 24 April 2025).
- Bakal, H.; Kenetli, A.; Arıoglu, H. The Effect of Plant Density on Pod Yield and Some Agronomic Characteristics of Different Growthtype Peanut Varieties (Arachis hypogaea L.) Grown as a Main Crop. Turk. J. Field Crops 2020, 25, 92–99. [Google Scholar] [CrossRef]
- Wang, D.; Deng, X.; Wang, B.; Zhang, N.; Zhu, C.; Jiao, Z.; Li, R.; Shen, Q. Effects of Foliar Application of Amino Acid Liquid Fertilizers, with or without Bacillus Amyloliquefaciens SQR9, on Cowpea Yield and Leaf Microbiota. PLoS ONE 2019, 14, e0222048. [Google Scholar] [CrossRef]
- Yim, B.; Heider, M.A.; Bloem, E.; Vetterlein, D.; Behr, J.H.; Babin, D.; Smalla, K. Exploring the Potential of Seed Inoculation with Microbial Consortia to Mitigate Drought Stress in Maize Plants under Greenhouse Conditions. Plant Soil. 2025, 514, 1–17. [Google Scholar] [CrossRef]
- Yu, K.M.J.; McKinley, B.; Rooney, W.L.; Mullet, J.E. High Planting Density Induces the Expression of GA3-Oxidase in Leaves and GA Mediated Stem Elongation in Bioenergy Sorghum. Sci. Rep. 2021, 11, 46. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein Hydrolysates as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Qi, H.; Zhu, B.; Kong, L.; Yang, W.; Zou, J.; Lan, Y.; Zhang, L. Hyperspectral Inversion Model of Chlorophyll Content in Peanut Leaves. Appl. Sci. 2020, 10, 2259. [Google Scholar] [CrossRef]
- Devi, R.; Kaur, T.; Kour, D.; Yadav, A.N. Microbial Consortium of Mineral Solubilizing and Nitrogen Fixing Bacteria for Plant Growth Promotion of Amaranth (Amaranthus hypochondrius L.). Biocatal. Agric. Biotechnol. 2022, 43, 102404. [Google Scholar] [CrossRef]
- Yang, X.; Shao, X.; Mao, X.; Li, M.; Zhao, T.; Wang, F.; Chang, T.; Guang, J. Influences of Drought and Microbial Water-Retention Fertilizer on Leaf Area Index and Photosynthetic Characteristics of Flue-Cured Tobacco. Irrig. Drain. 2019, 68, 729–739. [Google Scholar] [CrossRef]
- Azanaw, M.; Singh, S. Exploiting Morpho-Physiological Variation Driven by Plant Density to Maximize Sesame (Sesamum indicum L.) Yield and Oil Production in Northwest Ethiopia. Russ. Agric. Sci. 2023, 49, 405–412. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Cheng, Y.; Raza, M.A.; Wu, X.; Wang, Z.; Liu, Q.; Wang, R.; Wang, X.; Yong, T.; et al. Effect of Shading and Light Recovery on the Growth, Leaf Structure, and Photosynthetic Performance of Soybean in a Maize-Soybean Relay-Strip Intercropping System. PLoS ONE 2018, 13, e0198159. [Google Scholar] [CrossRef]
- Jacomassi, L.M.; Pacola, M.; Momesso, L.; Viveiros, J.; Júnior, O.A.; de Siqueira, G.F.; de Campos, M.; Crusciol, C.A.C. Foliar Application of Amino Acids and Nutrients as a Tool to Mitigate Water Stress and Stabilize Sugarcane Yield and Bioenergy Generation. Plants 2024, 13, 461. [Google Scholar] [CrossRef]
- Khan, S.; Yu, H.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Liu, P.; Jiang, W. Exogenous Application of Amino Acids Improves the Growth and Yield of Lettuce by Enhancing Photosynthetic Assimilation and Nutrient Availability. Agronomy 2019, 9, 266. [Google Scholar] [CrossRef]
- Egbujor, M.C.; Olaniyan, O.T.; Emeruwa, C.N.; Saha, S.; Saso, L.; Tucci, P. An Insight into Role of Amino Acids as Antioxidants via NRF2 Activation. Amino Acids 2024, 56, 23. [Google Scholar] [CrossRef]
- Nowak, R.; Szczepanek, M.; Błaszczyk, K.; Hassanpouraghdam, M.B. Response of Photosynthetic Efficiency Parameters and Leaf Area Index of Alternative Barley Genotypes to Increasing Sowing Density. Sci. Rep. 2024, 14, 29779. [Google Scholar] [CrossRef]
- Henderson, B.C.R.; Sanderson, J.M.; Fowles, A. A Review of the Foliar Application of Individual Amino Acids as Biostimulants in Plants. Discov. Agric. 2025, 3, 69. [Google Scholar] [CrossRef]
- Deveikytė, J.; Blinstrubienė, A.; Burbulis, N. Amino Acids as Biostimulants: Effects on Growth, Chlorophyll Content, and Antioxidant Activity in Ocimum basilicum L. Agriculture 2025, 15, 1496. [Google Scholar] [CrossRef]
- Ndiaye, B.D.; Thiao, M.; Cissoko, M.; Ndiaye, M.; Niang, N.; Thiao, M.; Fall, S.; Sylla, S.N.; Sene, G. Using Superior Plant Growth-Promoting Microorganisms through Bioprospecting to Create Inoculants for Peanut (Arachis hypogaea L.) Farming. Afr. J. Agric. Res. 2024, 20, 736–750. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Camargos, T.; Campos, N.; Alves, G.; Ferreira, S.; Matsuo, É. The Effect of Soil Volume, Plant Density and Sowing Depth on Soybean Seedlings Characters. Agron. Sci. Biotechnol. 2019, 5, 47. [Google Scholar] [CrossRef]
- Hurtado, A.C.; de Mello Prado, R.; Campos, M.L. Challenging the “Resource Allocation” Paradigm: A Meta-Analysis on How Nitrogen Fertilization Balances Plant Growth and Defense against Insects. Theor. Exp. Plant Physiol. 2025, 37, 35. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, J.; Wang, X.; Zeng, R.; Chen, Y.; Zhang, H.; Wan, S.; Zhang, L. Monoseeding Increases Peanut (Arachis hypogaea L.) Yield by Regulating Shade-Avoidance Responses and Population Density. Plants 2021, 10, 2405. [Google Scholar] [CrossRef]
- Li, Z.-X.; Tan, J.-F.; Yao, N.; Xie, R.-H. From Trade-off to Synergy: How Nutrient Status Modulates Plant Resistance to Herbivorous Insects? Adv. Biotechnol. 2024, 2, 37. [Google Scholar] [CrossRef]
- Kang, C.; Qian, L.I.N.; Yongli, W.; Tingli, W.; Hong, C. Interaction Effects of Planting Density and Nitrogen Application Rate on Plant and Yield Traits of Single Seeding Peanut. J. Agric. 2022, 12, 42–46. [Google Scholar] [CrossRef]
- Bigatton, E.D.; Verdenelli, R.A.; Haro, R.J.; Ayoub, I.; Barbero, F.M.; Martín, M.P.; Dubini, L.E.; Jorrín Novo, J.V.; Lucini, E.I.; Castillejo, M.Á. Metagenomic Analysis to Assess the Impact of Plant Growth-Promoting Rhizobacteria on Peanut (Arachis hypogaea L.) Crop Production and Soil Enzymes and Microbial Diversity. J. Agric. Food Chem. 2024, 72, 22385–22397. [Google Scholar] [CrossRef]
- Sadak, M.S.; Bakry, B.A.; Abdel-Razik, T.M.; Hanafy, R.S. Amino Acids Foliar Application for Maximizing Growth, Productivity and Quality of Peanut Grown under Sandy Soil. Braz. J. Biol. 2023, 83, e256338. [Google Scholar] [CrossRef]
Treatments | PH30 | PH60 | RG |
---|---|---|---|
P1M0A0 | 10.65 ± 0.15 j | 22.35 ± 0.12 n | 1.10 ± 0.01 h |
P1M0A1 | 12.80 ± 0.10 f | 28.90 ± 0.43 j | 1.26 ± 0.02 e |
P1M0A2 | 13.85 ± 0.35 e | 32.55 ± 0.22 g | 1.35 ± 0.02 c |
P1M1A0 | 11.60 ± 0.20 h | 25.70 ± 0.37 l | 1.22 ± 0.04 f |
P1M1A1 | 14.55 ± 0.35 d | 33.55 ± 0.38 f | 1.32 ± 0.01 d |
P1M1A2 | 16.15 ± 0.25 c | 37.45 ± 0.08 d | 1.31 ± 0.03 d |
P1M2A0 | 11.10 ± 0.20 i | 24.85 ± 0.10 m | 1.24 ± 0.03 e |
P1M2A1 | 13.75 ± 0.05 e | 32.85 ± 0.09 g | 1.39 ± 0.04 b |
P1M2A2 | 14.80 ± 0.30 d | 31.55 ± 0.72 h | 1.13 ± 0.01 g |
P2M0A0 | 12.15 ± 0.35 g | 26.80 ± 0.83 k | 1.21 ± 0.01 f |
P2M0A1 | 14.10 ± 0.40 e | 32.45 ± 0.08 g | 1.30 ± 0.01 d |
P2M0A2 | 16.20 ± 0.30 c | 35.50 ± 0.13 e | 1.19 ± 0.01 f |
P2M1A0 | 14.20 ± 0.40 e | 30.55 ± 0.62 i | 1.15 ± 0.02 g |
P2M1A1 | 16.35 ± 0.45 c | 38.20 ± 0.27 c | 1.34 ± 0.01 c |
P2M1A2 | 17.80 ± 0.10 a | 42.70 ± 0.13 a | 1.36 ± 0.01 c |
P2M2A0 | 14.65 ± 0.15 d | 29.55 ± 0.78 j | 1.02 ± 0.01 i |
P2M2A1 | 15.75 ± 0.15 c | 41.10 ± 0.17 b | 1.61 ± 0.01 a |
P2M2A2 | 17.05 ± 0.15 b | 38.15 ± 0.52 c | 1.24 ± 0.01 e |
F value | |||
P | ** | ** | * |
M | ** | ** | * |
A | ** | ** | * |
P × M | ** | ** | ** |
P × A | ** | ** | ** |
M × A | * | ** | ** |
P × M × A | * | ** | ** |
Treatments | TCC30 | TCC60 | NTP60 |
---|---|---|---|
P1M0A0 | 41.89 ± 0.97 f | 41.88 ± 0.20 f | 9.35 ± 0.17 e |
P1M0A1 | 46.36 ± 0.48 b | 43.27± 0.22 e | 10.19 ± 0.14 d |
P1M0A2 | 47.37 ± 0.52 a | 44.50 ± 0.59 d | 10.93 ± 0.20 c |
P1M1A0 | 43.54 ± 0.32 d | 43.66 ± 0.40 e | 11.51 ± 0.32 b |
P1M1A1 | 45.74 ± 0.18 b | 46.83 ± 0.33 b | 12.35 ± 0.52 a |
P1M1A2 | 47.04 ± 0.62 a | 48.66 ± 0.12 a | 10.39 ± 0.11 d |
P1M2A0 | 40.13 ± 0.23 h | 42.97 ± 0.84 e | 10.25 ± 0.13 d |
P1M2A1 | 44.68 ± 0.10 c | 45.48 ± 1.42 c | 9.33 ± 0.03 e |
P1M2A2 | 46.27 ± 0.71 b | 47.68 ± 0.92 b | 8.97 ± 0.06 f |
P2M0A0 | 38.89 ± 0.03 i | 40.11 ± 0.82 g | 8.71 ± 0.09 f |
P2M0A1 | 40.82 ± 0.27 g | 43.00 ± 0.32 e | 7.76 ± 0.10 h |
P2M0A2 | 42.11 ± 0.29 f | 45.92 ± 0.13 c | 7.34 ± 0.10 i |
P2M1A0 | 41.01 ± 0.09 g | 39.02 ± 0.38 h | 8.35 ± 0.06 g |
P2M1A1 | 43.42 ± 0.41 d | 44.93 ± 0.23 d | 7.78 ± 0.14 h |
P2M1A2 | 45.71 ± 0.86 b | 42.93 ± 0.60 e | 7.12 ± 0.06 i |
P2M2A0 | 37.28 ± 0.37 j | 38.98 ± 0.31 h | 8.14 ± 0.06 g |
P2M2A1 | 41.22 ± 0.36 g | 46.23 ± 0.47 c | 6.84 ± 0.01 j |
P2M2A2 | 42.92 ± 0.04 e | 42.23 ± 0.19 f | 6.47 ± 0.14 k |
F value | |||
P | ** | ** | * |
M | ** | ** | ** |
A | ** | ** | ** |
P × M | ** | ** | ** |
P × A | ** | ** | ** |
M × A | ** | ** | ** |
P × M × A | ** | ** | ** |
Treatments | MP1 | MP2 | MP3 | MP4 | NMP |
---|---|---|---|---|---|
P1M0A0 | 7.15 ± 0.21 a | 4.51 ± 0.11 k | 2.36 ± 0.10 n | 0.65 ± 0.06 k | 13.16 ± 0.43 m |
P1M0A1 | 2.73 ± 0.04 g | 6.84 ± 0.12 f | 12.72 ± 0.16 a | 4.63 ± 0.18 f | 26.91 ± 0.27 c |
P1M0A2 | 4.77 ± 0.02 d | 9.44 ± 0.14 a | 6.71 ± 0.05 i | 4.81 ± 0.06 f | 25.73 ± 0.20 d |
P1M1A0 | 3.30 ± 0.06 f | 8.64 ± 0.02 b | 5.68 ± 0.08 j | 2.82 ± 0.06 i | 20.44 ± 0.42 i |
P1M1A1 | 2.84 ± 0.16 g | 6.56 ± 0.15 f | 12.42 ± 0.07 b | 7.62 ± 0.08 b | 29.42 ± 0.34 a |
P1M1A2 | 2.50 ± 0.04 h | 7.65 ± 0.11 d | 10.13 ± 0.12 e | 9.40 ± 0.15 a | 29.67 ± 0.10 a |
P1M2A0 | 6.09 ± 0.15 b | 3.86 ± 0.12 m | 2.73 ± 0.07 n | 3.92 ± 0.10 h | 16.60 ± 0.18 l |
P1M2A1 | 2.29 ± 0.01 i | 5.76 ± 0.10 i | 10.67 ± 0.12 d | 6.41 ± 0.09 c | 25.13 ± 0.13 e |
P1M2A2 | 3.88 ± 0.16 e | 5.88 ± 0.02 i | 7.49 ± 0.15 g | 5.12 ± 0.02 e | 22.37 ± 0.29 h |
P2M0A0 | 5.29 ± 0.02 c | 6.18 ± 0.03 h | 3.32 ± 0.08 m | 2.28 ± 0.07 j | 17.06 ± 0.05 l |
P2M0A1 | 2.44 ± 0.20 h | 6.77 ± 0.09 f | 10.41 ± 0.16 d | 9.33 ± 0.23 a | 28.94 ± 0.07 c |
P2M0A2 | 4.60 ± 0.17 d | 7.41 ± 0.21 e | 7.05 ± 0.09 h | 4.67 ± 0.18 f | 23.72 ± 0.10 g |
P2M1A0 | 3.73 ± 0.10 e | 6.53 ± 0.18 f | 4.15 ± 0.14 l | 3.31 ± 0.08 h | 17.71 ± 0.04 k |
P2M1A1 | 2.72 ± 0.07 g | 6.55 ± 0.04 f | 11.70 ± 0.21 c | 7.80 ± 0.02 b | 28.75 ± 0.10 b |
P2M1A2 | 2.32 ± 0.02 i | 4.12 ± 0.11 l | 12.19 ± 0.08 b | 5.81 ± 0.11 d | 24.44 ± 0.04 f |
P2M2A0 | 4.71 ± 0.07 d | 5.44 ± 0.16 j | 4.63 ± 0.11 k | 2.68 ± 0.07 i | 17.45 ± 0.16 k |
P2M2A1 | 2.50 ± 0.07 h | 6.47 ± 0.14 f | 9.31 ± 0.22 f | 5.52 ± 0.10 d | 23.78 ± 0.53 g |
P2M2A2 | 2.08 ± 0.03 j | 7.99 ± 0.12 c | 5.91 ± 0.13 j | 3.80 ± 0.05 g | 19.77 ± 0.50 j |
F value | |||||
P | ** | * | ** | * | ** |
M | ** | ** | ** | ** | ** |
A | ** | ** | ** | ** | ** |
P × M | ** | ** | ** | ** | ** |
P × A | ** | ** | ** | ** | ** |
M × A | ** | ** | ** | ** | ** |
P × M × A | ** | ** | ** | ** | ** |
Treatments | NSP | NGP | MSP | SY |
---|---|---|---|---|
P1M0A0 | 23.32 ± 0.78 n | 1.77 ± 0.008 m | 11.67 ± 0.34 m | 0.49 ± 0.020 m |
P1M0A1 | 73.07 ± 0.56 d | 2.72 ± 0.012 e | 23.86 ± 0.22 c | 0.99 ± 0.015 h |
P1M0A2 | 63.02 ± 0.30 g | 2.45 ± 0.003 i | 22.81 ± 0.02 d | 0.95 ± 0.006 i |
P1M1A0 | 48.90 ± 0.98 j | 2.39 ± 0.003 j | 18.12 ± 0.34 i | 0.75 ± 0.10 k |
P1M1A1 | 83.65 ± 0.74 b | 2.84 ± 0.008 c | 26.08 ± 0.28 a | 1.09 ± 0.016 g |
P1M1A2 | 85.76 ± 0.53 a | 2.89 ± 0.013 b | 26.31 ± 0.08 a | 1.10 ± 0.001 g |
P1M2A0 | 37.68 ± 0.15 m | 2.27 ± 0.0023 k | 14.72 ± 0.14 l | 0.61 ± 0.010 l |
P1M2A1 | 71.45 ± 0.67 e | 2.84 ± 0.013 c | 22.28 ± 0.11 e | 0.93 ± 0.006 i |
P1M2A2 | 58.57 ± 0.64 h | 2.62 ± 0.003 f | 19.83 ± 0.23 h | 0.83 ± 0.015 j |
P2M0A0 | 36.69 ± 0.28 m | 2.15 ± 0.013 l | 13.76 ± 0.04 l | 1.15 ± 0.006 g |
P2M0A1 | 70.37 ± 0.31 e | 2.88 ± 0.003 b | 19.71 ± 0.04 f | 1.64 ± 0.005 b |
P2M0A2 | 59.23 ± 0.52 h | 2.50 ± 0.003 h | 19.13 ± 0.09 g | 1.59 ± 0.005 c |
P2M1A0 | 42.46 ± 0.41 k | 2.40 ± 0.028 j | 14.28 ± 0.03 k | 1.19 ± 0.001 e |
P2M1A1 | 82.05 ± 0.55 c | 2.85 ± 0.013 c | 23.19 ± 0.08 b | 1.93 ± 0.006 a |
P2M1A2 | 84.50 ± 0.25 a | 2.92 ± 0.008 a | 23.35 ± 0.06 b | 1.95 ± 0.006 a |
P2M2A0 | 40.17 ± 0.18 l | 2.30 ± 0.008 k | 14.08 ± 0.13 k | 1.17 ± 0.015 e |
P2M2A1 | 65.40 ± 1.24 e | 2.75 ± 0.008 d | 19.18 ± 0.41 g | 1.60 ± 0.038 c |
P2M2A2 | 50.95 ± 2.14 i | 2.58 ± 0.048 g | 15.94 ± 0.40 j | 1.33 ± 0.035 d |
F value | ||||
P | ** | * | ** | ** |
M | ** | ** | ** | ** |
A | ** | ** | ** | ** |
P × M | ** | ** | ** | ** |
P × A | ** | ** | ** | ** |
M × A | ** | ** | ** | ** |
P × M × A | ** | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtado, A.C.; Díaz, Y.P.; Calzada, K.P.; Rodríguez, J.F.M. Peanut Growth and Yield Responses Are Influenced by Plant Density, Microbial Consortium Inoculation, and Amino Acid Application. Sustainability 2025, 17, 9207. https://doi.org/10.3390/su17209207
Hurtado AC, Díaz YP, Calzada KP, Rodríguez JFM. Peanut Growth and Yield Responses Are Influenced by Plant Density, Microbial Consortium Inoculation, and Amino Acid Application. Sustainability. 2025; 17(20):9207. https://doi.org/10.3390/su17209207
Chicago/Turabian StyleHurtado, Alexander Calero, Yanery Pérez Díaz, Kolima Peña Calzada, and Jorge Félix Meléndrez Rodríguez. 2025. "Peanut Growth and Yield Responses Are Influenced by Plant Density, Microbial Consortium Inoculation, and Amino Acid Application" Sustainability 17, no. 20: 9207. https://doi.org/10.3390/su17209207
APA StyleHurtado, A. C., Díaz, Y. P., Calzada, K. P., & Rodríguez, J. F. M. (2025). Peanut Growth and Yield Responses Are Influenced by Plant Density, Microbial Consortium Inoculation, and Amino Acid Application. Sustainability, 17(20), 9207. https://doi.org/10.3390/su17209207