Historiography, Current Practice and Future Perspectives: A Critical Review of Geopolymer Binders
Abstract
1. Introduction
2. Conventional Portland Cement
3. Chemistry of Geopolymer
4. Research Trends of Studies by Year
5. The Various Parameters Affecting Geopolymerization
5.1. Selection of Raw Materials
5.2. Activator Type and Concentration:
5.3. Curing Regime
6. Advantages and Disadvantages of Geopolymer Composites
6.1. Advantages
6.1.1. Environmental Sustainability and Low Carbon Emissions
6.1.2. High Mechanical Strength and Structural Performance
6.1.3. Enhanced Durability Characteristics
6.1.4. Fire Resistance
6.1.5. Thermal Stability
6.1.6. Chemical and Radiological Stability
6.1.7. Economic Potential Under Specific Conditions
6.1.8. Application Versatility and Mix Design Flexibility
6.2. Disadvantages
6.2.1. Raw Material Availability and Performance Inconsistency
6.2.2. Workability Challenges in Fresh Mixture
6.2.3. Use of Hazardous and Expensive Alkaline Activators
6.2.4. Lack of Standards, Codes, and Design Guidelines
6.2.5. Uncertainty in Long-Term Performance and Cost Analysis
6.2.6. Infrastructure and Application Requirements
6.2.7. Aesthetic Issues and Lack of Social Acceptance
7. Comparison of Geopolymers to Other Binder Materials
7.1. Comparison with Sludge-Based Binder
7.2. Comparison with Belite-Rich Cement
7.3. Comparison with Limestone Calcined Clay Cement (LC3)
8. Applications of Geopolymers
8.1. Geopolymer Concrete Application in Infrastructure and Superstructure Constructions
8.2. Use of Geopolymer in Prefabricated Building Components
8.3. Applications of Geopolymer-Based Materials in the Protection of Cultural Heritage
8.4. Use of Geopolymer Concrete in Green Building Applications and Industrial Facilities
8.5. Geopolymers in Soil Stabilization
8.6. Use of 3D Printed Geopolymers
8.7. Discussion of Commercialization Potential and Barriers
9. Conclusions
10. Future Actions Required to Position Geopolymers as a Real Alternative to Cement
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryan, J.F. The story of Portland cement. J. Chem. Educ. 1929, 6, 1854. [Google Scholar] [CrossRef]
- Igliński, B.; Buczkowski, R. Development of cement industry in Poland–History, current state, ecological aspects. A review. J. Clean. Prod. 2017, 141, 702–720. [Google Scholar] [CrossRef]
- Ridi, F.; Fratini, E.; Baglioni, P. Cement: A two thousand year old nano-colloid. J. Colloid Interface Sci. 2011, 357, 255–264. [Google Scholar] [CrossRef]
- Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental impact of cement production and Solutions: A review. Mater. Today 2022, 48, 741–746. [Google Scholar] [CrossRef]
- Durastanti, C.; Moretti, L. Environmental impacts of cement production: A statistical analysis. Appl. Sci. 2020, 10, 8212. [Google Scholar] [CrossRef]
- Benhelal, E.; Shamsaei, E.; Rashid, M.I. Challenges against CO2 abatement strategies in cement industry: A review. J. Environ. Sci. 2021, 104, 84–101. [Google Scholar] [CrossRef] [PubMed]
- Sonebi, M.; Ammar, Y.; Diederich, P. Sustainability of cement, concrete and cement replacement materials in construction. In Sustainability of Construction Materials; Woodhead Publishing: Cambridge, UK, 2016; pp. 120–147. [Google Scholar]
- Mokhtar, A.; Nasooti, M. A decision support tool for cement industry to select energy efficiency measures. Energy Strategy Rev. 2020, 28, 100458. [Google Scholar] [CrossRef]
- Ige, O.E.; Olanrewaju, O.A.; Duffy, K.J.; Obiora, C. A review of the effectiveness of Life Cycle Assessment for gauging environmental impacts from cement production. J. Clean. Prod. 2021, 324, 129213. [Google Scholar] [CrossRef]
- Ying, J.Y.; Pek, S.; Kurisawa, M.; Chung, J.E. Water Alteration Structure Applications and Methods. U.S. Patent Application No. 12/330,436, 8 December 2009. [Google Scholar]
- Guo, Y.; Luo, L.; Liu, T.; Hao, L.; Li, Y.; Liu, P.; Zhu, T. A review of low-carbon technologies and projects for the global cement industry. J. Environ. Sci. 2024, 136, 682–697. [Google Scholar] [CrossRef]
- NASA. Carbon Dioxide | Vital Signs—Climate Change—NASA. Available online: https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=121 (accessed on 23 September 2025).
- NASA. Global Temperature | Vital Signs—Climate Change—NASA. Available online: https://climate.nasa.gov/vital-signs/global-temperature/?intent (accessed on 23 September 2025).
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar]
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Chuewangkam, N.; Kidkhunthod, P.; Pinitsoontorn, S. Direct evidence for the mechanism of early-stage geopolymerization process. Case Stud. Constr. Mater. 2024, 21, e03539. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A.; Criado, M. Microstructure development of alkali-activated fly ash cement: A descriptive model. Cem. Concr. Res. 2005, 35, 1204–1209. [Google Scholar] [CrossRef]
- Srividya, T.; PR, K.R.; Sivasakthi, M.; Sujitha, A.; Jeyalakshmi, R. A state-of-the-art on development of geopolymer concrete and its field applications. Case Stud. Constr. Mater. 2022, 16, e00812. [Google Scholar]
- Siyal, A.A.; Azizli, K.A.; Man, Z.; Ismail, L.; Khan, M.I. Geopolymerization kinetics of fly ash based geopolymers using JMAK model. Ceram. Int. 2016, 42, 15575–15584. [Google Scholar] [CrossRef]
- Nath, S.K.; Mukherjee, S.; Maitra, S.; Kumar, S. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry. J. Therm. Anal. Calorim. 2017, 127, 1953–1961. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem. Eng. Sci. 2007, 62, 2318–2329. [Google Scholar] [CrossRef]
- Van Deventer, J.S. The conversion of mineral waste to modern materials using geopolymerisation. In Proceedings of the MINPREX 2000 International Congress on Mineral and Processing and Extractive Metallurgy, Melbourne, VC, Australia, 11–13 September 2000; Volume 1. [Google Scholar]
- Phair, J.W.; Van Deventer, J.S.J.; Smith, J.D. Mechanism of polysialation in the incorporation of zirconia into fly ash-based geopolymers. Ind. Eng. Chem. Res. 2000, 39, 2925–2934. [Google Scholar] [CrossRef]
- Xu, H.; Van Deventer, J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. 2000, 59, 247–266. [Google Scholar] [CrossRef]
- Davidovits, J.; Comrie, D.C. Archaeological long-term durability of hazardous waste disposal: Preliminary results with geopolymer technologies. In Symposium on Innovative Solutions to Waste Management Problems; EPA: Washington, DC, USA, 1988; pp. 237–240. [Google Scholar]
- Foden, A.J.; Balaguru, P.; Lyon, R.E. Mechanical Properties and Fire Response of Geopolymer Structural Composites; (No. CONF-960310-); Society for the Advancement of Material and Process Engineering: Covina, CA, USA, 1996. [Google Scholar]
- Gifford, P.M.; Gillott, J.E. Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete. Cem. Concr. Res. 1996, 26, 21–26. [Google Scholar] [CrossRef]
- Blaakmeer, J. Diabind: An alkali-activated slag fly ash binder for acid-resistant concrete. Fuel Energy Abstr. 1995, 5, 336. [Google Scholar] [CrossRef]
- Richardson, I.G.; Brough, A.R.; Groves, G.W.; Dobson, C.M. The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (CSH) phase. Cem. Concr. Res. 1994, 24, 813–829. [Google Scholar] [CrossRef]
- Shi, C.; Day, R.L. Some factors affecting early hydration of alkali-slag cements. Cem. Concr. Res. 1996, 26, 439–447. [Google Scholar] [CrossRef]
- Wang, S.D. Alkali-activated slag: Hydration process and development of microstructure. Adv. Cem. Res. 2000, 12, 163–172. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J.G. Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage. Cem. Concr. Res. 2000, 30, 791–798. [Google Scholar] [CrossRef]
- Khalil, M.Y.; Merz, E. Immobilization of intermediate-level wastes in geopolymers. J. Nucl. Mater. 1994, 211, 141–148. [Google Scholar] [CrossRef]
- Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Schwartzman, A. The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics. Miner. Eng. 1999, 12, 75–91. [Google Scholar] [CrossRef]
- Bobrowski, A.; Gawlicki, M.; Małolepszy, J. Analytical evaluation of immobilization of heavy metals in cement matrices. Environ. Sci. Technol. 1997, 31, 745–749. [Google Scholar] [CrossRef]
- Deja, J. Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem. Concr. Res. 2002, 32, 1971–1979. [Google Scholar] [CrossRef]
- Palacios, M.; Houst, Y.F.; Bowen, P.; Puertas, F. Adsorption of superplasticizer admixtures on alkali-activated slag pastes. Cem. Concr. Res. 2009, 39, 670–677. [Google Scholar] [CrossRef]
- Alcaide, J.S.; Alcocel, E.G.; Puertas, F.; Lapuente, R.; Garcés, P. Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Constr. 2007, 57, 33–48. [Google Scholar] [CrossRef]
- Bernal, S.; de Gutiérrez, R.M.; Rodríguez, E.; Delvasto, S.; Puertas, F. Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete. Mater. Constr. 2009, 59, 53–62. [Google Scholar] [CrossRef]
- Pan, Z.; Cheng, L.; Lu, Y.; Yang, N. Hydration products of alkali-activated slag–red mud cementitious material. Cem. Concr. Res. 2002, 32, 357–362. [Google Scholar] [CrossRef]
- Duxson, P. Geopolymer precursor design. In Geopolymers; Woodhead Publishing: Cambridge, UK, 2009; pp. 37–49. [Google Scholar]
- Bernal, S.A.; De Gutierrez, R.M.; Provis, J.L.; Rose, V. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem. Concr. Res. 2010, 40, 898–907. [Google Scholar] [CrossRef]
- Krizan, D.; Zivanovic, B. Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cem. Concr. Res. 2002, 32, 1181–1188. [Google Scholar] [CrossRef]
- Živica, V. Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr. Build. Mater. 2007, 21, 1463–1469. [Google Scholar] [CrossRef]
- Guerrieri, M.; Sanjayan, J.; Collins, F. Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures. Fire Mater. 2009, 33, 51–62. [Google Scholar] [CrossRef]
- Palacios, M.; Puertas, F. Effect of carbonation on alkali-activated slag paste. J. Am. Ceram. Soc. 2006, 89, 3211–3221. [Google Scholar] [CrossRef]
- Deja, J.; Małolepszy, J. Some aspects of alkali-activated slag binders durability. Ann. Chim. Sci. Matér. 2003, 28, S51–S58. [Google Scholar]
- Roy, D.M.; Jiang, W.; Silsbee, M.R. Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem. Concr. Res. 2000, 30, 1879–1884. [Google Scholar] [CrossRef]
- Wardhono, A.; Gunasekara, C.; Law, D.W.; Setunge, S. Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Constr. Build. Mater. 2017, 143, 272–279. [Google Scholar] [CrossRef]
- Kathirvel, P.; Kaliyaperumal, S.R.M. Performance of alkali activated slag concrete under aggressive environment. Sci. Iran. 2018, 25, 2451–2460. [Google Scholar] [CrossRef]
- Adesanya, E.; Ohenoja, K.; Kinnunen, P.; Illikainen, M. Properties and durability of alkali-activated ladle slag. Mater. Constr. 2017, 50, 255. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Z.; Wang, Q.; Wu, Q. ASR potential of nickel slag fine aggregate in blast furnace slag-fly ash geopolymer and Portland cement mortars. Constr. Build. Mater. 2020, 262, 119990. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Khennane, A.; Kayali, O. Geopolymer concrete-filled pultruded composite beams–concrete mix design and application. Cem. Concr. Compos. 2015, 58, 1–13. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Wang, H. Potential application of geopolymers as protection coatings for marine concrete III. Field experiment. Appl. Clay Sci. 2012, 67, 57–60. [Google Scholar] [CrossRef]
- Kutlusoy, E.; Maras, M.M.; Ekinci, E.; Rihawi, B. Production parameters of novel geopolymer masonry mortar in heritage buildings: Application in masonry building elements. J. Build. Eng. 2023, 76, 107038. [Google Scholar] [CrossRef]
- Bligh, R.; Glasby, T. Development of geopolymer precast floor panels for the Global Change Institute at University of Queensland. In Proceedings of the Concrete Institute of Australia Biennial Conference, Gold Coast, QLD, Australia, 16–18 October 2013. [Google Scholar]
- Abdila, S.R.; Abdullah, M.M.A.B.; Ahmad, R.; Burduhos Nergis, D.D.; Rahim, S.Z.A.; Omar, M.F. Syafwandi Potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: A review. Materials 2022, 15, 375. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, A.; Bao, X.; Ni, T.; Ling, J. A review on geopolymer in potential coating application: Materials, preparation and basic properties. J. Build. Eng. 2020, 32, 101734. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Awed, A.M.; Xie, J.; Gu, F. Performance evaluation of high early strength micro-expansion geopolymer grout potentially used for sustainable road infrastructure. Transp. Geotech. 2024, 49, 101400. [Google Scholar] [CrossRef]
- Ekinci, E.; Turkmen, I.; Birhanli, E. Performance of self-healing geopolymer paste produced using Bacillus subtilis. Constr. Build. Mater. 2022, 325, 126837. [Google Scholar] [CrossRef]
- Rahman, S.K.; Al-Ameri, R. A newly developed self-compacting geopolymer concrete under ambient condition. Constr. Build. Mater. 2021, 267, 121822. [Google Scholar] [CrossRef]
- Kupaei, R.H.; Alengaram, U.J.; Jumaat, M.Z.B.; Nikraz, H. Mix design for fly ash based oil palm shell geopolymer lightweight concrete. Constr. Build. Mater. 2013, 43, 490–496. [Google Scholar] [CrossRef]
- Aslani, F.; Asif, Z. Properties of ambient-cured normal and heavyweight geopolymer concrete exposed to high temperatures. Mater. 2019, 12, 740. [Google Scholar] [CrossRef]
- Tanyildizi, H.; Coskun, A.; Seloglu, M. The effect of nano SiO2 on mechanical properties of underwater geopolymer mortar. Constr. Build. Mater. 2023, 409, 133882. [Google Scholar] [CrossRef]
- Kathirvel, P.; Kaliyaperumal, S.R.M. Influence of recycled concrete aggregates on the flexural properties of reinforced alkali activated slag concrete. Constr. Build. Mater. 2016, 102, 51–58. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Hu, Y.; Wang, G.; Xia, M.; Luo, B.; Luo, Z. Influence of multiple factors on the workability and early strength development of alkali-activated fly ash and slag-based geopolymer-stabilized soil. Materials 2022, 15, 2682. [Google Scholar] [CrossRef]
- Shen, Y.; Kang, S.; Cheng, G.; Wang, J.; Wu, W.; Wang, X.; Li, Q. Effects of silicate modulus and alkali dosage on the performance of one-part electric furnace nickel slag-based geopolymer repair materials. Case Stud. Constr. Mater. 2023, 19, e02224. [Google Scholar] [CrossRef]
- Tome, S.; Nana, A.; Tchakouté, H.K.; Temuujin, J.; Rüscher, C.H. Mineralogical evolution of raw materials transformed to geopolymer materials: A review. Ceram. Int. 2024, 50, 35855–35868. [Google Scholar] [CrossRef]
- Kumar, S.; Mucsi, G.; Kristály, F.; Pekker, P. Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers. Adv. Powder Technol. 2017, 28, 805–813. [Google Scholar] [CrossRef]
- Tchakoute, H.K.; Elimbi, A.; Kenne, B.D.; Mbey, J.A.; Njopwouo, D. Synthesis of geopolymers from volcanic ash via the alkaline fusion method: Effect of Al2O3/Na2O molar ratio of soda–volcanic ash. Ceram. Int. 2013, 39, 269–276. [Google Scholar] [CrossRef]
- Nmiri, A.; Hamdi, N.; Yazoghli-Marzouk, O.; Duc, M.; Srasra, E. Synthesis and characterization of kaolinite-based geopolymer: Alkaline activation effect on calcined kaolinitic clay at different temperatures. J. Mater. Environ. Sci. 2017, 8, 276–290. [Google Scholar]
- Balczár, I.; Korim, T.; Kovács, A.; Makó, É. Mechanochemical and thermal activation of kaolin for manufacturing geopolymer mortars–comparative study. Ceram. Int. 2016, 42, 15367–15375. [Google Scholar] [CrossRef]
- Moukannaa, S.; Nazari, A.; Bagheri, A.; Loutou, M.; Sanjayan, J.G.; Hakkou, R. Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties. J. Non-Cryst. Solids 2019, 511, 76–85. [Google Scholar] [CrossRef]
- Assi, L.N.; Carter, K.; Deaver, E.; Ziehl, P. Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 2020, 263, 121477. [Google Scholar] [CrossRef]
- Bondar, D. Geo-polymer concrete as a new type of sustainable construction materials. In Proceedings of the Third International Conference on Sustainable Construction Materials and Technologies (ICSCMT), Kyoto, Japan, 18–21 August 2013; pp. 18–21. [Google Scholar]
- McLellan, B.C.; Williams, R.P.; Lay, J.; Van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef]
- He, J.; Jie, Y.; Zhang, J.; Yu, Y.; Zhang, G. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 2013, 37, 108–118. [Google Scholar] [CrossRef]
- Huseien, G.F.; Mirza, J.; Ismail, M.; Hussin, M.W. Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash. Constr. Build. Mater. 2016, 125, 1229–1240. [Google Scholar] [CrossRef]
- Puertas, F.; Martίnez-Ramίrez, S.; Alonso, S.; Vázquez, T. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- Prusty, J.K.; Pradhan, B. Investigation on effect of precursor materials and sand-to-binder ratio on strength development, acid resistance and microstructure evolution of geopolymer mortar. Constr. Build. Mater. 2022, 346, 128501. [Google Scholar] [CrossRef]
- Ryu, G.S.; Lee, Y.B.; Koh, K.T.; Chung, Y.S. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 2013, 47, 409–418. [Google Scholar] [CrossRef]
- Ghafoor, M.T.; Khan, Q.S.; Qazi, A.U.; Sheikh, M.N.; Hadi, M.N.S. Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr. Build. Mater. 2021, 273, 121752. [Google Scholar] [CrossRef]
- Singh, B.; Rahman, M.R.; Paswan, R.; Bhattacharyya, S.K. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Constr. Build. Mater. 2016, 118, 171–179. [Google Scholar] [CrossRef]
- Xu, Z.; Yue, J.; Pang, G.; Li, R.; Zhang, P.; Xu, S. Influence of the Activator Concentration and Solid/Liquid Ratio on the Strength and Shrinkage Characteristics of Alkali-Activated Slag Geopolymer Pastes. Adv. Civ. Eng. 2021, 2021, 6631316. [Google Scholar] [CrossRef]
- Tuyan, M.; Andiç-Çakir, Ö.; Ramyar, K. Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Compos. B Eng. 2018, 135, 242–252. [Google Scholar]
- Nazari, A.; Bagheri, A.; Riahi, S. Properties of geopolymer with seeded fly ash and rice husk bark ash. Mater. Sci. Eng. A. 2011, 528, 7395–7401. [Google Scholar] [CrossRef]
- Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 2011, 90, 2118–2124. [Google Scholar]
- Shaikh, F.U. Effects of alkali solutions on corrosion durability of geopolymer concrete. Adv. Concr. Constr. 2014, 2, 109. [Google Scholar] [CrossRef]
- Nodehi, M.; Ozbakkaloglu, T.; Gholampour, A.; Mohammed, T.; Shi, X. The effect of curing regimes on physico-mechanical, microstructural and durability properties of alkali-activated materials: A review. Constr. Build. Mater. 2022, 321, 126335. [Google Scholar]
- Ekinci, E. The effects of different production parameters (NaOH concentration, curing regime and replacement ratio of recycled aggregate) on fresh, hardened and elevated temperature performance of geopolymer mortar samples. J. Build. Eng. 2023, 76, 107052. [Google Scholar] [CrossRef]
- Noushini, A.; Castel, A. The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Constr. Build. Mater. 2016, 112, 464–477. [Google Scholar] [CrossRef]
- Graytee, A.; Sanjayan, J.G.; Nazari, A. Development of a high strength fly ash-based geopolymer in short time by using microwave curing. Ceram. Int. 2018, 44, 8216–8222. [Google Scholar] [CrossRef]
- Adam, A.A.; Horianto, X.X.X. The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia Eng. 2014, 95, 410–414. [Google Scholar] [CrossRef]
- Mo, B.H.; Zhu, H.; Cui, X.M.; He, Y.; Gong, S.Y. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl. Clay Sci. 2014, 99, 144–148. [Google Scholar] [CrossRef]
- El-Hassan, H.; Shehab, E.; Al-Sallamin, A. Influence of different curing regimes on the performance and microstructure of alkali-activated slag concrete. J. Mater. Civ. Eng. 2018, 30, 04018230. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- Gultekin, A.; Ramyar, K. Effect of curing type on microstructure and compressive strength of geopolymer mortars. Ceram. Int. 2022, 48, 16156–16172. [Google Scholar] [CrossRef]
- Liew, Y.M.; Hussin, K.; Al Bakri Abdullah, M.M.; Binhussain, M.; Musa, L.; Khairul Nizar, I.; Heah, C.Y. Effect of curing regimes on metakaolin geopolymer pastes produced from geopolymer powder. Adv. Mater. Res. 2013, 626, 931–936. [Google Scholar]
- Sajan, P.; Jiang, T.; Lau, C.; Tan, G.; Ng, K. Combined effect of curing temperature, curing period and alkaline concentration on the mechanical properties of fly ash-based geopolymer. Clean Mater. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. Traffic Transp. Eng. 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Dacić, A.; Kopecskó, K.; Fenyvesi, O.; Merta, I. The obstacles to a broader application of alkali-activated binders as a sustainable alternative—A review. Materials 2023, 16, 3121. [Google Scholar] [PubMed]
- Ofer-Rozovsky, E.; Haddad, M.A.; Bar-Nes, G.; Borojovich, E.J.C.; Binyamini, A.; Nikolski, A.; Katz, A. Cesium immobilization in nitrate-bearing metakaolin-based geopolymers. J. Nucl. Mater. 2019, 514, 247–254. [Google Scholar] [CrossRef]
- Vandevenne, N.; Iacobescu, R.I.; Pontikes, Y.; Carleer, R.; Thijssen, E.; Gijbels, K.; Schroeyers, W. Incorporating Cs and Sr into blast furnace slag inorganic polymers and their effect on matrix properties. J. Nucl. Mater. 2018, 503, 1–12. [Google Scholar] [CrossRef]
- Shi, C.; Qu, B.; Provis, J.L. Recent progress in low-carbon binders. Cem. Concr. Res. 2019, 122, 227–250. [Google Scholar] [CrossRef]
- Habert, G.; De Lacaillerie, J.D.E.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Kriven, W.M.; Leonelli, C.; Provis, J.L.; Boccaccini, A.R.; Attwell, C.; Ducman, V.S.; Lombardi, J.E. Why geopolymers and alkali-activated materials are key components of a sustainable world: A perspective contribution. J. Am. Ceram. Soc. 2024, 107, 5159–5177. [Google Scholar] [CrossRef]
- Zhao, J.; Tong, L.; Li, B.; Chen, T.; Wang, C.; Yang, G.; Zheng, Y. Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment. J. Clean. Prod. 2021, 307, 127085. [Google Scholar] [CrossRef]
- Albitar, M.; Ali, M.M.; Visintin, P.; Drechsler, M. Durability evaluation of geopolymer and conventional concretes. Constr. Build. Mater. 2017, 136, 374–385. [Google Scholar] [CrossRef]
- Vafaei, M.; Allahverdi, A.; Dong, P.; Bassim, N. Acid attack on geopolymer cement mortar based on waste-glass powder and calcium aluminate cement at mild concentration. Constr. Build. Mater. 2018, 193, 363–372. [Google Scholar] [CrossRef]
- Zhuang, H.J.; Zhang, H.Y.; Xu, H. Resistance of geopolymer mortar to acid and chloride attacks. Procedia Eng. 2017, 210, 126–131. [Google Scholar] [CrossRef]
- Danish, A.; Ozbakkaloglu, T.; Mosaberpanah, M.A.; Salim, M.U.; Bayram, M.; Yeon, J.H.; Jafar, K. Sustainability benefits and commercialization challenges and strategies of geopolymer concrete: A review. J. Build. Eng. 2022, 58, 105005. [Google Scholar] [CrossRef]
- Burciaga-Díaz, O.; Escalante-García, J.I. Strength and durability in acid media of alkali silicate-activated metakaolin geopolymers. J. Am. Ceram. Soc. 2012, 95, 2307–2313. [Google Scholar] [CrossRef]
- Adesina, A. Performance and sustainability overview of alkali-activated self-compacting concrete. Waste Dispos. Sustain. Energy 2020, 2, 165–175. [Google Scholar] [CrossRef]
- Rossi, L.; de Lima, L.M.; Sun, Y.; Dehn, F.; Provis, J.; Ye, G.; De Schutter, G. Future perspectives for alkali-activated materials: From existing standards to structural applications. RILEM Tech. Lett. 2022, 7, 159–177. [Google Scholar] [CrossRef]
- Shobeiri, V.; Bennett, B.; Xie, T.; Visintin, P. A comprehensive assessment of the global warming potential of geopolymer concrete. J. Clean. Prod. 2021, 297, 126669. [Google Scholar] [CrossRef]
- Gökçe, H.S.; Tuyan, M.; Nehdi, M.L. Alkali-activated and geopolymer materials developed using innovative manufacturing techniques: A critical review. Constr. Build. Mater. 2021, 303, 124483. [Google Scholar] [CrossRef]
- Assi, L.; Carter, K.; Deaver, E.E.; Anay, R.; Ziehl, P. Sustainable concrete: Building a greener future. J. Clean. Prod. 2018, 198, 1641–1651. [Google Scholar] [CrossRef]
- Kürklü, G.; Görhan, G. Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production. Constr. Build. Mater. 2019, 217, 498–506. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2017. Earth Syst. Sci. Data 2018, 10, 2213–2239. [Google Scholar] [CrossRef]
- Thomas, R.J.; Peethamparan, S. Alkali-activated concrete: Engineering properties and stress–strain behavior. Constr. Build. Mater. 2015, 93, 49–56. [Google Scholar] [CrossRef]
- Thumrongvut, J.; Seangatith, S.; Phetchuay, C.; Suksiripattanapong, C. Comparative experimental study of sustainable reinforced Portland cement concrete and geopolymer concrete beams using rice husk ash. Sustainability 2022, 14, 9856. [Google Scholar] [CrossRef]
- Maldonado-Alameda, A.; Giro-Paloma, J.; Svobodova-Sedlackova, A.; Formosa, J.; Chimenos, J.M. Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size. J. Clean. Prod. 2020, 242, 118443. [Google Scholar] [CrossRef]
- Lodeiro, I.G.; Cristelo, N.; Palomo, A.; Fernández-Jiménez, A. Use of industrial by-products as alkaline cement activators. Constr. Build. Mater. 2020, 253, 119000. [Google Scholar] [CrossRef]
- Aiken, T.A.; Kwasny, J.; Sha, W.; Soutsos, M.N. Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cem. Concr. Res. 2018, 111, 23–40. [Google Scholar] [CrossRef]
- Aliques-Granero, J.; Tognonvi, M.T.; Tagnit-Hamou, A. Durability study of AAMs: Sulfate attack resistance. Constr. Build. Mater. 2019, 229, 117100. [Google Scholar] [CrossRef]
- Lahoti, M.; Tan, K.H.; Yang, E.H. A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 2019, 221, 514–526. [Google Scholar] [CrossRef]
- Shill, S.K.; Al-Deen, S.; Ashraf, M.; Hutchison, W. Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously. Constr. Build. Mater. 2020, 239, 117886. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Gu, L.; Visintin, P.; Bennett, T. Evaluation of accelerated degradation test methods for cementitious composites subject to sulfuric acid attack; application to conventional and alkali-activated concretes. Cem. Concr. Compos. 2018, 87, 187–204. [Google Scholar] [CrossRef]
- Kwasny, J.; Aiken, T.A.; Soutsos, M.N.; McIntosh, J.A.; Cleland, D.J. Sulfate and acid resistance of lithomarge-based geopolymer mortars. Constr. Build. Mater. 2018, 166, 537–553. [Google Scholar] [CrossRef]
- Buchwald, A.; Vanooteghem, M.; Gruyaert, E.; Hilbig, H.; De Belie, N. Purdocement: Application of alkali-activated slag cement in Belgium in the 1950s. Mater. Struct. 2015, 48, 501–511. [Google Scholar] [CrossRef]
- Wang, K.; Zha, X.; Zhang, X.; Zhai, X. Mesoscale numerical simulation of chloride ion penetration in geopolymer concrete under the externally applied electric field. Constr. Build. Mater. 2023, 394, 131380. [Google Scholar] [CrossRef]
- Jahandari, S.; Tao, Z.; Rahmani, A.; Alim, M.A. Durability of one-part geopolymer concrete in aggressive environments. Constr. Build. Mater. 2025, 490, 142510. [Google Scholar] [CrossRef]
- Udhaya Kumar, T.; Vinod Kumar, M.; Salunkhe, S.; Cep, R. Evaluation of non-destructive testing and long-term durability of geopolymer aggregate concrete. Front. Built Environ. 2024, 10, 1454687. [Google Scholar] [CrossRef]
- Lamaa, G.; Duarte, A.P.; Silva, R.V.; de Brito, J. Carbonation of alkali-activated materials: A review. Materials 2023, 16, 3086. [Google Scholar] [CrossRef]
- De Belie, N.; Bernal, S. Closing Letter of RILEM TC 281-CCC: Carbonation of Concrete with Supplementary Cementitious Materials. RILEM Tech. Lett. 2025, 10, 22–32. [Google Scholar] [CrossRef]
- Zhang, P.; Shi, B.; Dai, X.; Chen, C.; Lai, C. A State-of-the-Art Review on the Freeze–Thaw Resistance of Sustainable Geopolymer Gel Composites: Mechanisms, Determinants, and Models. Gels 2025, 11, 537. [Google Scholar]
- Wu, T.; Wu, J.; Zheng, C.; Wang, J. Evaluation of freeze-thaw resistance of geopolymer concrete incorporating GFRP waste powder. J. Build. Eng. 2024, 90, 109465. [Google Scholar] [CrossRef]
- Bian, Y.; Song, F.; Liu, H.; Li, R.; Xiao, C. Study on the performance of basalt fiber geopolymer concrete by freeze-thaw cycle coupled with sulfate erosion. AIP Adv. 2024, 14. [Google Scholar] [CrossRef]
- Wang, W.; Noguchi, T. Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: A state-of-the-art review. Constr. Build. Mater. 2020, 252, 119105. [Google Scholar] [CrossRef]
- Manzoor, T.; Bhat, J.A.; Shah, A.H. Performance of geopolymer concrete at elevated temperature−A critical review. Constr. Build. Mater. 2024, 420, 135578. [Google Scholar] [CrossRef]
- Rihan, M.A.M.; Onchiri, R.O.; Gathimba, N.; Sabuni, B. Effect of elevated temperature on the mechanical properties of geopolymer concrete: A critical review. Discov. Civ. Eng. 2024, 1, 24. [Google Scholar] [CrossRef]
- El Dandachy, M.E.; Hassoun, L.; El-Mir, A.; Khatib, J.M. Effect of elevated temperatures on compressive strength, ultrasonic pulse velocity, and transfer properties of metakaolin-based geopolymer mortars. Buildings 2024, 14, 2126. [Google Scholar] [CrossRef]
- Ali, A.Y.F.; Ahmed, S.A.; Helal, Y.H.; El-Feky, M.S. Thermo-mechanical behavior and spalling resistance of alkali-activated slag versus cement mortars under rapid high-temperature exposure. Sci. Rep. 2025, 15, 32581. [Google Scholar] [CrossRef]
- Luo, Y.; Brouwers, H.J.H.; Yu, Q. Understanding the gel compatibility and thermal behavior of alkali activated Class F fly ash/ladle slag: The underlying role of Ca availability. Cem. Concr. Res. 2023, 170, 107198. [Google Scholar] [CrossRef]
- Ozawa, M.; Shaikh, F.U.A. A study on spalling behaviour of geopolymer mortars using ring restraint test. Constr. Build. Mater. 2021, 279, 122494. [Google Scholar] [CrossRef]
- Girish, M.G.; Shetty, K.K.; Nayak, G. Thermal Characteristics of Fly Ash-Slag Based Geopolymer Concrete for Sustainable Road Construction in Tropical Region. Int. J. Pavement Res. Technol. 2024, 1–29. [Google Scholar] [CrossRef]
- Przybek, A.; Romańska, P.; Korniejenko, K.; Krajniak, K.; Hebdowska-Krupa, M.; Łach, M. Thermal Properties of Geopolymer Concretes with Lightweight Aggregates. Materials 2025, 18, 3150. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.T.; Elsayed, H.A.; AbdelMoied, S. Geopolymer synthesis by the alkali-activation of blastfurnace steel slag and its fire-resistance. HBRC J. 2018, 14, 159–164. [Google Scholar] [CrossRef]
- Lv, X.; Wang, K.; He, Y.; Cui, X. A green drying powder inorganic coating based on geopolymer technology. Constr. Build. Mater. 2019, 214, 441–448. [Google Scholar] [CrossRef]
- Kovalchuk, G.; Krienko, P.V. Producing fire-and heat-resistant geopolymers. In Geopolymers; Woodhead Publishing: Cambridge, UK, 2009; pp. 227–266. [Google Scholar]
- Lu, C.; Zhang, Z.; Shi, C.; Li, N.; Jiao, D.; Yuan, Q. Rheology of alkali-activated materials: A review. Cem. Concr. Compos. 2021, 121, 104061. [Google Scholar] [CrossRef]
- Xie, T.; Visintin, P.; Zhao, X.; Gravina, R. Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state-of-the-art and the development of a new unified approach. Constr. Build. Mater. 2020, 256, 119380. [Google Scholar]
- Sun, B.; Sun, Y.; Ye, G.; De Schutter, G. A mix design methodology of slag and fly ash-based alkali-activated paste. Cem. Concr. Compos. 2022, 126, 104368. [Google Scholar] [CrossRef]
- Aughenbaugh, K.L.; Williamson, T.; Juenger, M.C.G. Critical evaluation of strength prediction methods for alkali-activated fly ash. Mater. Struct. 2015, 48, 607–620. [Google Scholar] [CrossRef]
- Ibrahim, M.; Maslehuddin, M. An overview of factors influencing the properties of alkali-activated binders. J. Clean. Prod. 2021, 286, 124972. [Google Scholar] [CrossRef]
- Yang, C.H.; Wu, F.; Chen, K. Research on set retarder of high and super high strength alkali-activated slag cement and concrete. Key Eng. Mater. 2011, 477, 164–169. [Google Scholar] [CrossRef]
- Weil, M.; Dombrowski, K.; Buchwald, A. Life-cycle analysis of geopolymers. In Geopolymers; Woodhead Publishing: Cambridge, UK, 2009; pp. 194–210. [Google Scholar]
- Pacheco-Torgal, F.; Abdollahnejad, Z.; Camões, A.F.; Jamshidi, M.; Ding, Y. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Constr. Build. Mater. 2012, 30, 400–405. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L. Durability of alkali-activated materials: Progress and perspectives. J. Am. Ceram. Soc. 2014, 97, 997–1008. [Google Scholar] [CrossRef]
- Naghizadeh, A.; Ekolu, S.O.; Tchadjie, L.N.; Solomon, F. Long-term strength development and durability index quality of ambient-cured fly ash geopolymer concretes. Constr. Build. Mater. 2023, 374, 130899. [Google Scholar] [CrossRef]
- Girish, M.G.; Shetty, K.K.; Nayak, G.; Kamath, K. Evaluation of mechanical, ecological, economical, and thermal characteristics of geopolymer concrete containing processed slag sand. Sustainability 2024, 16, 7402. [Google Scholar] [CrossRef]
- Žurinskas, D.; Vaičiukynienė, D.; Stelmokaitis, G.; Doroševas, V. Clayey soil strength improvement by using alkali activated slag reinforcing. Minerals 2020, 10, 1076. [Google Scholar] [CrossRef]
- Xue, X.; Liu, Y.L.; Dai, J.G.; Poon, C.S.; Zhang, W.D.; Zhang, P. Inhibiting efflorescence formation on fly ash–based geopolymer via silane surface modification. Cem. Concr. Compos. 2018, 94, 43–52. [Google Scholar] [CrossRef]
- Zhu, J.F.; Xia, Y.N.; Ju, L.Y.; Yang, H.; Wang, Z.Q.; Jin, J.Y.; Liao, Y.C. Physico-mechanical performance and micro–mechanism analysis on urban sludge modified with a low carbon binder. Acta Geotech. 2025, 1–17. [Google Scholar] [CrossRef]
- Sun, S.; Lin, J.; Fang, L.; Ma, R.; Ding, Z.; Zhang, X.; Liu, Y. Formulation of sludge incineration residue based geopolymer and stabilization performance on potential toxic elements. Waste Manag. 2018, 77, 356–363. [Google Scholar] [CrossRef]
- Kong, X.; Shi, J.; Shen, Y.; Zhang, W.; Fu, Y. Sludge-based geopolymer materials: A review. Int. J. Appl. Ceram. 2024, 21, 1333–1365. [Google Scholar] [CrossRef]
- Guan, Q.; Ma, Y.; Zeng, H.; Boyi, L.I.; Zhao, H.; Wang, Z.; Liu, J. Long-term evolution of strength, phase composition and microstructure in Belite-Rich cement under early temperature-rise curing. Constr. Build. Mater. 2025, 474, 141071. [Google Scholar] [CrossRef]
- Atasever, M.; Erdoğan, S.T. Effects of clay type and component fineness on the hydration and properties of limestone calcined clay cement. Mater. Struct. 2024, 57, 183. [Google Scholar] [CrossRef]
- Avet, F.; Snellings, R.; Diaz, A.A.; Haha, M.B.; Scrivener, K. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem. Concr. Res. 2016, 85, 1–11. [Google Scholar] [CrossRef]
- Krishnan, S.; Gopala Rao, D.; Bishnoi, S. Why Low-Grade Calcined Clays Are the Ideal for the Production of Limestone Calcined Clay Cement (LC3). In Calcined Clays for Sustainable Concrete: Proceedings of the 3rd International Conference on Calcined Clays for Sustainable Concrete; Springer: Singapore, 2020; pp. 125–130. [Google Scholar]
- Barbhuiya, S.; Nepal, J.; Das, B.B. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. J. Build. Eng. 2023, 79, 107794. [Google Scholar] [CrossRef]
- Ariyadasa, P.W.; Manalo, A.C.; Lokuge, W.; Aravinthan, V.; Pasupathy, K.; Gerdes, A. Bond performance of fly ash-based geopolymer mortar in simulated concrete sewer substrate. Constr. Build. Mater. 2024, 446, 137927. [Google Scholar] [CrossRef]
- Rihawi, B.; Maras, M.M.; Ekinci, E.; Kutlusoy, E. Development of novel fiber-reinforced eco-friendly concrete: Application in geopolymer concrete pipes infrastructure systems. Clean Technol. Environ. Policy 2025, 1–18. [Google Scholar] [CrossRef]
- Geckil, T.; Sarici, T.; Aksoy, H.S. The usability of construction and demolition wastes stabilized using alkali activated fly ash as filler material. Rev. Constr. 2025, 24, 428–448. [Google Scholar] [CrossRef]
- Sarici, T.; Geckil, T.; Ok, B.; Aksoy, H.S. An Investigation of the Usability of Alkali-Activated Blast Furnace Slag-Additive Construction Demolition Waste as Filling Material. Materials 2025, 18, 398. [Google Scholar] [PubMed]
- Fu, K.; Xue, Y.; Qiu, D.; Wang, P.; Lu, H. Multi-channel fusion prediction of TBM tunneling thrust based on multimodal decomposition and reconstruction. Tunn. Undergr. Space Technol. 2026, 167, 107061. [Google Scholar]
- Xia, D.; Chang, W.; Li, B.; Gao, A.; Wu, F. Behaviour of steel-fibre-reinforced geopolymer concrete-filled square steel tubular stub column under axial compression. In Structures; Elsevier: Amsterdam, The Netherlands, 2024; Volume 67. [Google Scholar]
- Kocaer, O.; Aldemir, A. Confined compressive stress–strain model for rectangular geopolymer reinforced concrete members. Struct. Concr. 2025, 26, 4334–4347. [Google Scholar]
- Guo, Y.C.; Cai, Y.J.; Xie, Z.H.; Xiao, S.H.; Zhuo, K.X.; Cai, P.D.; Lin, J.X. Experimental investigation of GFRP bar bonding in geopolymer concrete using hinged beam tests. Eng. Struct. 2025, 322, 119036. [Google Scholar] [CrossRef]
- Özbayrak, A.; Kucukgoncu, H.; Aslanbay, H.H.; Aslanbay, Y.G. Stress and damage distribution analysis of steel reinforced geopolymer concrete beams: Finite element method and experimental comparison under varying design parameters. J. Build. Eng. 2025, 104, 112229. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Wan, S.; Yang, C.; Zong, Z.; Qian, H.; Cai, J. Experimental studies on behavior of one-part geopolymer composite slabs subjected to blast loading. In Structures; Elsevier: Amsterdam, The Netherlands, 2024; Volume 66, p. 106825. [Google Scholar]
- Chen, C.; Zhang, X.; Hao, H.; Sarker, P.K. Experimental and numerical study of steel fibre reinforced geopolymer concrete slab under impact loading. Eng. Struct. 2025, 322, 119096. [Google Scholar] [CrossRef]
- Wasim, M.; Ngo, T.D.; Law, D. A state-of-the-art review on the durability of geopolymer concrete for sustainable structures and infrastructure. Constr. Build. Mater. 2021, 291, 123381. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr. Build. Mater. 2014, 56, 113–127. [Google Scholar] [CrossRef]
- Alahmari, T.S.; Abdalla, T.A.; Rihan, M.A.M. Review of recent developments regarding the durability performance of eco-friendly geopolymer concrete. Buildings 2023, 13, 3033. [Google Scholar] [CrossRef]
- Ikotun, J.O.; Aderinto, G.E.; Madirisha, M.M.; Katte, V.Y. Geopolymer cement in pavement applications: Bridging sustainability and performance. Sustainability 2024, 16, 5417. [Google Scholar] [CrossRef]
- Li, F.; Chen, D.; Lu, Y.; Zhang, H.; Li, S. Influence of mixed fibers on fly ash based geopolymer resistance against freeze-thaw cycles. J. Non-Cryst. Solids. 2022, 584, 121517. [Google Scholar] [CrossRef]
- Liu, H.; Dai, X.; Zhu, P.; Wang, X.; Zong, M.; Feng, J. Acid rain resistance of geopolymer recycled pervious concrete featuring top-bottom interconnected pores under freeze-thaw cycles and fatigue loads. J. Build. Eng. 2024, 96, 110356. [Google Scholar] [CrossRef]
- Akduman, S.; Aktepe, R.; Aldemir, A.; Ozcelikci, E.; Alam, B.; Sahmaran, M. Opportunities and challenges in constructing a demountable precast building using C&D waste-based geopolymer concrete: A case study in Türkiye. J. Clean. Prod. 2024, 434, 139976. [Google Scholar]
- Munir, Q.; Kärki, T. Cost analysis of various factors for geopolymer 3D printing of construction products in factories and on construction sites. Recycling 2021, 6, 60. [Google Scholar] [CrossRef]
- Shehata, N.; Mohamed, O.A.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Sci. Total Environ. 2022, 836, 155577. [Google Scholar] [CrossRef]
- Asadi, I.; Baghban, M.H.; Hashemi, M.; Izadyar, N.; Sajadi, B. Phase change materials incorporated into geopolymer concrete for enhancing energy efficiency and sustainability of buildings: A review. Case Stud. Constr. Mater. 2022, 17, e01162. [Google Scholar] [CrossRef]
- Sah, T.P.; Lacey, A.W.; Hao, H.; Chen, W. Prefabricated concrete sandwich and other lightweight wall panels for sustainable building construction: State-of-the-art review. J. Build. Eng. 2024, 89, 109391. [Google Scholar]
- Amran, M.; Huang, S.S.; Debbarma, S.; Rashid, R.S. Fire resistance of geopolymer concrete: A critical review. Constr. Build. Mater. 2022, 324, 126722. [Google Scholar] [CrossRef]
- Yang, N. Development of Multiple Functional Geopolymer Coating for Performance Upgrading of Civil Engineering Structure. Ph.D. Thesis, The Hong Kong Polytechnic University, Hong Kong, China, 2024. [Google Scholar]
- Ataei, A.; Bradford, M.A.; Liu, X. Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors. Eng. Struct. 2016, 114, 1–13. [Google Scholar] [CrossRef]
- Aldred, J.; Day, J. Is geopolymer concrete a suitable alternative to traditional concrete. In Proceedings of the 37th Conference on Our World in Concrete & Structures, Singapore, 29–31 August 2012; Volume 2931, p. 14. [Google Scholar]
- Provis, J.L.; Van Deventer, J.S.J. Geopolymers: Structures, Processing, Properties and Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Aslani, F.; Zhang, Y.; Valizadeh, A.; Philip, L. Modular structural elements incorporating decommissioned flexible flowlines and geopolymer concrete. Innov. Emerg. Technol. 2023, 10, 2330002. [Google Scholar] [CrossRef]
- Łach, M. Geopolymer foams—Will they ever become a viable alternative to popular insulation materials?—A critical opinion. Materials 2021, 14, 3568. [Google Scholar] [CrossRef] [PubMed]
- Maras, M.M. Characterization of performable geopolymer mortars for use as repair material. Struct. Concr. 2021, 22, 3173–3188. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Feng, P.; Zhang, P. A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: Effects of chemical additives. J. Build. Eng. 2022, 49, 104056. [Google Scholar] [CrossRef]
- El-Kempshawy, G.M.; El-Mahalawy, M.S.; Ewais, A.Y.; Kamel, A.M.; Marey Mahmoud, H. Evaluating some geopolymer-based mortars for restoration purposes of damaged ancient Egyptian mural paintings. J. Build. Pathol. Rehabil. 2024, 9, 16. [Google Scholar] [CrossRef]
- Tan, J.; Dan, H.; Ma, Z. Metakaolin based geopolymer mortar as concrete repairs: Bond strength and degradation when subjected to aggressive environments. Ceram. Int. 2022, 48, 23559–23570. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, M.; Lu, W.; Li, X.; Lu, X. Seismic retrofitting of a historic building by using an isolation system with a weak restoring force. Soil Dyn. Earthq. Eng. 2021, 148, 106836. [Google Scholar] [CrossRef]
- Maras, M.M.; Kose, M.M.; Rızaoglu, T. Microstructural characterization and mechanical properties of volcanic tuff (Malatya, Turkey) used as building stone for the restoring cultural heritage. Period. Polytech. Civ. Eng. 2021, 65, 309–319. [Google Scholar]
- Jindal, B.B.; Sharma, R. The effect of nanomaterials on properties of geopolymers derived from industrial by-products: A state-of-the-art review. Constr. Build. Mater. 2020, 252, 119028. [Google Scholar]
- Ricciotti, L.; Molino, A.J.; Roviello, V.; Chianese, E.; Cennamo, P.; Roviello, G. Geopolymer composites for potential applications in cultural heritage. Environments 2017, 4, 91. [Google Scholar] [CrossRef]
- Murat Maras, M. Experimental behavior of injected geopolymer grout using styrene-butadiene latex for the repair and strengthening of masonry walls. Adv. Struct. Eng. 2021, 24, 2484–2499. [Google Scholar] [CrossRef]
- Abulencia, A.B.; Villoria, M.B.D.; Libre, R.G.D., Jr.; Quiatchon, P.R.J.; Dollente, I.J.R.; Guades, E.J.; Ongpeng, J.M.C. Geopolymers as sustainable material for strengthening and restoring unreinforced masonry structures: A review. Buildings 2021, 11, 532. [Google Scholar] [CrossRef]
- Singh, R.J.; Raut, A. Insulation effects of a roof system developed from waste-incorporated geopolymer concrete. Iran. J. Sci. Technol. Trans. Civ. Eng. 2023, 47, 3259–3276. [Google Scholar] [CrossRef]
- Cao, V.D.; Pilehvar, S.; Salas-Bringas, C.; Szczotok, A.M.; Bui, T.Q.; Carmona, M.; Kjøniksen, A.L. Thermal performance and numerical simulation of geopolymer concrete containing different types of thermoregulating materials for passive building applications. Energy Build. 2018, 173, 678–688. [Google Scholar] [CrossRef]
- Cao, V.D.; Bui, T.Q.; Kjøniksen, A.L. Thermal analysis of multi-layer walls containing geopolymer concrete and phase change materials for building applications. Energy 2019, 186, 115792. [Google Scholar] [CrossRef]
- Zailan, S.N.; Mahmed, N.; Abdullah, M.M.A.B.; Sandu, A.V. Self-cleaning geopolymer concrete-A review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 133, p. 012026. [Google Scholar]
- Zailan, S.N.; Mahmed, N.; Abdullah, M.M.A.B.; Rahim, S.Z.A.; Halin, D.S.C.; Sandu, A.V.; Yahya, Z. Potential applications of geopolymer cement-based composite as self-cleaning coating: A review. Coatings 2022, 12, 133. [Google Scholar] [CrossRef]
- Türkmen, İ.; Karakoç, M.B.; Kantarcı, F.; Maraş, M.M.; Demirboğa, R. Fire resistance of geopolymer concrete produced from Elazığ ferrochrome slag. Fire Mater. 2016, 40, 836–847. [Google Scholar] [CrossRef]
- Mahrous, M.A.; Abdelghany, M.A.; Trindade, A.C.C.; Aboukhatwa, M.; Kriven, W.M.; Jasiuk, I.M. Investigating irradiation effects on metakaolin-based geopolymer. Constr. Build. Mater. 2024, 437, 136837. [Google Scholar] [CrossRef]
- Shi, D.; Xia, Y.; Zhao, Y.; Ma, X.; Wang, J.; Liu, M.; Yu, K. Evaluation of technical and gamma radiation shielding properties of sustainable ultra-high performance geopolymer concrete. Constr. Build. Mater. 2024, 436, 137003. [Google Scholar] [CrossRef]
- Jayawardane, V.S.; Anggraini, V.; Li-Shen, A.T.; Paul, S.C.; Nimbalkar, S. Strength enhancement of geotextile-reinforced fly-ash-based geopolymer stabilized residual soil. Int. J. Geosynth. Ground Eng. 2020, 6, 50. [Google Scholar] [CrossRef]
- Wang, S.; Xue, Q.; Zhu, Y.; Li, G.; Wu, Z.; Zhao, K. Experimental study on material ratio and strength performance of geopolymer-improved soil. Constr. Build. Mater. 2021, 267, 120469. [Google Scholar] [CrossRef]
- Ayub, F.; Khan, S.A. An overview of geopolymer composites for stabilization of soft soils. Constr. Build. Mater. 2023, 404, 133195. [Google Scholar] [CrossRef]
- Luo, B.; Su, Y.; Ding, X.; Chen, Y.; Liu, C. Modulation of initial CaO/Al2O3 and SiO2/Al2O3 ratios on the properties of slag/fly ash-based geopolymer stabilized clay: Synergistic effects and stabilization mechanism. Mater. Today Commun. 2025, 47, 113295. [Google Scholar] [CrossRef]
- Su, Y.; Luo, B.; Luo, Z.; Xu, F.; Huang, H.; Long, Z.; Shen, C. Mechanical characteristics and solidification mechanism of slag/fly ash-based geopolymer and cement solidified organic clay: A comparative study. J. Build. Eng. 2023, 71, 106459. [Google Scholar] [CrossRef]
- Parthiban, D.; Vijayan, D.S.; Koda, E.; Vaverkova, M.D.; Piechowicz, K.; Osinski, P.; Van Duc, B. Role of industrial based precursors in the stabilization of weak soils with geopolymer–A review. Case Stud. Constr. Mater. 2022, 16, e00886. [Google Scholar] [CrossRef]
- Tajaddini, A.; Saberian, M.; Sirchi, V.K.; Li, J.; Maqsood, T. Improvement of mechanical strength of low-plasticity clay soil using geopolymer-based materials synthesized from glass powder and copper slag. Case Stud. Constr. Mater. 2023, 18, e01820. [Google Scholar] [CrossRef]
- Nwonu, D.C. Exploring soil geopolymer technology in soft ground improvement: A brief excursion. Arab. J. Geosci. 2021, 14, 460. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, S.; Pradeep, N.M.; Nishant, M. Behavior of an Embankment on Soft Ground Improved with Soil–Geopolymer Deep Mix Columns under Static and Cyclic Loadings. Int. J. Geomech. 2025, 25, 04024340. [Google Scholar] [CrossRef]
- Ye, H.; He, Q.; Ping, P.; Pan, J.; Zhu, B. Anisotropic flexural behavior and energy absorption of 3D printed engineered cementitious composites (3DP-ECC) beams under low-velocity impact. Cem. Concr. Compos. 2025, 163, 106183. [Google Scholar] [CrossRef]
- Chen, W.; Guan, Y.; Zhu, B.; Han, J.; Zhang, Y.; Qian, Y.; Pan, J. Influence of extruded strip shape and dimension on the mechanical properties and pore characteristics of 3D printed geopolymer concrete. Constr. Build. Mater. 2025, 464, 140176. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos. B Eng. 2019, 176, 107290. [Google Scholar] [CrossRef]
- Sando, M.; Stephan, D. The development of a fly ash-based geopolymer for extrusion-based 3D printing, along with a printability prediction method. Case Stud. Constr. Mater. 2024, 21, e03407. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Z.; Sun, H.; Huo, W.; Zhang, J.; Wan, Y.; Zhang, C. Durability of waste concrete powder-based geopolymer reclaimed concrete under carbonization and freeze–thaw cycles. Constr. Build. Mater. 2023, 403, 133155. [Google Scholar] [CrossRef]
- Davis, G.; Montes, C.; Eklund, S. Preparation of lunar regolith based geopolymer cement under heat and vacuum. Adv. Space Res. 2017, 59, 1872–1885. [Google Scholar] [CrossRef]
- Korniejenko, K.; Pławecka, K.; Kozub, B. An Overview for Modern Energy-Efficient Solutions for Lunar and Martian Habitats Made Based on Geopolymers Composites and 3D Printing Technology. Energies 2022, 15, 9322. [Google Scholar] [CrossRef]
- Li, F.; Zhang, R.; Zhou, S.; Zhu, X. Printability and hardening performance of three-dimensionally-printed geopolymer based on lunar regolith simulant for automated construction of lunar infrastructure. Front. Struct. Civ. Eng. 2023, 17, 1535–1553. [Google Scholar] [CrossRef]
- Ma, S.; Fu, S.; Wang, Q.; Xu, L.; He, P.; Sun, C.; Zhou, Y. 3D printing of damage-tolerant martian regolith simulant-based geopolymer composites. Addit. Manuf. 2022, 58, 103025. [Google Scholar] [CrossRef]
Production Process | Energy Consumption | CO2 Footprint | Equation |
---|---|---|---|
2NaCl + 2H2O → 2NaOH + Cl2 + H2 | Low (70–95 °C) | Low | (3) |
Na2CO3 + SiO2 → Na2SiO3 + CO2 | High (1100–1400 °C) | High | (4) |
2KCl + 2H2O → 2KOH + Cl2 + H2 | Low (60–90 °C) | Low | (5) |
K2CO3 + SiO2 → K2SiO3 + CO2 | High (1000–1300 °C) | High | (6) |
Raw Material | Curing Regime | Findings | Reference |
---|---|---|---|
GBFS | water | - Water curing increased the compressive strength by approximately 105% compared to curing in ambient conditions. | [90] |
ambient | |||
GBFS | ambient | - Among the curing regimes evaluated, intermittent water curing emerged as the optimal method due to its significant improvement in physical and mechanical characteristics. | [95] |
water | |||
intermittent water (7 days in water followed by 21 days in air) | |||
MK | 10 °C | - The setting time of the samples cured at room temperature was 4 h, while the setting time of samples cured at 10 °C was completed in 4 days. - However, no negative effect of low temperature curing (10 °C) was observed on 28-day compressive strength values | [96] |
20 °C | |||
40 °C | |||
60 °C | |||
80 °C | |||
Pumice Perlite Burnt Clay FA | Oven | - Although microwave curing increased the compressive strength of various types of aluminosilicate raw materials (perlite, pumice and burnt clay), it adversely affected fly ash-based geopolymer mortars. | [97] |
Microwave | |||
MK | Room temperature | - Room temperature curing is not suitable and heat is required for geopolymerization process. - In excessively high curing temperature, the negative effects on strength development can be eliminated by keeping the curing time low. | [98] |
40 °C | |||
60 °C | |||
80 °C | |||
100 °C | |||
Class F FA | 20 °C | - It was stated that geopolymer samples exposed to curing temperatures of 60 °C and 80 °C give competitive compressive strength results even despite the short-term cure time and low alkali content. | [99] |
40 °C | |||
60 °C | |||
80 °C |
Destructive Environmental Effects | Representative Findings | Comparison with Traditional Concrete |
---|---|---|
Chloride Migration | Generally low-to-medium chloride permeability | A tendency towards lower ion permeability in geopolymer concretes has been reported [134,136]. |
Carbonation Rate | Generally high carbonation rate | It has been reported that the carbonation rate is sensitive to binder chemistry [137,138]. |
Sulfate/Sulfuric Acid | Generally high sulfate resistance | GPC has been shown to be more resistant to acid and sulfate attack [135]. |
Freeze–Thaw | Dependent on production conditions (design/cure determinant) | It has been stated that limited losses can be achieved at high cycles with appropriate design and curing regimes [139,140,141]. |
Alkali-Silica Reaction (ASR) | Dependent on production conditions (highly dependent on Ca+ and alkali content) | It has been reported that alkali-activated binders may have lower ASR resistance [142]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekinci, E.; Kantarcı, F.; Maraş, M.M.; Ekinci, E.; Türkmen, İ.; Demirboğa, R. Historiography, Current Practice and Future Perspectives: A Critical Review of Geopolymer Binders. Sustainability 2025, 17, 9204. https://doi.org/10.3390/su17209204
Ekinci E, Kantarcı F, Maraş MM, Ekinci E, Türkmen İ, Demirboğa R. Historiography, Current Practice and Future Perspectives: A Critical Review of Geopolymer Binders. Sustainability. 2025; 17(20):9204. https://doi.org/10.3390/su17209204
Chicago/Turabian StyleEkinci, Enes, Fatih Kantarcı, Müslüm Murat Maraş, Ergun Ekinci, İbrahim Türkmen, and Ramazan Demirboğa. 2025. "Historiography, Current Practice and Future Perspectives: A Critical Review of Geopolymer Binders" Sustainability 17, no. 20: 9204. https://doi.org/10.3390/su17209204
APA StyleEkinci, E., Kantarcı, F., Maraş, M. M., Ekinci, E., Türkmen, İ., & Demirboğa, R. (2025). Historiography, Current Practice and Future Perspectives: A Critical Review of Geopolymer Binders. Sustainability, 17(20), 9204. https://doi.org/10.3390/su17209204