Constructing an Ecological Security Pattern Coupled with Climate Change and Ecosystem Service Valuation: A Case Study of Yunnan Province
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Processing
2.3. Research Method
2.3.1. Research Framework
2.3.2. Land Use Simulation Method
- 1.
- System dynamics model (SD model)
- 2.
- Path-generating Land Use simulation (PLUS model)
- 3.
- Future Scenario Setting
2.3.3. Ecosystem Service Value (ESV) Assessment Methods
- Correction of the ESV equivalent factor
- Step 1: Land Use Type and Grain Yield
- (1)
- Land use type correctionThe original equivalence table [29] contains 14 secondary classifications. In this study, the land use types in Yunnan Province were grouped into six major classes, namely cultivated land, forest, grassland, water bodies, construction land, and unused land. These categories were classified and adjusted based on the natural conditions and spatial distribution of land use in the province. Specifically, cultivated land represents the average of dry land and paddy fields; forest represents the average of all forest types; grassland represents the average of all grassland types; the average of water systems and glacier snow; and unused land represents the average of wetlands, deserts, and bare land. Construction land, meanwhile, is evaluated with reference to the study by Zhang et al. [37].
- (2)
- Grain yield correctionUsing the ecosystem correction method proposed by Xie et al. [28], we selected 1/7 of the economic value per unit area of three main crops—rice, wheat, and corn—in the study area to calculate ecosystem services per unit area.
- Step 2: Cultivated Land and Precipitation
- Step 3: Socio-economic
- 2.
- ESV Assessment
2.3.4. Spatial Heterogeneity Analysis Methods
- 1.
- Global Autocorrelation
- 2.
- Cold and Hot Spot Analysis
2.3.5. Ecological Security Pattern (ESP) Construction Method
- 1.
- Ecological Source Area Identification Method
- 2.
- Resistance Surface Construction Method
- 3.
- Ecological Corridors, Pinch Points, and Barrier Points Identification Method
3. Results
3.1. Land Use Simulation Results
3.1.1. Accuracy Inspection
3.1.2. Spatial Distribution of Land Use
3.2. Analysis of the Spatio-Temporal Variation Characteristics of ESVs
3.2.1. Temporal Variation Characteristics of ESVs
3.2.2. Spatial Variation Characteristics of ESVs
3.3. Spatial Heterogeneity Analysis of ESVs
3.3.1. Global Spatial Autocorrelation
3.3.2. Cold and Hot Spots Analysis
3.4. Identification of ESP
3.4.1. Identification of Ecological Sources
3.4.2. Results of Resistance Surface Construction
3.4.3. Identification of Ecological Corridors, Pinch Points, and Barrier Points
- 1.
- Ecological Corridor Identification
- 2.
- Ecological Pinch Points Identification
- 3.
- Ecological Barrier Points Identification
3.4.4. Construction of ESP
4. Discussion
4.1. Optimization of ESP in Yunnan Province
4.2. Ecological Security and Protection Strategy
4.2.1. Ecological Source Protection Strategy
4.2.2. Ecological Corridor Protection Strategy
4.2.3. Protection Strategies for Ecological Pinch, Barrier Area, and Improvement Area
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, C.; Wang, Z.; Wang, Y.; Sun, D.; Zhang, J. Combining MSPA-MCR model to evaluate the ecological network in Wuhan, China. Land 2022, 11, 213. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.; Luo, X. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Wang, S.; Li, Q.; Wang, R.; Zhang, R.; Ge, X. Evolution and driving mechanism of multiple ecosystem services in resource-based region of Northern China. Sci. Rep. 2024, 14, 22338. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, Y.; Wang, J.; You, X. Landscape pattern analysis and ecological network planning of Tianjin City. Urban For. Urban Green. 2019, 46, 126479. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Chen, D.; Peng, B. Exploring the impacts of land use and land cover change on ecosystem services in Dongting Lake, China: A spatial and temporal analysis. Front. Environ. Sci. 2024, 12, 1395557. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, W.; Gao, F.; Bi, X.; Wang, P.; Wang, X. Ecological security pattern construction in loess plateau areas—A case study of Shanxi Province, China. Land 2024, 13, 709. [Google Scholar] [CrossRef]
- Peng, L.X.; Zhang, L.W.; Li, X.P.; Zhao, W.D.; Liu, Y.; Wang, Z.Z.; Wang, H.; Jiao, L. A spatially explicit framework for assessing ecosystem service supply risk under multiple land-use scenarios in the Xi’an metropolitan area of China. Land Degrad. Dev. 2024, 35, 2754–2770. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, P.; Shi, J.; Zhang, X.; Yao, L. Research on land use pattern and ecological risk of Lanzhou–Xining urban agglomeration from the perspective of terrain gradient. Land 2023, 12, 996. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, X.; Wang, Z.; Feng, C.; Fan, Z.; He, W. Construction of a social ecological security pattern based on the supply and demand of ecosystem services. J. Nat. Conserv. 2025, 86, 126962. [Google Scholar] [CrossRef]
- Gu, T.; Tong, Y.; Wang, S.; You, Z.; Li, D.; Jiang, Y.; Rafaqat, A.; Wang, C.; Zhang, Q. Identifying the priority areas for ecological protection considering ecological connectivity and ecosystem integrity: A case study of Xianyang City, China. Ecol. Indic. 2024, 163, 112102. [Google Scholar] [CrossRef]
- Zhang, M.; Ao, Y.; Liu, M.; Zhao, Y.; Lin, K.; Cheng, T. Ecological security assessment based on ecosystem service value and ecological footprint in the Pearl River Delta urban agglomeration, China. Ecol. Indic. 2022, 144, 109528. [Google Scholar] [CrossRef]
- Yang, R.; Chen, H.; Chen, S.; Ye, Y. Spatiotemporal evolution and prediction of land use/land cover changes and ecosystem service variation in the Yellow River Basin, China. Ecol. Indic. 2022, 145, 109579. [Google Scholar] [CrossRef]
- El-Hamid, H.T.A.; Nour-Eldin, H.; Rebouh, N.Y.; El-Zeiny, A.M. Past and future changes of land use/land cover and the potential impact on ecosystem services value of Damietta Governorate, Egypt. Land 2022, 11, 2169. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, B.; Jiao, J.; Li, Y.; Wang, X. Modeling the response of ecological service value to land use change through deep learning simulation in Lanzhou, China. Sci. Total Environ. 2021, 796, 148981. [Google Scholar] [CrossRef] [PubMed]
- Kriegler, E.; Edmonds, J.; Hallegatte, S.; Ebi, K.L.; Kram, T.; Riahi, K.; Winkler, H.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared climate policy assumptions. Clim. Change 2014, 122, 401–414. [Google Scholar] [CrossRef]
- Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Change 2014, 122, 387–400. [Google Scholar]
- Zhu, H.; Jiang, Z.; Li, L. Projection of climate extremes in china, an incremental exercise from cmip5 to cmip6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z. Simulation of land-cover change in Jing-Jin-Ji region under different scenarios of ssp-rcp. J. Geogr. Sci. 2022, 32, 421–440. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land use/land cover prediction and analysis of the middle reaches of the yangtze river under different scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef]
- Schirpke, U.; Wang, G.; Padoa-Schioppa, E. Editorial: Mountain landscapes: Protected areas, ecosystem services, and future challenges. Ecosyst. Serv. 2021, 49, 101302. [Google Scholar] [CrossRef]
- Lin, Z.; Laixin, L.; Dongmin, M.; Pei, Z. On the landscape pattern change and the ecological service value response: Taking Qianyang county as an example. Northwestern Geol. 2022, 1, 274–283. [Google Scholar]
- Wei, Q.; Halike, A.; Yao, K.; Chen, L.; Balati, M. Construction and optimization of ecological security pattern in Ebinur Lake Basin based on mspa-mcr models. Ecol. Indic. 2022, 138, 108857. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, S.; Zhu, J.; Wang, Z.; Wang, Z.; Li, G.; Yang, C. Ecological restoration strategies for mountainous cities based on ecological security patterns and circuit theory: A case of central urban areas in Chongqing, China. Int. J. Environ. Res. Public Health 2022, 19, 16505. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Li, L. Optimization of ecological security pattern in Gansu section of the Yellow River Basin using OWA and circuit model. Trans. Chin. Soc. Agric. Eng. 2021, 3, 259–268. [Google Scholar]
- Yu, K. Landscape ecological security patterns in biological conservation. Acta Ecol. Sin. 1999, 1, 8–15. [Google Scholar]
- Qin, B.; Lin, Y.; Zhao, J.; Chen, G.; He, W.; Lv, Q. Identification of key areas for the ecological restoration of territorial space in Kunming based on the INVEST model and circuit theory. China Environ. Sci. 2023, 43, 809–820. [Google Scholar]
- Cai, G.; Xiong, J.; Wen, L.; Weng, A.; Lin, Y.; Li, B. Predicting the ecosystem service values and constructing ecological security patterns in future changing land use patterns. Ecol. Indic. 2023, 154, 110787. [Google Scholar] [CrossRef]
- Gaodi, X.; Caixia, Z.; Leiming, Z.; Wenhui, C.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 8, 1243–1254. [Google Scholar]
- Gaodi, X.; Chunxia, L.; Yunfa, L.; Du, Z.; Shuangcheng, L. Ecological assets valuation of the Tibetan plateau. J. Nat. Resour. 2003, 2, 190–196. [Google Scholar]
- Hu, Y.; Li, T. Forecasting spatial pattern of land use change in rapidly urbanized regions based on SD-CA model. Acta Sci. Nat. Univ. Pekin. 2022, 58, 372–382. [Google Scholar]
- Zhang, X.; Li, A.; Nan, X.; Lei, G.; Wang, C. Multi-scenario simulation of land use change along China-Pakistan economic corridor throughcoupling FLUS model with SD model. J. Geo Inf. Sci. 2020, 22, 2393–2409. [Google Scholar]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, F.; Wang, J.; Cai, W.; Wang, C.; Wang, K. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 2020, 7, 83. [Google Scholar] [CrossRef]
- Jiang, T.; Su, B.; Wang, Y.; Wang, G.; Luo, Y.; Zhai, J.; Huang, J.; Jing, C.; Gao, M.; Lin, Q. Gridded Datasets for Population and Economy under Shared Socioeconomic Pathways for 2020–2100. Clim. Chang. Res. 2022, 18, 381–383. [Google Scholar]
- Wang, T.; Sun, F. Global gridded gdp data set consistent with the shared socioeconomic pathways. Sci. Data 2022, 9, 221. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (plus) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Longjiang, Z.; Guoping, C.; Yilin, L.; Zhao Junsan, L.F.P.S. Simulating multiple scenarios of carbon stocks for driving mechanisms using MOP-PLUS-INVEST model. Trans. Chin. Soc. Agric. Eng. 2024, 22, 223–233. [Google Scholar]
- Li, Y.; Wei, M.; Zhou, R.; Jin, H.; Chen, Y.; Hong, C.; Duan, W.; Li, Q. Identifying priority restoration areas based on ecological security pattern: Implications for ecological restoration planning. Ecol. Indic. 2025, 174, 113486. [Google Scholar] [CrossRef]
- Xia, L.; Xiang, J.; Cheng, Y.; Teng, W.; Xu, Z. Quantifying ecosystem service loss from wind farm-induced landscape fragmentation using remote sensing. Geocarto. Int. 2025, 40, 2508439. [Google Scholar]
- Yu, T.; Jia, S.; Dai, B.; Cui, X. Spatial configuration and layout optimization of the ecological networks in a high-population-density urban agglomeration: A case study of the central Plains urban agglomeration. Land 2025, 14, 768. [Google Scholar]
- Lai, J.; Qi, S. Construction of ecological security pattern based on ecological protection red line, machine learning algorithms, and circuit theory: A case study of Kunming city, China. J. Clean. Prod. 2025, 520, 146117. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [PubMed]
- Wang, Y.; Qu, Z.; Zhong, Q.; Zhang, Q.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.; Li, X.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Zhou, D.; Song, W. Identifying ecological corridors and networks in mountainous areas. Int. J. Environ. Res. Public Health 2021, 18, 4797. [Google Scholar] [CrossRef]
Data Name | Data Description | Spatial Resolution | Data Sources |
---|---|---|---|
Land use data | Land use data | 30 m | Resource and environmental science data platform (https://www.resdc.cn/) accessed on 16 October 2024. |
Climate data | Temperature, precipitation, and potential evapotranspiration | 1 km | |
Socio-economic data | GDP, POP, grain output, grain sown area | / | “Compilation of Agricultural Cost and Benefit in China”, Statistical Yearbook of Yunnan Province” accessed on 18 October 2024. |
Grain price | yuan/hm2 | “Grain Statistical Yearbook of Yunnan Province” (accessed on 18 October 2024). | |
Geographic data | Road network data | / | OpenStreetMap (www.openstreetmap.org) accessed on 11 October 2024. |
River data | / | ||
DEM | 30 m | Geospatial data cloud (www.gscloud.cn) accessed on 13 October 2024. | |
Slope and aspect | / | Obtained through DEM processing | |
GDP and POP in 2030 | 1 km | Science data bank (https://cstr.cn/31253.11.sciencedb.01683) [33,34,35] (accessed on 7 October 2024). | |
SSP-RCP dataset | Temperature, precipitation, and potential evapotranspiration in 2030 | 1 km | National Earth System Science Data Center (http://www.geodata.cn/main/) accessed on 18 October 2024. |
Resistance Factor | Year | Grade | Weight | |||||
---|---|---|---|---|---|---|---|---|
10 | 30 | 50 | 70 | 90 | ||||
Natural factor | NDVI | 2020 | >0.83 | 0.75~0.83 | 0.61~0.83 | 0.4~0.61 | <0.4 | 0.2699 |
2030 | >0.83 | 0.75~0.83 | 0.61~0.83 | 0.4~0.61 | <0.4 | |||
TRLX | 2020 | 201~237 | 1~35 | 181~201 | 35~139 | 139~181 | 0.2066 | |
2030 | 201~237 | 1~35 | 181~201 | 35~139 | 139~181 | |||
PD | 2020 | <10 | 10~13 | 13~20 | 20~29 | >29 | 0.0971 | |
2030 | <10 | 10~13 | 13~20 | 20~29 | >29 | |||
QW | 2020 | <7 | 7~12 | 12~15.5 | 15.5~18.5 | >18.5 | 0.0362 | |
2030 | <6.5 | 6.5~12 | 12~16 | 16~19 | >19 | |||
JS | 2020 | >1900 | 1400~1900 | 1000~1400 | 850~1000 | <850 | 0.0569 | |
2030 | >1600 | 1300~1600 | 1100~1300 | 850~1100 | <850 | |||
Social factor | DL | 2020 | >11,000 | 7300~11,000 | 4200~7300 | 1200~4200 | <1200 | 0.0795 |
2030 | >11,000 | 7300~11,000 | 4200~7300 | 1200~4200 | <1200 | |||
GDP | 2020 | <760 | 760~3600 | 3600~13,000 | 13,000~33,000 | >33,000 | 0.0455 | |
2030 | <12,000 | 12,000~23,000 | 23,000~37,000 | 37,000~60,000 | >60,000 | |||
POP | 2020 | <0.02 | 0.02~0.1 | 0.1~0.28 | 0.28~0.45 | >0.45 | 0.2083 | |
2030 | <0.59 | 0.59~2.00 | 2.00~5.80 | 5.80~16.00 | >16.00 |
Land Use Type | Simulated Data (hm2) | Truthful Data (hm2) | Accuracy | Overall Accuracy |
---|---|---|---|---|
Cultivated land | 6,710,640 | 6,770,736 | −0.89% | 93.00% |
Forest | 22,047,100 | 22,042,791 | 0.02% | |
Grassland | 8,661,610 | 8,615,421 | 0.54% | |
Water area | 372,580 | 380,061 | −1.97% | |
Construction land | 481,293 | 476,379 | 1.03% | |
Unused land | 168,157 | 155,970 | 7.81% |
ES Classification | 2000 | 2010 | 2020 | 2030 | ||
---|---|---|---|---|---|---|
SSP1-1.9 | SSP2-4.5 | SSP5-8.5 | ||||
supply services | 0.5357 | 0.5742 | 0.8352 | 0.9682 | 0.9883 | 0.9788 |
Regulating services | 67.2451 | 67.1725 | 68.5754 | 68.8325 | 68.9182 | 68.9526 |
supporting service | 1.1376 | 1.1394 | 1.1374 | 1.138 | 1.138 | 1.1381 |
cultural services | 0.2267 | 0.2272 | 0.2279 | 0.2285 | 0.2286 | 0.2286 |
ecosystem services value | 69.1452 | 69.1133 | 70.7759 | 71.1671 | 71.2731 | 71.298 |
Land Use Type | 2000 | 2010 | 2020 | 2030 | ||
---|---|---|---|---|---|---|
SSP1-1.9 | SSP2-4.5 | SSP5-8.5 | ||||
cultivated land | 0.9115 | 0.9079 | 0.8941 | 0.8801 | 0.8791 | 0.8802 |
forest | 49.0943 | 49.4927 | 49.3132 | 49.2873 | 49.2801 | 49.2862 |
grassland | 12.4479 | 12.1587 | 12.0549 | 12.1 | 12.096 | 12.1003 |
water area | 7.2064 | 7.3495 | 9.7433 | 10.4324 | 10.6119 | 10.5605 |
construction land | −0.5304 | −0.8069 | −1.2408 | −1.5399 | −1.6001 | −1.5361 |
unused land | 0.0154 | 0.0114 | 0.0113 | 0.0072 | 0.006 | 0.0069 |
summation | 69.1452 | 69.1133 | 70.7759 | 71.1671 | 71.2731 | 71.298 |
Services Type | 2000 | 2010 | 2020 | 2030 | ||
---|---|---|---|---|---|---|
SSP1-1.9 | SSP2-4.5 | SSP5-8.5 | ||||
total ESV | 0.6388 | 0.6386 | 0.6391 | 0.6398 | 0.6399 | 0.6397 |
provisioning services | 0.2907 | 0.2894 | 0.2872 | 0.2813 | 0.2834 | 0.2823 |
regulating services | 0.3387 | 0.3361 | 0.3390 | 0.3402 | 0.3399 | 0.3398 |
supporting services | 0.3378 | 0.3353 | 0.3376 | 0.3381 | 0.3380 | 0.3378 |
cultural services | 0.3362 | 0.3338 | 0.3360 | 0.3361 | 0.3362 | 0.3360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Liu, F.; Ma, Z.; Zhao, J.; Xue, H. Constructing an Ecological Security Pattern Coupled with Climate Change and Ecosystem Service Valuation: A Case Study of Yunnan Province. Sustainability 2025, 17, 9193. https://doi.org/10.3390/su17209193
Lin Y, Liu F, Ma Z, Zhao J, Xue H. Constructing an Ecological Security Pattern Coupled with Climate Change and Ecosystem Service Valuation: A Case Study of Yunnan Province. Sustainability. 2025; 17(20):9193. https://doi.org/10.3390/su17209193
Chicago/Turabian StyleLin, Yilin, Fengru Liu, Zhiyuan Ma, Junsan Zhao, and Han Xue. 2025. "Constructing an Ecological Security Pattern Coupled with Climate Change and Ecosystem Service Valuation: A Case Study of Yunnan Province" Sustainability 17, no. 20: 9193. https://doi.org/10.3390/su17209193
APA StyleLin, Y., Liu, F., Ma, Z., Zhao, J., & Xue, H. (2025). Constructing an Ecological Security Pattern Coupled with Climate Change and Ecosystem Service Valuation: A Case Study of Yunnan Province. Sustainability, 17(20), 9193. https://doi.org/10.3390/su17209193