Digital Leadership, AI Integration, and Cyberloafing: Pathways to Sustainable Innovation in SMEs Within Resource-Constrained Economies
Abstract
1. Introduction
2. Literature Review and Theoretical Framework
2.1. Sustainable Innovation in SMEs: A Multidimensional Imperative
2.2. Digital Leadership for Sustainable Work Environments: A Strategic Imperative for Sustainable Transformation
2.3. Social Cyberloafing as a Behavioral Resource and Sustainable Innovation Promoter
2.4. AI Integration and Sustainable Business Practices
2.5. Conceptual Framework
2.6. Theoretical and Practical Contributions
3. Materials and Methods
3.1. Research Design and Rationale
3.2. Sample and Data Collection
3.3. Measurement Instruments
3.4. Data Analysis Procedure
4. Results
4.1. Demographic Analysis
4.2. Factor Analysis
4.3. Reliability and Validity
4.4. Discriminant Validity
4.5. Model Fit
4.6. Path Analysis
5. Discussion
6. Conclusions
6.1. Policy Implications
6.2. Limitations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Bank. Small and Medium Enterprises (SMEs) Finance. World Bank: Washington, DC, USA, 2021. Available online: https://www.worldbank.org/en/topic/smefinance#:~:text=Overview,and%20initially%20run%20their%20enterprises (accessed on 4 July 2025).
- Di Donato, E. Enabling the Twin Transition of the SMEs: Digital Paradigms of Industry 4.0, Lean and Circular Principles as Enablers of SDGs 8, 9 and 12. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2023. Available online: https://webthesis.biblio.polito.it/29755 (accessed on 4 July 2025).
- Bartnick, A. Obstacles and Opportunities for Entrepreneurship in Iraq & the Kurdistan Region; The Institute of Regional and International Studies: London, UK, 2017; Available online: https://auis.edu.krd/iris/sites/default/files/IRIS_Entrepreneurship in Iraq and KRI report.pdf (accessed on 4 July 2025).
- Hall, J.; Matos, S.; Gold, S.; Severino, L.S. The paradox of sustainable innovation: The ‘Eroom’effect (Moore’s law backwards). J. Clean. Prod. 2018, 172, 3487–3497. [Google Scholar] [CrossRef]
- Abdullah, Y.A. Prospects And Challenges For Iraqi SMEs Sector Post-ISIS. Acad. Strateg. Manag. J. 2021, 20, 1–9. [Google Scholar]
- Benitez, J.; Arenas, A.; Castillo, A.; Esteves, J. Impact of digital leadership capability on innovation performance: The role of platform digitization capability. Inf. Manag. 2022, 59, 103590. [Google Scholar] [CrossRef]
- Wamba-Taguimdje, S.L.; Fosso, W.S.; Kala, K.J.R.; Tchatchouang, W.C.E. Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Bus. Process Manag. J. 2020, 26, 1893–1924. [Google Scholar] [CrossRef]
- Möller, J.; Kaczmarczyk, P.; Koch, J. Artificial intelligence and innovation in SMEs: Evidence from Germany. Smal. Bus. Econ. 2023, 60, 745–766. [Google Scholar]
- Sağbaş, M.; Erdoğan, F.A. Digital leadership: A systematic conceptual literature review. İstan. Kent Üniv. İnsa. ve Topl. Bilim. Derg. 2022, 3, 17–35. [Google Scholar]
- MIT Sloan Management Review. The Next Age of Disruption: MIT Sloan Management Review. In The Next Age of Disruption; MIT Press: Cambridge, MA, USA, 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Bocken, N.M.; De Pauw, I.; Bakker, C.; Van Der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef]
- Lim, V.K. The IT way of loafing on the job: Cyberloafing, neutralizing and organizational justice. J. Organ. Behav. 2002, 23, 675–694. [Google Scholar] [CrossRef]
- Tarafdar, M.; Cooper, C.L.; Stich, J.F. The technostress trifecta-techno eustress, techno distress and design: Theoretical directions and an agenda for research. Inf. Syst. J. 2019, 29, 6–42. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Zhao, Y. Cyberloafing and employee creativity: A curvilinear relationship with psychological detachment as a mediator. J. Organ. Behav. 2023, 44, 231–248. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Ma, L.; Wang, G.; Hao, F. How and when social cyberloafing affect employees’ job satisfaction: An empirical study in China. Tot. Qual. Man. Bus. Exc. 2025, 36, 1130–1159. [Google Scholar] [CrossRef]
- Hanelt, A.; Bohnsack, R.; Marz, D.; Antunes, M.C. A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change. J. Manag. Stud. 2021, 58, 1159–1197. [Google Scholar] [CrossRef]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations (UN): New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 4 July 2025).
- Ratinho, T.; Saras, D.S. Entrepreneurial actions under uncertainty: The role of psychological variables and decision logics. Int. J. Entrep. Behav. Res. 2024, 30, 2701–2730. [Google Scholar] [CrossRef]
- Kumar, S.; Raut, R.D.; Aktas, E.; Narkhede, B.E.; Gedam, V.V. Barriers to adoption of industry 4.0 and sustainability: A case study with SMEs. Int. J. Comput. Integr. Manuf. 2023, 36, 657–677. [Google Scholar] [CrossRef]
- Viterouli, M.; Belias, D.; Koustelios, A.; Tsigilis, N. Green ambidexterity: Aligning strategic fit for environmental sustainability in the public sector. In Sustainability Through Green HRM and Performance Integration; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 243–280. [Google Scholar] [CrossRef]
- Gusmão Caiado, R.G.; Scavarda, L.F.; Vidal, G.; De Mattos Nascimento, D.L.; Garza-Reyes, J. A taxonomy of critical factors towards Sustainable Operations and Supply Chain Management 4.0 in developing countries—A systematic review and fuzzy group decision-making. Oper. Manag. Res. 2023, 18, 744–767. [Google Scholar] [CrossRef]
- Mahmud, D. An IOT-Enabled Decision Support System for Circular Economy Business Models: A Review Of Economic Efficiency and Sustainability Outcomes. Am. J. Sch. Res. Innov. 2025, 4, 250–286. [Google Scholar] [CrossRef]
- Mohammed, M.Y.; Skibniewski, M.J. The role of generative AI in managing industry projects: Transforming industry 4.0 into industry 5.0 driven economy. Law Bus. 2023, 3, 27–41. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big data analytics capabilities and innovation: The mediating role of dynamic capabilities and moderating effect of the environment. Br. J. Manag. 2019, 30, 272–298. [Google Scholar] [CrossRef]
- Akberdina, V.; Strielkowski, W.; Linder, N.; Kashirin, S.; Shmeleva, L. Information Technology and Digital Sufficiency for Building the Sustainable Circular Economy. Energies 2023, 16, 1399. [Google Scholar] [CrossRef]
- Nambisan, S.; Lyytinen, K.; Majchrzak, A.; Song, M. Digital innovation management. MIS Q. 2017, 41, 223–238. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the future of digital and social media marketing research: Perspectives and research propositions. Int. J. Inf. Manag. 2021, 59, 102168. [Google Scholar] [CrossRef]
- Agba, M.S.; Agba, G.E.M. The Digital Economy and the Global Workforce: Cultivating Inclusive Leadership and Global Mindsets for Managing Diversity at a Distance. Int. J. Public Manag. Soc. Sci. Res. 2025, 1, 28–43. [Google Scholar]
- Ossiannilsson, E. The role of ethical leadership in improving education through open education, digital inclusion and seamless learning. AI Seamless Educ. 2025, 1, 109–140. Available online: https://pressbooks.pub/aiforseamlesseducation/chapter/the-role-of-ethical-leadership-in-improving-education-through-open-education-digital-inclusion-and-seamless-learning (accessed on 7 July 2025).
- van Dijk, J. The Network Society, 4th ed.; Sage Publications: Thousand Oaks, CA, USA, 2020; Available online: https://scholar.google.com/scholar_lookup?title=The+Network+Society&author=van+Dijk,+J.&publication_year=2020 (accessed on 7 July 2025).
- Ibrahim, M.; Aduah, E.W. Digital literacy, digital intelligence and small and medium enterprises’(SMEs) sustainability: The mediating role of digital technology usage. Inf. Dev. 2025, 02666669251335001. [Google Scholar] [CrossRef]
- Bajpai, D.A.; Kulkarni, A. Leveraging employee experience for employee retention at workplace 4.0-a systematic review. In Sustainable Smart Technology Businesses in Global Economies; Routledge: Abingdon, UK, 2025; pp. 635–644. Available online: https://www.taylorfrancis.com/chapters/edit/10.4324/9781003616306-62/leveraging-employee-experience-employee-retention-workplace-4-0-systematic-review-dipti-anil-bajpai-abhay-kulkarni (accessed on 7 July 2025).
- Milad, M.; Stieglitz, S.; Marx, J. Digital Detox. Bus. Inf. Syst. Eng. 2022, 64, 239–246. [Google Scholar] [CrossRef]
- AlHares, A. Ethical Leadership and Its Impact on Corporate Sustainability and Financial Performance: The Role of Alignment with the Sustainable Development Goals. Sustainability 2025, 17, 6682. [Google Scholar] [CrossRef]
- Zeike, S.; Bradbury, K.; Lindert, L.; Pfaff, H. Digital Leadership Skills and Associations with Psychological Well-Being. Int. J. Environ. Res. Public Health 2019, 16, 2628. [Google Scholar] [CrossRef]
- Peng, J.; Nie, Q.; Chen, X. Managing hospitality employee cyberloafing: The role of empowering leadership. Int. J. Hosp. Manag. 2023, 108, 103349. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Z.; Xiao, H.; Qu, R.; Zu, X.; Zhou, K. Influencing Factors of Nurses’ Work Engagement and Job Burnout in the Context of ICT Use: A Perspective from COR Theory. Res. Sq. 2025, preprint. [Google Scholar] [CrossRef]
- Kwala, A.F.; Agoyi, M.; Oluwajana, D.I.; Isiaku, L.; Kefas, H.I. Reevaluating Cyberloafing: How Resource Conservation Shapes Its Impact on Employee Well-being and Organizational Outcomes. Empl. Responsib. Rights J. 2025, 1–23. [Google Scholar] [CrossRef]
- Abbas, J.; Dabic, M.; Halaszovich, T. From distractions to detox: Analyzing how recovery experiences mediate the relationship between social cyberloafing and social sustainability. Int. J. Entrep. Behav. Res. 2025, 3, 214–234. [Google Scholar] [CrossRef]
- Bakker, A.B.; Demerouti, E.; Sanz-Vergel, A. Job demands–resources theory: Ten years later. Annu. Rev. Organ. Psychol. Organ. Behav. 2023, 10, 25–53. [Google Scholar] [CrossRef]
- Grobelny, J.; Glinka, M.; Chirkowska-Smolak, T. The impact of hedonic social media use during microbreaks on employee resources recovery. Sci. Rep. 2024, 14, 21603. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Torsheim, T.; Pallesen, S. Predictors of use of social network sites at work-a specific type of cyberloafing. J. Comput.-Mediat. Commun. 2014, 19, 906–921. [Google Scholar] [CrossRef]
- Holguin, E.S. Strategies Functional Managers Use to Control Cyberloafing Behaviors; Walden University: Minneapolis, MN, USA, 2016; Available online: https://core.ac.uk/download/pdf/147835841.pdf (accessed on 12 July 2025).
- Wu, J.; Mei, W.; Liu, L.; Ugrin, J.C. The bright and dark sides of social cyberloafing: Effects on employee mental health in China. J. Bus. Res. 2020, 112, 56–64. [Google Scholar] [CrossRef]
- Song, Y.; Qiu, X.; Liu, J. The Impact of Artificial Intelligence Adoption on Organi-zational Decision-Making: An Empirical Study Based on the Technology Acceptance Model in Business Management. Systems 2025, 13, 683. [Google Scholar] [CrossRef]
- Ikbal, M.Z. A Meta-Analysis of Ai-Driven Business Analytics: Enhancing Strategic Decision-Making in SMEs. Rev. Appl. Sci. Technol. 2025, 4, 33–58. [Google Scholar] [CrossRef]
- Xia, L.; Cao, Z.; Bilawal, K.M. How Digital Technology and Business In-novation Enhance Economic–Environmental Sustainability in Legal Organiza-tions. Sustainability 2025, 17, 6532. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Parekh, H.; Mani, V.; Belhadi, A.; Sharma, R. Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework. Technol. Forecast. Soc. Change 2022, 176, 121448. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Wu, W. How Does Artificial Intelligence Capability Affect Product Innovation in Manufacturing Enterprises? Evidence from China. Systems 2025, 13, 480. [Google Scholar] [CrossRef]
- Sanni, B. Optimizing Workflows with Artificial Intelligence: A Smart Approach to Reducing IT Job Fatigue. Research Gate. 2023, pp. 1–10. Available online: https://www.researchgate.net/profile/Babatunde-Sanni-2/publication/388499492_Optimizing_Workflows_with_Artificial_Intelligence_A_Smart_Approach_to_Reducing_IT_Job_Fatigue/links/679b5cbe52b58d39f25c8a4e/Optimizing-Workflows-with-Artificial-Intelligence-A-Smart-Approach-to-Reducing-IT-Job-Fatigue.pdf (accessed on 13 July 2025).
- Munshi, J.D. Empirical insights into ai-augmented leadership: A multi-industry comparative study. Int. J. Eng. Inf. Manag. 2025, 1, 42–59. [Google Scholar] [CrossRef]
- Naeem, R.; Kohtamäki, M.; Parida, V. Artificial intelligence enabled product–service innovation: Past achievements and future directions. Rev. Manag. Sci. 2024, 19, 2149–2192. [Google Scholar] [CrossRef]
- Kumari, D.A.; Shaikh, I.A.K.; Gangadharan, S.; Kiran, P.N.; Ramya, S.R.; Nargunde, A.S. Machine Learning for Diversity and Inclusion: Addressing Biases in HR Practices. In Proceedings of the 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), Jamshedpur, India, 5–6 January 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 182–187. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.; Zheng, X. How external monitoring can mitigate cyberloafing: Understanding the mediating and moderating roles of employees’ self-control. Behav. Inf. Technol. 2024, 43, 2473–2487. [Google Scholar] [CrossRef]
- Bogdan, V.; Hațegan, C.D.; Török, R.M.; Blidișel, R.-G.; Popa, D.-N.; Pitorac, R.-I. Driving Sustainable Value. The Dynamic Interplay Between Artificial Intelligence Dis-closure, Financial Reporting Quality, and ESG Scores. Electronics 2025, 14, 3247. [Google Scholar] [CrossRef]
- Islam, M.R. AI-Augmented Tax Risk Scoring for Small and Medium Enterprises: A Panel Data Study. Glob. Perspect. Sci. Scholarsh. 2025, 1, 501–531. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Hayes, A.F.; Preacher, K.J. Statistical mediation analysis with a multicategorical independent variable. Br. J. Math. Stat. Psychol. 2014, 67, 451–470. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Springer Nature: Berlin/Heidelberg, Germany, 2021; Available online: https://library.oapen.org/handle/20.500.12657/51463 (accessed on 13 July 2025).
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2022, 31, 2–24. [Google Scholar] [CrossRef]
- Malesios, C.; Dey, P.K.; Abdelaziz, F.B. Supply chain sustainability performance measurement of small and medium sized enterprises using structural equation modeling. Ann. Oper. Res. 2020, 294, 623–653. [Google Scholar] [CrossRef]
- Shaikh, F.; Afshan, G.; Anwar, R.S.; Abbas, Z.; Chana, K.A. Analyzing the impact of artificial intelligence on employee productivity: The mediating effect of knowledge sharing and well-being. Asia Pac. J. Hum. Resour. 2023, 61, 794–820. [Google Scholar] [CrossRef]
- Hansen, E.G.; Grosse-Dunker, F.; Reichwald, R. Sustainability innovation cube: A framework to evaluate sustainability-oriented innovations. Int. J. Innov. Manag. 2009, 13, 683–713. [Google Scholar] [CrossRef]
- Díaz-García, C.; González-Moreno, Á.; Sáez-Martínez, F.J. Eco-innovation: Insights from a literature review. Innovation 2015, 17, 6–23. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psych. Meth. 1998, 3, 424. Available online: https://psycnet.apa.org/buy/1998-11538-003 (accessed on 4 July 2025). [CrossRef]
- Bentler, P.M.; Bonett, D.G. Significance tests and goodness of fit in the analysis of covariance structures. Psyc. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
Item | Category | Frequency | Percentage |
---|---|---|---|
Gender | Male | 259 | 64.75% |
Female | 141 | 35.25% | |
Total | 400 | 100% | |
Age | 18–25 | 76 | 19.00% |
26–35 | 94 | 23.35% | |
36–45 | 125 | 31.25% | |
46–55 | 55 | 13.75% | |
56–65 | 36 | 9.00% | |
66+ | 14 | 3.50% | |
Total | 400 | 100% | |
Educational Level | Diploma | 86 | 21.50% |
Associate’s degree | 64 | 16.00% | |
Bachelor’s Degree | 102 | 25.50% | |
Master’s Degree | 122 | 30.50% | |
Doctorate Degree | 26 | 6.50% | |
Total | 400 | 100% |
Artificial Intelligence | Digital Leadership | Sustainable Innovation | Social Cyberloafing | |
---|---|---|---|---|
AI3 | 0.789 | |||
AI5 | 0.794 | |||
AI7 | 0.766 | |||
AI8 | 0.776 | |||
AI9 | 0.795 | |||
AI10 | 0.792 | |||
AI11 | 0.747 | |||
AI12 | 0.759 | |||
DL1 | 0.853 | |||
DL2 | 0.831 | |||
DL4 | 0.809 | |||
DL6 | 0.843 | |||
DL9 | 0.850 | |||
DL11 | 0.589 | |||
SI1 | 0.854 | |||
SIB2 | 0.715 | |||
SI3 | 0.700 | |||
SI4 | 0.788 | |||
SI5 | 0.798 | |||
SI7 | 0.718 | |||
SI9 | 0.741 | |||
SI13 | 0.817 | |||
SI15 | 0.799 | |||
SCL1 | 0.818 | |||
SCL2 | 0.785 | |||
SCL3 | 0.797 | |||
SCL4 | 0.766 | |||
SCL5 | 0.827 | |||
SCL8 | 0.711 | |||
SCL9 | 0.816 |
Cronbach’s Alpha | Composite Reliability | Rho-c | AVE | |
---|---|---|---|---|
Artificial intelligence | 0.773 | 0.810 | 0.835 | 0.703 |
Digital leadership | 0.884 | 0.885 | 0.914 | 0.642 |
Sustainable innovation | 0.733 | 0.763 | 0.807 | 0.828 |
Social cyberloafing | 0.880 | 0.896 | 0.908 | 0.588 |
Artificial Intelligence | Digital Leadership | Sustainable Innovation | Social Cyberloafing | |
---|---|---|---|---|
Artificial intelligence | 0.634 | |||
Digital leadership | 0.567 | 0.801 | ||
Sustainable innovation | 0.693 | 0.574 | 0.573 | |
Social cyberloafing | 0.624 | 0.753 | 0.554 | 0.767 |
Fit index | Acceptable Values | Estimated Model | Reference |
---|---|---|---|
SRMR | ≤0.080 | 0.061 | [53,54] |
NFI | ≥0.900 | 0.972 | |
χ2/df | ≥0.9 p < 0.01 *** | 1.989 p < 0.01 *** | |
d_ULS | ≤UCI | 2.018 | |
d_G | ≤UCI | 1.345 |
Hypothesis | Path | β | T Statistics | p Val. | R2 | f2 | 95% Bootstrap CI (L,U) | Decision |
---|---|---|---|---|---|---|---|---|
H1 | DL → SI | 0.269 | 4.180 | 0.000 | 0.072 | 0.101 | [0.182, 0.354] | Supported |
H2 | DL → SC | −0.412 | 6.732 | 0.000 | 0.170 | 0.205 | [−0.523, 0.301] | Supported |
H3 | SC → SI | 0.148 | 2.987 | 0.003 | 0.022 | 0.132 | [0.052, 0.224] | Supported |
Mediation-Moderation Analysis | ||||||||
H4 | DL → SC → SI | 0.061 | 2.455 | 0.000 | 0.088 | 0.202 | [0.108, 0.104] | Partial Med. |
H5 | AI → DL → SI | 0.183 | 3.621 | 0.000 | 0.134 | 0.198 | [0.082, 0.284] | Supported |
Moderator | Category | DL → SI (H1) | DL → SC (H2) | SC → SI (H3) | DL → SC → SI (H4 Mediation) | AI Moderation (H5) |
---|---|---|---|---|---|---|
Gender | Male (64.75%) | 0.225 * [0.131, 0.319] | −0.388 *** [−0.497, −0.279] | 0.159 * [0.022, 0.124] | 0.061 * [0.018, 0.104] | 0.171 ** [0.062, 0.280] |
Female (35.25%) | 0.317 *** [0.211, 0.423] | −0.451 *** [−0.562, −0.340] | 0.092 [−0.012, 0.054] | 0.042 [−0.005, 0.089] | 0.201 *** [0.097, 0.305] | |
Age | 18–25 (19.00%) | 0.187 * [0.041, 0.333] | −0.352 ** [−0.498, −0.206] | 0.121 [−0.035, 0.277] | 0.043 [−0.012, 0.098] | 0.142 * [0.018, 0.266] |
26–35 (23.35%) | 0.254 ** [0.122, 0.386] | −0.401 *** [−0.533, −0.269] | 0.148 * [0.026, 0.270] | 0.059 * [0.011, 0.107] | 0.241 *** [0.132, 0.350] | |
36–45 (31.25%) | 0.283 *** [0.175, 0.391] | −0.423 *** [−0.531, −0.315] | 0.181 ** [0.075, 0.287] | 0.077 ** [0.025, 0.129] | 0.219 *** [0.123, 0.315] | |
46+ (26.25%) | 0.210 * [0.082, 0.338] | −0.372 *** [−0.500, −0.244] | 0.097 [−0.031, 0.225] | 0.036 [−0.019, 0.091] | 0.082 [−0.035, 0.199] | |
Education | Diploma (21.50%) | 0.198 * [0.042, 0.354] | −0.361 ** [−0.517, −0.205] | −0.112 * [−0.208, −0.016] | −0.040 * [−0.078, −0.002] | 0.148 * [0.042, 0.254] |
Bachelor’s (25.50%) | 0.243 ** [0.115, 0.371] | −0.392 *** [−0.520, −0.264] | 0.133 * [0.005, 0.261] | 0.052 * [0.003, 0.101] | 0.195 ** [0.083, 0.307] | |
Master’s+ (37.00%) | 0.302 *** [0.206, 0.398] | −0.441 *** [−0.537, −0.345] | 0.167 ** [0.071, 0.263] | 0.074 ** [0.028, 0.120] | 0.261 *** [0.153, 0.369] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, P.; Karadas, G. Digital Leadership, AI Integration, and Cyberloafing: Pathways to Sustainable Innovation in SMEs Within Resource-Constrained Economies. Sustainability 2025, 17, 9171. https://doi.org/10.3390/su17209171
Hamza P, Karadas G. Digital Leadership, AI Integration, and Cyberloafing: Pathways to Sustainable Innovation in SMEs Within Resource-Constrained Economies. Sustainability. 2025; 17(20):9171. https://doi.org/10.3390/su17209171
Chicago/Turabian StyleHamza, Pshdar, and Georgiana Karadas. 2025. "Digital Leadership, AI Integration, and Cyberloafing: Pathways to Sustainable Innovation in SMEs Within Resource-Constrained Economies" Sustainability 17, no. 20: 9171. https://doi.org/10.3390/su17209171
APA StyleHamza, P., & Karadas, G. (2025). Digital Leadership, AI Integration, and Cyberloafing: Pathways to Sustainable Innovation in SMEs Within Resource-Constrained Economies. Sustainability, 17(20), 9171. https://doi.org/10.3390/su17209171