The Artificial Intelligence Paradox: Does Digital Progress Fuel Environmental Injustice via Transboundary Pollution?
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The AI Gap and Air Pollution Transmission
2.2. New Digital Infrastructure
2.3. Labor and Capital Mobility
3. Research Design
3.1. Model Specification
3.2. Variable Selection
3.2.1. Air Pollution Transmission Intensity
3.2.2. AI Gap
3.2.3. Control Variables
3.2.4. Data Sources
4. Empirical Analysis
4.1. Baseline Regression Analysis
4.2. Robustness Checks
4.2.1. Replacing the Explanatory Variable
4.2.2. Excluding Special Samples
4.2.3. Different Time Periods
4.3. Endogeneity Test
4.4. Mechanism Analysis
4.4.1. New Digital Infrastructure Level
4.4.2. Labor Mobility
4.4.3. Capital Flows
5. Extended Analysis
5.1. Economic Development Levels of Cities
5.2. Low-Carbon City Pilot Programs
5.3. Smart City Pilot Programs
6. Discussion and Conclusions
6.1. Discussion
6.2. Conclusions
6.3. Research Limitations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, N.; Schiller, G.; Azarijafari, H.; Cao, Z.; Xi, B.; Shan, Y.; Li, H.; Duan, H.; Yang, J. Contribution of concrete nitrogenation to global NOx uptake. Nat. Cities 2024, 1, 457–468. [Google Scholar] [CrossRef]
- Xu, X.; Huang, L.; Yao, L.; Yoshida, Y.; Long, Y. Rising socio-economic costs of PM2.5 pollution and medical service mismatching. Nat. Sustain. 2025, 8, 265–275. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiao, S.; You, H.; Liu, Y. Causal analysis of PM2.5 propagation characteristics during the winters of 2015 to 2023 in Hubei Province, China. Sci. Rep. 2025, 15, 8713. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shu, K.; Rajkumar, S.A.; Sivakumar, V. Research on deep integration of application of artificial intelligence in environmental monitoring system and real economy. Environ. Impact Assess. Rev. 2021, 86, 106499. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, L.; Wang, S.; Henze, D.K.; Fu, T.M.; Zhang, L.; Wang, X. Unraveling the complexities of ozone and PM2.5 pollution in the Pearl River Delta region: Impacts of precursors emissions and meteorological factors, and effective mitigation strategies. Atmos. Pollut. Res. 2025, 16, 102368. [Google Scholar] [CrossRef]
- Driscoll, C.; Milford, J.B.; Henze, D.K.; Bell, M.D. Atmospheric reduced nitrogen: Sources, transformations, effects, and management. J. Air Waste Manag. Assoc. 2024, 74, 362–415. [Google Scholar] [CrossRef]
- Likens, G.E.; Butler, T.J.; Claybrooke, R.; Vermeylen, F.; Larson, R. Long-term monitoring of precipitation chemistry in the US: Insights into changes and condition. Atmos. Environ. 2021, 245, 118031. [Google Scholar] [CrossRef]
- Nakhle, P.; Stamos, I.; Proietti, P.; Siragusa, A. Environmental monitoring in European regions using the sustainable development goals (SDG) framework. Environ. Sustain. Indic. 2024, 21, 100332. [Google Scholar] [CrossRef]
- Byrne, A. Trouble in the Air: Recent Developments under the 1979 Convention on Long-Range Transboundary Air Pollution. Rev. Eur. Comp. Int. Environ. Law 2017, 26, 210–219. [Google Scholar] [CrossRef]
- Tang, J.; Li, H. China’s urban agglomerations: Surging from industrial-led to innovation-driven. China Econ. Rev. 2025, 102449. [Google Scholar] [CrossRef]
- Feng, T.; Du, H.; Lin, Z.; Zuo, J. Spatial spillover effects of environmental regulations on air pollution: Evidence from urban agglomerations in China. J. Environ. Manag. 2020, 272, 110998. [Google Scholar] [CrossRef] [PubMed]
- Bibri, S.E.; Huang, J.; Krogstie, J. Artificial intelligence of things for synergizing smarter eco-city brain, metabolism, and platform: Pioneering data-driven environmental governance. Sustain. Cities Soc. 2024, 108, 105516. [Google Scholar] [CrossRef]
- Chen, J.; Huang, S.; BalaMurugan, S.; Tamizharasi, G.S. Artificial intelligence based e-waste management for environmental planning. Environ. Impact Assess. Rev. 2021, 87, 106498. [Google Scholar] [CrossRef]
- Al-Raeei, M. The smart future for sustainable development: Artificial intelligence solutions for sustainable urbanization. Sustain. Dev. 2025, 33, 508–517. [Google Scholar] [CrossRef]
- Vásquez, Ó.; Sandulli, F.D.; Gallego, J. Technological agglomerations and the emergence of artificial intelligence start-up ecosystems in Europe. Technol. Soc. 2025, 84, 103092. [Google Scholar] [CrossRef]
- Feng, T.; Sun, Y.; Shi, Y.; Ma, J.; Feng, C.; Chen, Z. Air pollution control policies and impacts: A review. Renew. Sustain. Energy Rev. 2024, 191, 114071. [Google Scholar] [CrossRef]
- Yang, X.; Hou, R.; Fu, Q.; Li, T.; Li, M.; Cui, S.; Li, Q.; Liu, M. A critical review of biochar as an environmental functional material in soil ecosystems for migration and transformation mechanisms and ecological risk assessment. J. Environ. Manag. 2024, 360, 121196. [Google Scholar] [CrossRef]
- Reilley, C.; Dunn, C.J.; Crandall, M.S.; Kline, J.D. Socially vulnerable US Pacific Northwest communities are more likely to experience wildfires. Environ. Res. Lett. 2024, 19, 094053. [Google Scholar] [CrossRef]
- Wen, Z.; Ma, X.; Xu, W.; Si, R.; Liu, L.; Ma, M.; Zhao, Y.; Tang, A.; Zhang, Y.; Wang, K.; et al. Combined short-term and long-term emission controls improve air quality sustainably in China. Nat. Commun. 2024, 15, 5169. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.R.; Carvalho, L.C. AI-driven participatory environmental management: Innovations, applications, and future prospects. J. Environ. Manag. 2025, 373, 123864. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Yao, K.; Ma, X. Does artificial intelligence affect the ecological footprint?–Evidence from 30 provinces in China. J. Environ. Manag. 2024, 370, 122458. [Google Scholar] [CrossRef]
- Castellacci, F. Closing the technology gap? Rev. Dev. Econ. 2011, 15, 180–197. [Google Scholar] [CrossRef]
- Wen, J.; Chen, H. Green Innovation and the Urban–Rural Income Gap: Empirical Evidence from China. Sustainability 2025, 17, 2106. [Google Scholar] [CrossRef]
- Liu, X.; Cifuentes-Faura, J.; Yang, X.; Pan, J. The green innovation effect of industrial robot applications: Evidence from Chinese manufacturing companies. Technol. Forecast. Soc. Change 2025, 210, 123904. [Google Scholar] [CrossRef]
- Boyd, R.; Holton, R.J. Technology, innovation, employment and power: Does robotics and artificial intelligence really mean social transformation? J. Sociol. 2018, 54, 331–345. [Google Scholar] [CrossRef]
- Posner, M.V. International trade and technical change. Oxf. Econ. Pap. 1961, 13, 323–341. [Google Scholar] [CrossRef]
- Fagerberg, J.; Verspagen, B. Technology-gaps, innovation-diffusion and transformation: An evolutionary interpretation. Res. Policy 2002, 31, 1291–1304. [Google Scholar] [CrossRef]
- Fagerberg, J. International competitiveness. Econ. J. 1988, 98, 355–374. [Google Scholar] [CrossRef]
- Chang, S.; Kim, H.; Song, J.; Lee, K. Dynamics of imitation versus innovation in technological leadership change: Latecomers’ catch-up strategies in diverse technological regimes. Res. Policy 2024, 53, 105056. [Google Scholar] [CrossRef]
- Li, T.; Li, R.; Liu, Y.; Wei, G.; Li, S.; He, B.J. Does enhanced land use efficiency promote ecological resilience in China’s urban agglomerations? Environ. Impact Assess. Rev. 2025, 115, 108047. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, P.; Sivaparthipan, C.B.; Muthu, B.A. Big data and artificial intelligence based early risk warning system of fire hazard for smart cities. Sustain. Energy Technol. Assess. 2021, 45, 100986. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Liu, N. Does environmental regulation narrow the north-south economic gap?-Empirical evidence based on panel data of 285 prefecture-level cities. J. Environ. Manag. 2023, 340, 117849. [Google Scholar] [CrossRef]
- Baafi, J.A.; Asiedu, M.K.; Kumah, P.S. Digitalization and Automation and AI: A Theoretical Framework of Rethinking the Pollution Haven Hypothesis. J. Ecohumanism 2024, 3, 1781–1798. [Google Scholar] [CrossRef]
- Zhang, K.; Jin, Y.; Li, D.; Wang, S.; Liu, W. Spatiotemporal variation and evolutionary analysis of the coupling coordination between urban social-economic development and ecological environments in the Yangtze River Delta cities. Sustain. Cities Soc. 2024, 111, 105561. [Google Scholar] [CrossRef]
- Aderibigbe, A.O.; Ohenhen, P.E.; Nwaobia, N.K.; Gidiagba, J.O.; Ani, E.C. Artificial intelligence in developing countries: Bridging the gap between potential and implementation. Comput. Sci. IT Res. J. 2023, 4, 185–199. [Google Scholar] [CrossRef]
- Filippetti, A.; Peyrache, A. Labour productivity and technology gap in European regions: A conditional frontier approach. Reg. Stud. 2015, 49, 532–554. [Google Scholar] [CrossRef]
- Yin, Z.H.; Zeng, W.P. The effects of industrial intelligence on China’s energy intensity: The role of technology absorptive capacity. Technol. Forecast. Soc. Change 2023, 191, 122506. [Google Scholar] [CrossRef]
- Javed, A.R.; Shahzad, F.; ur Rehman, S.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future smart cities: Requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022, 129, 103794. [Google Scholar] [CrossRef]
- Zhang, Y. The regional disparity of influencing factors of technological innovation in China: Evidence from high-tech industry. Technol. Econ. Dev. Econ. 2021, 27, 811–832. [Google Scholar] [CrossRef]
- Indjikian, R.; Siegel, D.S. The impact of investment in IT on economic performance: Implications for developing countries. World Dev. 2005, 33, 681–700. [Google Scholar] [CrossRef]
- Zafar, M.W.; Qin, Q.; Zaidi, S.A.H. Foreign direct investment and education as determinants of environmental quality: The importance of post Paris Agreement (COP21). J. Environ. Manag. 2020, 270, 110827. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, F.; Li, R. Artificial intelligence and sustainable development during urbanization: Perspectives on AI R&D innovation, AI infrastructure, and AI market advantage. Sustain. Dev. 2025, 33, 1136–1156. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, W. Green finance: The catalyst for artificial intelligence and energy efficiency in Chinese urban sustainable development. Energy Econ. 2024, 139, 107883. [Google Scholar] [CrossRef]
- Tinbergen, J. Shaping the World Economy. In Suggestions for an International Economic Policy; Twentieth Century Fund: New York, NY, USA, 1962. [Google Scholar]
- Anderson, J.E.; Van Wincoop, E. Gravity with gravitas: A solution to the border puzzle. Am. Econ. Rev. 2003, 93, 170–192. [Google Scholar] [CrossRef]
- Jiang, T. Mediating effects and moderating effects in causal inference. China Ind. Econ. 2022, 2022, 100–120. [Google Scholar] [CrossRef]
- Tan, X.; Han, L.; Zhang, X.; Zhou, W.; Li, W.; Qian, Y. A review of current air quality indexes and improvements under the multi-contaminant air pollution exposure. J. Environ. Manag. 2021, 279, 111681. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yu, Y.; Yin, Z.; Chen, H.; Gao, M. Appreciable role of stratospheric polar vortex in the abnormal diffusion of air pollutant in North China in 2015/2016 winter and implications for prediction. Atmos. Environ. 2021, 259, 118549. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Shi, Y.; Marvin, S.; Zheng, Y.; Xia, G. Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustain. Cities Soc. 2020, 54, 101941. [Google Scholar] [CrossRef]
- Yuan, C.; Shang, M.; Han, Z.; Wang, J. Research on the impact of the national ecological demonstration zone on green total factor productivity: Evidence from China. J. Environ. Manag. 2024, 356, 120421. [Google Scholar] [CrossRef]
- Fan, H.; Wu, T. New Digital Infrastructure, Digital Capacity and Total Factor Productivity. Res. Econ. Manag. 2022, 43, 3–22. [Google Scholar] [CrossRef]
- Wang, L.; Shao, J. The energy saving effects of digital infrastructure construction: Empirical evidence from Chinese industry. Energy 2024, 294, 130778. [Google Scholar] [CrossRef]
- Lööf, H.; Heshmati, A. Knowledge capital and performance heterogeneity: A firm-level innovation study. Int. J. Prod. Econ. 2002, 76, 61–85. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Y.; Zhu, H.; Wang, Y.; Xie, Y. Analysis of pollutants transport in heavy air pollution processes using a new complex-network-based model. Atmos. Environ. 2023, 292, 119395. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Y.; Wang, S.; Jiao, M.; Huang, G.; Xia, B. Spatial-temporal heterogeneity of air pollution and its relationship with meteorological factors in the Pearl River Delta, China. Atmos. Environ. 2021, 254, 118415. [Google Scholar] [CrossRef]
- Zhu, C.; Fan, R.; Sun, J.; Luo, M.; Zhang, Y. Exploring the fluctuant transmission characteristics of Air Quality Index based on time series network model. Ecol. Indic. 2020, 108, 105681. [Google Scholar] [CrossRef]
- Wang, L.; Saiz, A.; Li, W. Natural fragmentation increases urban density but impedes transportation and city growth worldwide. Nat. Cities 2024, 1, 642–653. [Google Scholar] [CrossRef]
- Hou, X.; Wang, X.; Cheng, S.; Qi, H.; Wang, C.; Huang, Z. Elucidating transport dynamics and regional division of PM2.5 and O3 in China using an advanced network model. Environ. Int. 2024, 188, 108731. [Google Scholar] [CrossRef]
- Chen, S.; Mu, S.; He, X.; Han, J.; Tan, Z. Does industrial robot adoption affect green total factor productivity?—Evidence from China. Ecol. Indic. 2024, 161, 111958. [Google Scholar] [CrossRef]
- Mohammed, K.S.; Serret, V.; Ben Jabeur, S.; Nobanee, H. The role of artificial intelligence and fintech in promoting eco-friendly investments and non-greenwashing practices in the US market. J. Environ. Manag. 2024, 359, 120977. [Google Scholar] [CrossRef]
- Khan, M.S.; Umer, H.; Faruqe, F. Artificial intelligence for low income countries. Humanit. Soc. Sci. Commun. 2024, 11, 1422. [Google Scholar] [CrossRef]
- Jiang, L.; Cao, X.; Wang, Z.; Zhan, Y.; Zhang, J.; Chen, S. Promoting energy saving and emission reduction benefits in small and medium-sized enterprises supply chains through green finance—Evidence based on artificial intelligence intervention. Int. Rev. Financ. Anal. 2025, 102, 104112. [Google Scholar] [CrossRef]
(1) | (2) | |
---|---|---|
Variable | CP | CP |
AI_Gap | 0.0188 *** | 0.0041 *** |
(0.0010) | (0.0010) | |
CP × D | 0.2215 *** | 0.2237 *** |
(0.0001) | (0.0001) | |
CO2 | −0.0013 | |
(0.0017) | ||
PS | −0.0053 *** | |
(0.0018) | ||
EN | 0.0105 *** | |
(0.0019) | ||
VC | −0.1181 *** | |
(0.0251) | ||
ER | 0.0002 | |
(0.0023) | ||
AIR | 0.0299 *** | |
(0.0033) | ||
pgdp | −0.0011 | |
(0.0023) | ||
size | −0.0016 | |
(0.0017) | ||
D | 0.0823 *** | |
(0.0015) | ||
City/Year FE | Yes | Yes |
Cons | −0.1178 *** | −0.6645 *** |
(0.0015) | (0.0096) | |
R2 | 0.9891 | 0.9895 |
N | 97968 | 97968 |
(1) | (2) | (3) | |
---|---|---|---|
Variable | NIF | LM | CF |
AI_Gap | 0.0100 *** | −0.1200 *** | −0.9278 *** |
(0.0005) | (0.0117) | (0.0287) | |
CO2 | 0.0008 | −0.0134 | −0.2349 *** |
(0.0007) | (0.0184) | (0.0493) | |
PS | −0.0008 | −0.1456 *** | −0.2833 *** |
(0.0008) | (0.0218) | (0.0519) | |
EN | −0.0015 * | 0.0663 *** | 0.2658 *** |
(0.0008) | (0.0215) | (0.0550) | |
VC | −0.0149 | −2.5121 *** | 0.8719 |
(0.0110) | (0.2915) | (0.7232) | |
ER | 0.0023 ** | −0.0146 | −0.0412 |
(0.0010) | (0.0290) | (0.0650) | |
AIR | 0.0007 | 0.3685 *** | 0.5238 *** |
(0.0015) | (0.0358) | (0.0955) | |
pgdp | 0.0064 *** | −0.0838 *** | −2.3294 *** |
(0.0010) | (0.0257) | (0.0658) | |
size | −0.0012 | 0.0128 | −4.3973 *** |
(0.0008) | (0.0194) | (0.0500) | |
D | 0.0014 ** | −1.0739 *** | −0.8047 *** |
(0.0006) | (0.0147) | (0.0388) | |
City/Year FE | Yes | Yes | Yes |
Cons | 0.0930 *** | 7.6611 *** | 13.3323 *** |
(0.0037) | (0.0936) | (0.2481) | |
R2 | 0.1629 | 0.1472 | 0.3659 |
N | 92872 | 97968 | 97968 |
(1) | (2) | (3) | |
---|---|---|---|
Low–Low | High–Low | High–High | |
Variable | CP | CP | CP |
AI_Gap | 0.0072 *** | 0.0035 ** | 0.0042 |
(0.0024) | (0.0016) | (0.0034) | |
Control variable | Yes | Yes | Yes |
City/Year FE | Yes | Yes | Yes |
Cons | −0.3005 *** | −0.8956 *** | −0.3823 *** |
(0.0200) | (0.0159) | (0.0317) | |
R2 | 0.9827 | 0.9931 | 0.9901 |
N | 24648 | 39816 | 15624 |
(1) | (2) | (3) | |
---|---|---|---|
Non-Pilot–Non-Pilot | Pilot–Non-Pilot | Pilot–Pilot | |
Variable | CP | CP | CP |
AI_Gap | 0.0167 *** | −0.0020 | 0.0035 |
(0.0018) | (0.0013) | (0.0033) | |
Control variable | Yes | Yes | Yes |
City/Year FE | Yes | Yes | Yes |
Cons | −0.2975 *** | −0.3918 *** | −0.8743 *** |
(0.0161) | (0.0134) | (0.0281) | |
R2 | 0.9858 | 0.9853 | 0.9955 |
N | 38780 | 45680 | 13508 |
(1) | (2) | (3) | |
---|---|---|---|
Non-Pilot–Non-Pilot | Pilot–Non-Pilot | Pilot–Pilot | |
Variable | CP | CP | CP |
AI_Gap | 0.0023 | 0.0045 *** | 0.0017 |
(0.0017) | (0.0015) | (0.0024) | |
Control variable | Yes | Yes | Yes |
City/Year FE | Yes | Yes | Yes |
Cons | −0.5427 *** | −0.7821 *** | −0.2389 *** |
(0.0161) | (0.0138) | (0.0264) | |
R2 | 0.9869 | 0.9920 | 0.9814 |
N | 32760 | 48048 | 17160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, R.; Zhao, P.; Luo, Q.; Wang, J. The Artificial Intelligence Paradox: Does Digital Progress Fuel Environmental Injustice via Transboundary Pollution? Sustainability 2025, 17, 9169. https://doi.org/10.3390/su17209169
Cui R, Zhao P, Luo Q, Wang J. The Artificial Intelligence Paradox: Does Digital Progress Fuel Environmental Injustice via Transboundary Pollution? Sustainability. 2025; 17(20):9169. https://doi.org/10.3390/su17209169
Chicago/Turabian StyleCui, Ran, Pengfei Zhao, Qingfeng Luo, and Jingyuan Wang. 2025. "The Artificial Intelligence Paradox: Does Digital Progress Fuel Environmental Injustice via Transboundary Pollution?" Sustainability 17, no. 20: 9169. https://doi.org/10.3390/su17209169
APA StyleCui, R., Zhao, P., Luo, Q., & Wang, J. (2025). The Artificial Intelligence Paradox: Does Digital Progress Fuel Environmental Injustice via Transboundary Pollution? Sustainability, 17(20), 9169. https://doi.org/10.3390/su17209169