Dual-Wheel Drive and Agricultural Green Development: The Co-Evolution and Impact of Digital Inclusive Finance and Green Finance
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The Direct Impact of the Coordination Between DIF and GF on AGD
2.2. The Nonlinear Effect of DIF and GF Coordination on AGD
3. Evaluation of the Coupling Degree of DIF and GF
3.1. Construction of an Indicator System
3.2. Coupling Coordination Model Setting
3.3. Analysis of Measurement Results
3.3.1. Analysis of Time-Series Characteristics
3.3.2. Spatial Distribution Characteristics
4. Model Construction and Variable Selection
4.1. Model Setting
4.2. Variable Selection and Data Description
4.2.1. Explained Variable
4.2.2. Core Explanatory Variables
4.2.3. Threshold Variables
4.2.4. Control Variables
4.3. Data Sources and Descriptive Statistics
5. Empirical Analysis
5.1. Baseline Regression Analysis
5.2. Robustness Test
5.2.1. Adding Control Variables
5.2.2. Adjusting the Sample Period
5.2.3. Excluding Municipalities
5.3. Endogenous Treatment
5.3.1. Endogeneity Treatment
5.3.2. Dynamic Panel GMM Estimation Method
5.4. Heterogeneity Analysis
5.4.1. Based on the Perspective of Major Grain-Producing Areas
5.4.2. Based on the Perspective of Agricultural Science and Technology Level
5.4.3. From the Perspective of Financial Exclusion Level
6. Further Analysis
7. Conclusions and Recommendations
7.1. Conclusions
7.2. Recommendations
8. Research Limitations and Future Research Directions
8.1. Research Limitations
8.2. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajefu, J.B.; Uchenna, E.; Adeoye, L.; Davidson, I.; Agbawn, M.O. Exploring how mobile money adoption affects nutrition and household food security. J. Int. Dev. 2025, 36, 2414–2429. [Google Scholar] [CrossRef]
- Atta-Aidoo, J.; Bizoza, S.; Matthew, E.C.; Saleh, A.O. Mobile money, food security and coping strategies in a post-conflict and fragile context: Evidence from Burundi. J. Econ. Dev. 2024, 26, 306–328. [Google Scholar] [CrossRef]
- Abdul-Rahaman, A.; Abdulai, A. Mobile money adoption, input use, and farm output among smallholder rice farmers in Ghana. Agribusiness 2022, 38, 236–255. [Google Scholar] [CrossRef]
- Beck, T.; Pamuk, H.; Ramrattan, R.; Uras, B. Payment instruments, finance and development. J. Dev. Econ. 2018, 133, 162–186. [Google Scholar] [CrossRef]
- Guo, J.; Chen, L.; Kang, X. Digital inclusive finance and agricultural green development in China: A panel analysis (2013–2022). Financ. Res. Lett. 2024, 69, 106173. [Google Scholar] [CrossRef]
- Wang, F.; Mao, J.; Zhang, X.; Li, Q.; Cai, Q. Digital Financial Inclusion and Agricultural Green Development—From the Perspectives of Easing Financial Constraints. Rural. Finan. Res. 2024, 39–57. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Y.; Peng, B. The Impact of Digital Financial Inclusion on Green and Low-Carbon Agricultural Development. Agriculture 2023, 13, 1748. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, Q.; Amar, N.; Bai, M.; Yang, Z.; Shi, J. Assessing the impact of digital financial inclusion on green total factor productivity of grain in China: Promotion or inhibition? Int. Food Agribus. Manag. Rev. 2024, 27, 463–477. [Google Scholar] [CrossRef]
- Karim, S.; Naeem, M.A.; Hu, M.; Zhang, D.; Taghizade-Hesary, F. Determining dependence, centrality, and dynamic networks between green bonds and financial markets. J. Environ. Manag. 2022, 318, 115618. [Google Scholar] [CrossRef] [PubMed]
- van Veelen, B. Cash cows? Assembling low-carbon agriculture through green finance. Geoforum 2021, 118, 130–139. [Google Scholar] [CrossRef]
- Li, J.; Khan, A.A.; Abu Sufyan Ali, M.; Luo, J. Does farmers’ agricultural investment is impacted by green finance policies and financial constraint? From the perspective of farmers’ heterogeneity in Northwest China. Environ. Sci. Pollut. Res. 2022, 29, 67242–67257. [Google Scholar] [CrossRef]
- Wei, C. Research on Development Pathways for Rural Green Financial Services Under Carbon Neutrality Goals. Agric. Econ. 2023, 111–112. Available online: https://kns.cnki.net/kcms2/article/abstract?v=9ZlGolWNudJ4hYvv7OoLyksHfNhElYRbJTSrBiXKIjNXHV91v_LybiWbS4RhfliNWRakcXLasg0B-37hwxjfjynDPbsrooid9nb7JeB8sHAeN0CQHaXHtUl-Yzhu-q82NaXVKVpXJL0Nl5K4jWZcSWd8Qcyq9HwN9_hyviLqO5Zin7tcT9G-V-um-3TtOC2LNc0Uq89d2g0=&uniplatform=NZKPT (accessed on 2 September 2025).
- Tran, T.D.P.; Van, N.N.; Thi, D. The impact of green finance, natural resources and institutional quality on sustainable agriculture: Evidence from Asian countries. Cogent Food Agric. 2025, 11, 2488112. [Google Scholar] [CrossRef]
- Gong, H.; Geng, Y.; Wang, J.; Wang, Z. Impact of green finance on green total factor productivity in agriculture. J. Chin. Agric. Mech. 2025, 46, 343–352. [Google Scholar] [CrossRef]
- Chu, L.; Cheng, L.; Gao, Y.; Deng, H.; Wang, Q.; Luo, Y. Influence of green finance on agricultural green total factor productivity: A case study in China. Front. Environ. Sci. 2024, 12, 1463833. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Chan, N.W.; Kung, H. Coupling coordination analysis and spatio-temporal heterogeneity between urbanization and eco-environment along the Silk Road Economic Belt in China. Ecol. Indic. 2021, 121, 107014. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, W.; Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, D.; Wan, Y. Measuring and Evaluating the Synergistic Development Level of Industrial Digitization and Greening in China. J. Stat. Inf. 2025, 40, 32–47. [Google Scholar] [CrossRef]
- Wu, Q.; Wen, X. The Synergy Effect and Mechanism of Digital Inclusive Finance and Green Finance—Based on the Goal of Common Prosperity. Mod. Manag. 2023, 43, 47–55. [Google Scholar] [CrossRef]
- Hyun, S. Current status and challenges of green digital finance in Korea. In Green Digital Finance and Sustainable Development Goals; Springer: Singapore, 2022; pp. 243–261. [Google Scholar] [CrossRef]
- Devidze, N. Current state of green digital financing and the associated challenges. In Green Digital Finance and Sustainable Development Goals; Springer: Singapore, 2022; pp. 29–50. [Google Scholar]
- Ozili, P.K. Digital finance, green finance and social finance: Is there a link? Financ. Internet Q. 2021, 17, 1–7. [Google Scholar] [CrossRef]
- Du, M.; Zhang, Y.J. The synergistic carbon emission reduction advantage of green finance and digital finance. Environ. Impact Assess. Rev. 2025, 112, 107795. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, B. The coupling and coordinated development of digital finance and green finance under the vision of “dual carbon” and the examination of carbon emission reduction effect. Sustain. Futur. 2024, 7, 100217. [Google Scholar] [CrossRef]
- Wei, C. Comparative Analysis and Integrated Development of Green Finance and Inclusive Finance. Gansu Financ. 2017, 35–37. Available online: https://kns.cnki.net/kcms2/article/abstract?v=9ZlGolWNudL4gvKGMbwY4gZMBJmGZc8ZYJeBMDhGMcwP5oWnuY4S1WNaHeRxu8lwnh0xMdZqWmbzIh016ergd7OzXr3b0TbFDfNswnEutQkj5pQSq6VQjOGtVB8ZJ76tfQ8ThcYdIoSG56RXbfdYHYHsA80N0qF4J0vxeTmCNLgQ5ZEX9XpVIg==&uniplatform=NZKPT&language=CHS (accessed on 2 September 2025).
- Ma, J.; Meng, H.; Shao, F.; Zhu, Y. Green Finance, Inclusive Finance and Green Agriculture Development. J. Mod. Financ. 2021, 26, 3–8+20. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, Q.; Jiao, X.; Ying, H.; Wang, H.; Wen, X.; Xu, W.; Li, T.; Cong, W.; Liu, X.; et al. Agriculture green development: A model for China and the world. Front. Agric. Sci. Eng. 2020, 7, 5–13. [Google Scholar] [CrossRef]
- Jin, S.; Niu, K.; Han, D. The Path of Agricultural Green Development and Its Orientation in the 14th Five-Year Plan Period. Reform 2020, 312, 30–39. [Google Scholar]
- Zhu, D.; Zhang, X. Research on the Environmental Effect of Digital Finance Development in China and Its Influence Mechanism. Collect. Essays Financ. Econ. 2022, 38, 37–46. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; An, M.; Zhang, Z.; He, N. Unveiling the Impact of Digital Financial Inclusion on Low-Carbon Green Utilization of Farmland: The Roles of Farmland Transfer and Management Scale. Sustainability 2023, 15, 3556. [Google Scholar] [CrossRef]
- Wei, J. The Impact of Green Finance on Agricultural Development Under the Guidance of the Rural Revitalization Promotion Law: A Case Study of Henan Province. Mark. Manag. Rev. 2022, 55–57. [Google Scholar] [CrossRef]
- Gao, Q.; Cheng, C.; Sun, G.; Li, J. The impact of digital inclusive finance on agricultural green total factor productivity: Evidence from China. Front. Ecol. Evol. 2022, 10, 905644. [Google Scholar] [CrossRef]
- Wen, T.; He, Q. Pushing Forward Rural Revitalization on All Fronts and Deepening Rural Financial Reform and Innovation: The Logic Conversion, Breakthroughs and Path Selection. Chin. Rural. Econ. 2023, 93–114. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, C. Impact of Digital Inclusive Finance on Rural High-Quality Development: Evidence from China. Discret. Dyn. Nat. Soc. 2022, 2022, 7939103. [Google Scholar] [CrossRef]
- Mo, Y.; Sun, D.; Zhang, Y. Green Finance Assists Agricultural Sustainable Development: Evidence from China. Sustainability 2023, 15, 2056. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Z.; Zhang, P.; Wei, X. Analysis of the Impact of Digital Inclusive Finance on the Development of Green Agriculture. Agronomy 2024, 14, 2777. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, J. Agricultural green transformation effect of the development of digital inclusive finance: Based on the perspective of land circulation and rural entrepreneurial vitality. Res. Agric. Mod. 2024, 45, 1049–1060. [Google Scholar] [CrossRef]
- Lv, W.; Zhang, Z.; Zhang, X. The role of green finance in reducing agricultural non-point source pollution—An empirical analysis from China. Front. Sustain. Food. Syst. 2023, 7, 1199417. [Google Scholar] [CrossRef]
- Zeng, J.; Li, Y.; Liu, G. Research on the Functional Mechanism and Spatial Effect of Digital Inclusive Finance Enabling Rural Industrial Prosperity—An Empirical Test Based on County Spatial Dynamic Panel Data. Stud. Int. Financ. 2023, 432, 39–49. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Yuan, Z. Enhancing Food Security through Green Finance: A Study from the Perspectives of Rural Human Capital and Agglomeration of Agricultural Industry. J. Univ. Jinan (Soc. Sci. Ed.) 2024, 34, 52–68. [Google Scholar] [CrossRef]
- Allen, F.; Demirguc-Kunt, A.; Klapper, L.; Peria, M.S.M. The foundations of financial inclusion: Understanding ownership and use of formal accounts. J. Financ. Intermediat. 2016, 27, 1–30. [Google Scholar] [CrossRef]
- Bu, Y.; Du, X.; Wang, Y.; Liu, S.; Tang, M.; Li, H. Digital inclusive finance: A lever for SME financing? Int. Rev. Financ. Anal. 2024, 93, 103115. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J. Development of Green Finance and Improvement of Energy Efficiency: Theory and China Experience. J. Mod. Financ. 2024, 29, 70–80. [Google Scholar] [CrossRef]
- Ozili, P.K. Green finance research around the world: A review of literature. Int. J. Green Econ. 2022, 16, 56–75. [Google Scholar] [CrossRef]
- Lee, J.W. Green Finance and Sustainable Development Goals: The Case of China. J. Asian Financ. Econ. Bus. 2020, 7, 577–586. [Google Scholar] [CrossRef]
- Meng, X.; Wu, C. Research on the Impact of Green Finance on Economic Green Transformation. Ecol. Econ. 2025, 41, 158–167. [Google Scholar]
- Zhao, Z.; Cui, J. How Could Green Finance Dynamically Empower Agricultural Green Innovation in China? J. Northwest AF Univ. (Soc. Sci. Ed.) 2025, 25, 127–135. [Google Scholar] [CrossRef]
- Huang, J.; An, L.; Peng, W.; Guo, L. Identifying the role of green financial development played in carbon intensity: Evidence from China. J. Clean. Prod. 2023, 408, 136943. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, P. The impact of green finance on the intensity and efficiency of carbon emissions: The moderating effect of the digital economy. Front. Environ. Sci. 2024, 12, 1362932. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Y. Research on the impact of coupling coordination of digitalization and greening on high-quality innovation of SRDI enterprises. Sci. Res. Manag. 2025, 1–17. Available online: https://link.cnki.net/urlid/11.1567.g3.20250708.1407.002 (accessed on 24 August 2025).
- Liu, B.; Li, Y.; Lv, X. Measurement, Regional Differences, and Dynamic Evolution of Agricultural Green Development in China. J. China Agric. Univ. (Soc. Sci.) 2025, 42, 184–206. [Google Scholar] [CrossRef]
- Wang, P.; Ji, Z.; Liao, S.; Wang, L. Impacts of the Northwest Digital Economy on Green Agricultural Development and Coupling Analysis. Areal Res. Dev. 2025, 44, 155–161. [Google Scholar]
- Nie, J.; Kiminami, A.; Yagi, H. Assessing the Sustainability of Urban Agriculture in Shanghai’s Nine Agriculture Districts: A Decadal Analysis (2010–2020). Agriculture 2024, 14, 631. [Google Scholar] [CrossRef]
- Pan, F.; Deng, H.; Chen, M.; Zhao, L.; Qian, W.; Wan, X. Spatial–Temporal Evolution and Driving Factors of Agricultural Green Development in China: Evidence from Panel Quantile Approaches. Sustainability 2024, 16, 6345. [Google Scholar] [CrossRef]
- Tong, A.; Niu, H.; Jiang, L.; Wang, Y. The impact of agricultural green finance on the level of agricultural green development. PLoS ONE. 2025, 20, e0323703. [Google Scholar] [CrossRef]
- Han, H.; Yang, D. Spatial spillover effects of agricultural industrial agglomeration on the growth of agricultural green total factor productivity. J. Arid Land Resour. Environ. 2023, 37, 29–37. [Google Scholar] [CrossRef]
- Liu, S.; Xie, Y. The impact of rural tertiary industry integration on green agricultural development—Empirical test based on major grain-producing areas. Chin. J. Agric. Resour. Reg. Plan. 2025, 46, 13–23. Available online: https://link.cnki.net/urlid/11.3513.S.20240829.1514.015 (accessed on 16 August 2025).
- Guo, H.; Gu, F.; Peng, Y.; Deng, X.; Guo, L. Does Digital Inclusive Finance Effectively Promote Agricultural Green Development?—A Case Study of China. Int. J. Environ. Res. Public Health 2022, 19, 6982. [Google Scholar] [CrossRef]
- Quintero-Angel, M.; González-Acevedo, A. Tendencies and challenges for the assessment of agricultural sustainability. Agric. Ecosyst. Environ. 2018, 254, 273–281. [Google Scholar] [CrossRef]
Dimensions | Specific Indicators | Measurement Description |
---|---|---|
DIF | Breadth of coverage | Digital inclusive finance coverage breadth index |
Depth of use | Digital inclusive finance depth index | |
Degree of digitisation | Digital inclusive finance digitalization degree index | |
GF | Green credit | Total credit for environmental protection projects/total credit for the province |
Green investment | Investment in environmental pollution control/GDP | |
Green insurance | Environmental pollution liability insurance income/total premium income | |
Green bonds | Green bond issuance/total bond issuance | |
Green support | Financial environmental protection expenditure/general fiscal budget expenditure | |
Green funds | Total market value of green funds/total market value of all funds | |
Green rights | Carbon trading, energy use rights trading, and emission rights trading/Total equity market transactions |
Intervals | Disharmony | Coordination | ||||||
---|---|---|---|---|---|---|---|---|
Intervals | [0, 0.1) | [0.1, 0.3) | [0.3, 0.4) | [0.4, 0.5) | [0.5, 0.6) | [0.6, 0.7) | [0.7, 0.9) | [0.9, 1) |
Coupling Coordination | Severe | Moderate | Mild | Near | Primary | Intermediate | Good | High-Quality |
Classification | Antagonistic Zone | Running-in Zone | Coordinated Zone |
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.5473 | 0.5683 | 0.5813 | 0.6037 | 0.6262 | 0.6454 | 0.6550 | 0.6673 | 0.6612 | 0.6857 | 0.6241 |
Tianjin | 0.4666 | 0.4881 | 0.4997 | 0.5242 | 0.5334 | 0.5504 | 0.5624 | 0.5706 | 0.5665 | 0.6023 | 0.5364 |
Hebei | 0.4940 | 0.5306 | 0.5437 | 0.5737 | 0.5909 | 0.6054 | 0.6198 | 0.6317 | 0.6257 | 0.6611 | 0.5877 |
Shanxi | 0.4447 | 0.4783 | 0.4852 | 0.5009 | 0.5199 | 0.5349 | 0.5571 | 0.5628 | 0.5599 | 0.5755 | 0.5219 |
InnerMongolia | 0.3561 | 0.3870 | 0.4005 | 0.4125 | 0.4271 | 0.4273 | 0.4352 | 0.4444 | 0.4398 | 0.4490 | 0.4179 |
Liaoning | 0.5199 | 0.5460 | 0.5532 | 0.5779 | 0.5920 | 0.6091 | 0.6231 | 0.6313 | 0.6272 | 0.6592 | 0.5939 |
Jilin | 0.4479 | 0.4729 | 0.4806 | 0.5063 | 0.5213 | 0.5300 | 0.5398 | 0.5496 | 0.5447 | 0.5840 | 0.5177 |
Heilongjiang | 0.5040 | 0.5367 | 0.5467 | 0.5686 | 0.5875 | 0.6025 | 0.6099 | 0.6173 | 0.6136 | 0.6480 | 0.5835 |
Shanghai | 0.5927 | 0.6193 | 0.6263 | 0.6601 | 0.6835 | 0.7014 | 0.7128 | 0.7251 | 0.7189 | 0.7584 | 0.6798 |
Jiangsu | 0.5247 | 0.5528 | 0.5616 | 0.5880 | 0.6127 | 0.6281 | 0.6432 | 0.6557 | 0.6494 | 0.6692 | 0.6085 |
Zhejiang | 0.5383 | 0.5640 | 0.5696 | 0.6005 | 0.6249 | 0.6362 | 0.6493 | 0.6650 | 0.6571 | 0.6843 | 0.6189 |
Anhui | 0.4555 | 0.4787 | 0.4916 | 0.5198 | 0.5341 | 0.5500 | 0.5604 | 0.5710 | 0.5657 | 0.5917 | 0.5319 |
Fujian | 0.5199 | 0.5573 | 0.5602 | 0.5910 | 0.6090 | 0.6310 | 0.6348 | 0.6527 | 0.6437 | 0.6743 | 0.6074 |
Jiangxi | 0.4546 | 0.4733 | 0.4861 | 0.5091 | 0.5268 | 0.5465 | 0.5598 | 0.5701 | 0.5649 | 0.5906 | 0.5282 |
Shandong | 0.5112 | 0.5390 | 0.5496 | 0.5784 | 0.5947 | 0.6129 | 0.6216 | 0.6368 | 0.6292 | 0.6755 | 0.5949 |
Henan | 0.4454 | 0.4731 | 0.4855 | 0.5125 | 0.5263 | 0.5436 | 0.5540 | 0.5655 | 0.5597 | 0.5973 | 0.5263 |
Hubei | 0.5169 | 0.5435 | 0.5551 | 0.5822 | 0.6030 | 0.6245 | 0.6303 | 0.6414 | 0.6358 | 0.6586 | 0.5991 |
Hunan | 0.4990 | 0.5295 | 0.5414 | 0.5714 | 0.5885 | 0.6046 | 0.6168 | 0.6316 | 0.6242 | 0.6629 | 0.5870 |
Guangdong | 0.5301 | 0.5571 | 0.5651 | 0.5953 | 0.6144 | 0.6318 | 0.6467 | 0.6584 | 0.6525 | 0.6850 | 0.6136 |
Guangxi | 0.4992 | 0.5292 | 0.5445 | 0.5728 | 0.5914 | 0.6004 | 0.6156 | 0.6240 | 0.6198 | 0.6603 | 0.5857 |
Hainan | 0.5052 | 0.5500 | 0.5454 | 0.5742 | 0.6084 | 0.6095 | 0.6263 | 0.6406 | 0.6334 | 0.6444 | 0.5937 |
Chongqing | 0.5140 | 0.5427 | 0.5556 | 0.5785 | 0.5971 | 0.6124 | 0.6261 | 0.6406 | 0.6333 | 0.6549 | 0.5955 |
Sichuan | 0.4509 | 0.4792 | 0.4874 | 0.5171 | 0.5300 | 0.5392 | 0.5564 | 0.5589 | 0.5576 | 0.5920 | 0.5269 |
Guizhou | 0.4890 | 0.5245 | 0.5349 | 0.5681 | 0.5897 | 0.5972 | 0.6067 | 0.6222 | 0.6144 | 0.6414 | 0.5788 |
Yunnan | 0.3597 | 0.3741 | 0.4016 | 0.4049 | 0.4293 | 0.4343 | 0.4349 | 0.4543 | 0.4445 | 0.4665 | 0.4204 |
Shaanxi | 0.5104 | 0.5370 | 0.5499 | 0.5744 | 0.5955 | 0.6130 | 0.6233 | 0.6326 | 0.6279 | 0.6589 | 0.5923 |
Gansu | 0.4939 | 0.5278 | 0.5313 | 0.5610 | 0.5793 | 0.5914 | 0.6038 | 0.6153 | 0.6095 | 0.6451 | 0.5759 |
Qinghai | 0.3456 | 0.3767 | 0.3730 | 0.4132 | 0.4125 | 0.4189 | 0.4169 | 0.4459 | 0.4312 | 0.4561 | 0.4090 |
Ningxia | 0.3566 | 0.3844 | 0.3798 | 0.4042 | 0.4104 | 0.4331 | 0.4187 | 0.4428 | 0.4306 | 0.4788 | 0.4139 |
Xinjiang | 0.3605 | 0.3811 | 0.3822 | 0.4102 | 0.4192 | 0.4258 | 0.4434 | 0.4411 | 0.4422 | 0.4901 | 0.4196 |
Mean | 0.4751 | 0.5034 | 0.5123 | 0.5385 | 0.5560 | 0.5697 | 0.5801 | 0.5922 | 0.5861 | 0.6167 | 0.5530 |
Dimension | Specific Indicators | Measurement Description | Unit | Property |
---|---|---|---|---|
Eco-Friendly | Fertiliser input intensity | Agricultural fertiliser application/crop planting area | kg/hm2 | Negative |
Film input intensity | Plant film application/crop planting area | kg/hm2 | Negative | |
Pesticide carbon input intensity | Pesticide application/crop planting area | kg/hm2 | Negative | |
Diesel input intensity | Diesel use/crop planting area | kg/hm2 | Negative | |
Development Conditions | Land productivity | Gross agricultural output/crop planting area | % | Positive |
Urbanisation rate | Urban population/total population | % | Positive | |
Machinery-use intensity | Total agricultural machinery power/crop planting area | kW/hm2 | Positive | |
Electricity-use intensity | Rural electricity consumption/gross agricultural output | kW·h/100 million yuan | Negative | |
Production Efficiency | Rural resident income | Rural residents’ disposable income | Ten thousand yuan | Positive |
Crop yield per unit area | Grain production/grain planting area | kg/hm2 | Positive | |
Agricultural industry Structure adjustment | Gross agricultural output value/gross agricultural, forestry, animal husbandry, and fishery output value | % | Positive | |
Labour productivity | Gross agricultural output value/number of employees in the primary industry | 100 million yuan/10,000 people | Positive |
Variable Type | Variable Name | Variable Symbol | Measurement Description |
---|---|---|---|
Explained variable | Green agricultural development | AGD | Level of green agricultural development |
Core explanatory variable | Coordination | COU | Measured the degree of coordination between DIF and GF |
Control variables | Grain planting structure | Gr | Grain sown area/crop sown area |
Control variables | Disaster severity | Dam | Crop disaster-affected area/total crop sown area |
Infrastructure development | Trans | Logarithmic measurement of freight volume | |
Degree of openness | Openness | Value of goods imported and exported/regional GDP | |
Regional economic development | Lgdp | Logarithmic measurement of regional GDP |
Variable | Obs | Mean | Std.Dev. | Min | Max | VIF |
---|---|---|---|---|---|---|
AGD | 300 | 0.3877 | 0.1169 | 0.1577 | 0.7143 | - |
COU | 300 | 0.5547 | 0.0838 | 0.3456 | 0.7584 | 1.22 |
Igg | 300 | 1.2449 | 0.6952 | 0.0454 | 3.5435 | 1.09 |
Gr | 300 | 0.6482 | 0.1558 | 0.3547 | 1.1429 | 1.15 |
Dam | 300 | 0.1140 | 0.1019 | 0.0014 | 0.6182 | 1.07 |
Trans | 300 | 11.6955 | 0.8365 | 9.5804 | 12.9815 | 1.07 |
Openness | 300 | 0.2524 | 0.2433 | 0.0076 | 1.1338 | 1.37 |
Lgdp | 300 | 10.0460 | 0.8593 | 7.7421 | 11.8180 | 1.36 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | AGD | AGD | AGD | AGD |
COU | 1.229 *** (0.0624) | 1.181 *** (0.0630) | 0.645 *** (0.194) | 0.633 *** (0.200) |
Control variables | uncontrolled | control | uncontrolled | control |
Individual/Time fixed | control | control | control | control |
Constant | −0.294 *** (0.0346) | −0.213 * (0.114) | 0.00587 (0.0930) | 0.0293 (0.149) |
N | 300 | 300 | 300 | 300 |
R2 | 0.834 | 0.843 | 0.895 | 0.897 |
Variables | (1) Adding Control Variables | (2) Adjusting the Sample Period | (3) Excluding Municipalities |
---|---|---|---|
COU | 0.587 *** (0.186) | 0.930 *** (0.301) | 0.662 *** (0.217) |
Control variables | control | control | control |
Individual/Time fixed | control | control | control |
Constant | 0.0782 (0.123) | −0.207 (0.161) | −0.0930 (0.119) |
N | 300 | 180 | 260 |
R2 | 0.898 | 0.775 | 0.914 |
Variables | 2SLS | GMM | |
---|---|---|---|
(1) First Stage | (2) Second Stage | AGD | |
COU | - | 0.958 *** (3.51) | 0.110 *** (0.035) |
L.COU | 0.630 *** (12.13) | - | - |
L.AGD | - | - | 0.960 *** (0.032) |
Control variables | control | control | control |
Individual/Time fixed | control | control | control |
Constant | 0.273 *** (7.24) | 0.093 (0.47) | −0.011 (0.022) |
Kleibergen–Paap rk LM | - | 106.495 *** | - |
Cragg–Donald Wald F | - | 147.199 | - |
AR(1) | - | - | 0.001 |
AR(2) | - | - | 0.779 |
Hansen | - | - | 0.105 |
N | 270 | 270 | 270 |
R2 | 0.394 | 0.975 | - |
Major Grain-Producing Areas | Agricultural Technology Level | Degree of Financial Exclusion | ||||
---|---|---|---|---|---|---|
(1) Yes | (2) No | (3) High | (4) Low | (3) Strong | (4) Weak | |
Variables | Agd | Agd | Agd | Agd | Agd | Agd |
Cou | 0.401 (0.273) | 0.801 *** (0.260) | 1.189 *** (0.288) | 0.561 ** (0.222) | 0.522 * (0.292) | 0.959 *** (0.262) |
Control variables | control | control | control | control | control | control |
Individual/Time fixed | control | control | control | control | control | control |
Constant | 0.140 (0.122) | −0.0338 (0.151) | −0.261 (0.178) | −0.0198 (0.233) | 0.242 (0.207) | −0.249 (0.174) |
N | 130 | 170 | 150 | 150 | 150 | 150 |
R2 | 0.963 | 0.869 | 0.919 | 0.905 | 0.898 | 0.908 |
Variables | Number of Thresholds | F Value | p-Value | Threshold Value | 10% | 5% | 1% |
---|---|---|---|---|---|---|---|
Cou | Single-Threshold | 30.3 | 0.0733 * | 0.4997 | 34.3054 | 39.1868 | 45.3406 |
Double-Threshold | 18.54 | 0.2867 | 0.6261 | 25.0506 | 34.5154 | 60.2770 | |
Igg | Single-Threshold | 42.74 | 0.0000 *** | 2.5312 | 24.7999 | 28.4726 | 31.3758 |
Double-Threshold | 16.46 | 0.1200 | 0.2416 | 17.4989 | 43.2048 | 86.9969 |
(1)COU | (2)Igg | |
---|---|---|
Variables | Agd | Agd |
Threshold Value | 0.4997 | 2.5312 |
Ι(thit ≤ θ) | 1.378 *** | 1.173 *** |
Ι(thit > θ) | 1.299 *** | 1.284 *** |
Control variables | control | control |
Individual/Time fixed | control | control |
N | 300 | 300 |
R2 | 0.8617 | 0.8516 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, Y.; Zhang, T. Dual-Wheel Drive and Agricultural Green Development: The Co-Evolution and Impact of Digital Inclusive Finance and Green Finance. Sustainability 2025, 17, 9167. https://doi.org/10.3390/su17209167
Wang X, Li Y, Zhang T. Dual-Wheel Drive and Agricultural Green Development: The Co-Evolution and Impact of Digital Inclusive Finance and Green Finance. Sustainability. 2025; 17(20):9167. https://doi.org/10.3390/su17209167
Chicago/Turabian StyleWang, Xuan, Yanhua Li, and Tingyu Zhang. 2025. "Dual-Wheel Drive and Agricultural Green Development: The Co-Evolution and Impact of Digital Inclusive Finance and Green Finance" Sustainability 17, no. 20: 9167. https://doi.org/10.3390/su17209167
APA StyleWang, X., Li, Y., & Zhang, T. (2025). Dual-Wheel Drive and Agricultural Green Development: The Co-Evolution and Impact of Digital Inclusive Finance and Green Finance. Sustainability, 17(20), 9167. https://doi.org/10.3390/su17209167