Climate Resilience and Sustainable Labor: Spatio-Temporal Shifts in Economic Losses from High Temperatures and Implications for Sustainable Development in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Relationship Between WBGT Index and Labor Productivity
2.3.2. Methodology for Assessing Economic Losses Under the Influence of High Temperature
- (1)
- WBGT index
- (2)
- Labor productivity loss
- (3)
- Estimation of regional economic loss value
2.3.3. Research Method for the Spatial and Temporal Dynamic Evolution of Economic Losses
- (1)
- Spatial autocorrelation analysis
- (2)
- Standard deviation ellipse and center of gravity modeling
- (3)
- Local Indicators of Spatial Association (LISA) Spatial-temporal transition
3. Results and Analysis
3.1. Spatial and Temporal Evolution of Economic Losses
3.1.1. Characteristics of Temporal Evolution of Economic Loss
3.1.2. Characteristics of the Spatial Evolution of Economic Losses
3.1.3. Migration Characteristics of the Center of Gravity of Economic Losses
3.2. Dynamic Transitions in Economic Losses
3.2.1. Spatial Auto-Correlation Test
3.2.2. Dynamic Transition Results
4. Discussion
4.1. Comparison with Existing Literature
4.2. Implications for Urban Planning and Policy
4.3. Research Limitations and Future Directions
5. Conclusions
- (1)
- In 2010, 2015, and 2020, Guangzhou and Shenzhen ranked among the top three high-value areas for economic losses caused by high temperatures in cities. In 2010, Guangzhou’s highest value was 10.129 billion yuan; in 2015 and 2020, Shenzhen’s highest value reached 38.442 billion yuan and 45.440 billion yuan.
- (2)
- The average WBGT index increased by 1.69 °C from 2010 to 2020, and the average value of economic losses caused by high temperature in Chinese cities from 2010 to 2020 continued to fluctuate. Southeast coastal cities were the most affected, and it was gradually extended to the inland and some of the northern cities. Cities with a high proportion of GDP loss due to high urban temperature are relatively backward in their development levels.
- (3)
- The center of economic losses in Chinese cities has shifted from Huangshi City (2010) to Jiujiang City (2020), and overall, it has moved southwest, the speed of center migration gradually decreases.
- (4)
- The positive spatial correlation of economic damage in Chinese cities is obvious, and the degree of loss is related to the agglomeration distribution of cities, rather than random distribution. Cities with high economic damage showed HH agglomeration and LL agglomeration. Significant regional disparities were observed between northern and southern China, with Type IV transitions as the main type, and almost no spatio-temporal transitions between different types. This suggests that under the influence of temperature, the local spatial correlation patterns of economic losses in Chinese cities show high stability, with specific path correlation or spatial fixation characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WBGT | Wet-Bulb Globe Temperature |
IPCC | Intergovernmental Panel on Climate Change |
ISO | International Organization for Standardization |
SDE | Standard Deviation Ellipse |
NCEI | National Center for Environmental Information |
NOAA | National Oceanic and Atmospheric Administration |
LISA | Local Indicators of Spatial Association |
HH | High–High |
LL | Low–Low |
LH | Low–High |
HL | High–Low |
CGE | Computable General Equilibrium |
NCCAP | National Climate Change Action Plan |
PRD | Pearl River Delta |
PPP | Purchasing Power Parity |
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K. IPCC, 2023: Summary for Policymakers. In Climate Change 2023: Synthesis Report, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Borg, M.A.; Xiang, J.; Anikeeva, O.; Pisaniello, D.; Hansen, A.; Zander, K.; Dear, K.; Sim, M.R.; Bi, P. Occupational heat stress and economic burden: A review of global evidence. Environ. Res. 2021, 195, 110781. [Google Scholar] [CrossRef]
- Goel, V.; Agrawal, R.; Sharma, V. Factors affecting labour productivity: An integrative synthesis and productivity modelling. Glob. Bus. Econ. Rev. 2017, 19, 299–322. [Google Scholar] [CrossRef]
- Yaglou, C.; Minaed, D. Control of heat casualties at military training centers. AMA Arch. Ind. Health 1957, 16, 302–316. [Google Scholar] [PubMed]
- d’Ambrosio Alfano, F.R.; Malchaire, J.; Palella, B.I.; Riccio, G. WBGT index revisited after 60 years of use. Ann. Occup. Hyg. 2014, 58, 955–970. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, C.; Song, Y. Research progress of the impact of frequent high temperature heat waves on economic system. Adv. Clim. Change Res. 2021, 17, 121–130. [Google Scholar]
- Chu, B.-W.; Luo, J.-F.; Wang, K.-X.; Xing, Z.-C.; Wang, H.-K. Substantial increase of heat-induced labor and economic loss in China under rapid economic and environmental temperature growth. Adv. Clim. Change Res. 2024, 15, 708–716. [Google Scholar] [CrossRef]
- Zhao, M.; Lee, J.K.W.; Kjellstrom, T.; Cai, W. Assessment of the economic impact of heat-related labor productivity loss: A systematic review. Clim. Change 2021, 167, 22. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, W.; Liu, J.; He, P.; Wang, J.; Huang, L.; Zhang, B. Analysis and intervention of heatwave related economic loss: Comprehensive insights from supply, demand, and public expenditure into the relationship between the influencing factors. J. Environ. Manag. 2023, 326, 116654. [Google Scholar] [CrossRef]
- Lai, W.; Qiu, Y.; Tang, Q.; Xi, C.; Zhang, P. The effects of temperature on labor productivity. Annu. Rev. Resour. Econ. 2023, 15, 213–232. [Google Scholar] [CrossRef]
- Habibi, P.; Razmjouei, J.; Moradi, A.; Mahdavi, F.; Fallah-Aliabadi, S.; Heydari, A. Climate change and heat stress resilient outdoor workers: Findings from systematic literature review. BMC Public Health 2024, 24, 1711. [Google Scholar] [CrossRef]
- Ojha, A.; Jebelli, H.; Alexander, L.; Loeffert, J.R. Quantifying the Implications of Humidity and Temperature on Heat Stress Exposure of Construction Workers: A Worker-Centric Physiological Sensing Approach. In Proceedings of the Construction Research Congress 2024, Des Moines, IA, USA, 20–23 March 2024; pp. 196–205. [Google Scholar] [CrossRef]
- Morrissey, M.C.; Brewer, G.J.; Williams, W.J.; Quinn, T.; Casa, D.J. Impact of occupational heat stress on worker productivity and economic cost. Am. J. Ind. Med. 2021, 64, 981–988. [Google Scholar] [CrossRef]
- Ireland, A.; Johnston, D.; Knott, R. Heat and worker health. J. Health Econ. 2023, 91, 102800. [Google Scholar] [CrossRef]
- Krishnamurthy, M.; Ramalingam, P.; Perumal, K.; Kamalakannan, L.P.; Chinnadurai, J.; Shanmugam, R.; Srinivasan, K.; Venugopal, V. Occupational heat stress impacts on health and productivity in a steel industry in Southern India. Saf. Health Work. 2017, 8, 99–104. [Google Scholar] [CrossRef]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.H.; Choi, W.-J.; Ham, S.; Kang, S.-K.; Yoon, J.-H.; Yoon, M.J.; Kang, M.-Y.; Lee, W. Heat exposure and workers’ health: A systematic review. Rev. Environ. Health 2022, 37, 45–59. [Google Scholar] [CrossRef]
- Feng, L.; Li, X. Effects of heat waves on human health: A review of recent study. J. Environ. Health 2016, 33, 182–188. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Guan, D.; Tinoco, D.M.; Xia, J.; Yan, Z.; Yang, J.; Liu, Q.; Huo, H. Assessment of the economic impacts of heat waves: A case study of Nanjing, China. J. Clean. Prod. 2018, 171, 811–819. [Google Scholar] [CrossRef]
- Cai, W.; Zhao, M.; Chen, Y.; Wang, C. O7E.4 Estimating economic impact of heat on china’s labor productivity: New evidence from a CGE model. Occup. Environ. Med. 2019, 76, A69. [Google Scholar] [CrossRef]
- Abokhashabah, T.; Jamoussi, B.; Summan, A.; Abdelfattah, E.; Ahmad, I. A review of occupational exposure to heat stress, its health effects and controls among construction industry workers, A case of Jeddah, KSA. Int. J. Biosci. 2020, 17, 35–45. [Google Scholar] [CrossRef]
- Zhu, X.; Deng, Q. The impacts of extreme heat on wage losses: Evidence from the Chinese agri-food industry. Agribusiness 2024, 41, 738–764. [Google Scholar] [CrossRef]
- Orlov, A.; Sillmann, J.; Aaheim, A.; Aunan, K.; De Bruin, K. Economic losses of heat-induced reductions in outdoor worker productivity: A case study of Europe. Econ. Disasters Clim. Change 2019, 3, 191–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Shindell, D.T. Costs from labor losses due to extreme heat in the USA attributable to climate change. Clim. Change 2021, 164, 35. [Google Scholar] [CrossRef]
- Szewczyk, W.; Mongelli, I.; Ciscar, J.-C. Heat stress, labour productivity and adaptation in Europe—A regional and occupational analysis. Environ. Res. Lett. 2021, 16, 105002. [Google Scholar] [CrossRef]
- Bardhan, M.; Patwary, M.M.; Al Imran, S.; Billah, S.M.; Hasan, M.; Disha, A.S.; Kabir, M.P.; Saha, C.; Pitol, M.N.S.; Browning, M.H. Estimating economic losses from perceived heat stress in a global south country, Bangladesh. Urban Clim. 2024, 56, 102072. [Google Scholar] [CrossRef]
- Zander, K.K.; Botzen, W.J.; Oppermann, E.; Kjellstrom, T.; Garnett, S.T. Heat stress causes substantial labour productivity loss in Australia. Nat. Clim. Change 2015, 5, 647–651. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, J.; Lee, S.-B.; Kim, S.W. Estimation of relative risk of mortality and economic burden attributable to high temperature in Wuhan, China. Front. Public Health 2022, 10, 839204. [Google Scholar] [CrossRef] [PubMed]
- Knutson, T.R.; Ploshay, J.J. Detection of anthropogenic influence on a summertime heat stress index. Clim. Change 2016, 138, 25–39. [Google Scholar] [CrossRef]
- GBZ2.2-2007; Occupational Exposure Limits for Hazardous Agents in the Workplace—Part 2: Physical Agents. Code of China: Beijing, China, 2007.
- Kjellstrom, T.; Kovats, R.S.; Lloyd, S.J.; Holt, T.; Tol, R.S. The direct impact of climate change on regional labor productivity. Arch. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef]
- Roson, R.; Sartori, M. Estimation of climate change damage functions for 140 regions in the GTAP9 database. In World Bank Policy Research Working Paper; World Bank Group: Washington, DC, USA, 2016; Available online: https://hdl.handle.net/10278/3674450 (accessed on 20 July 2025).
- Teimori, G.; Monazzam, M.R.; Nassiri, P.; Golbabaei, F.; Dehghan, S.F.; Ghannadzadeh, M.J.; Asghari, M. Applicability of the model presented by Australian Bureau of Meteorology to determine WBGT in outdoor workplaces: A case study. Urban Clim. 2020, 32, 100609. [Google Scholar] [CrossRef]
- Lee, S.M.; Min, S.K. Heat stress changes over East Asia under 1.5 and 2.0 C global warming targets. J. Clim. 2018, 31, 2819–2831. [Google Scholar] [CrossRef]
- Chen, X.; Li, N.; Liu, J.; Zhang, Z.; Liu, Y. Global heat wave hazard considering humidity effects during the 21st century. Int. J. Environ. Res. Public Health 2019, 16, 1513. [Google Scholar] [CrossRef]
- Rey, S.J. Spatial empirics for economic growth and convergence. Geogr. Anal. 2001, 33, 195–214. [Google Scholar] [CrossRef]
- Kjellstrom, T. Impact of climate conditions on occupational health and related economic losses: A new feature of global and urban health in the context of climate change. Asia Pac. J. Public Health 2016, 28, 28S–37S. [Google Scholar] [CrossRef]
- Takakura, J.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Hasegawa, T.; Honda, Y.; Masui, T. Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation. Environ. Res. Lett. 2017, 12, 064010. [Google Scholar] [CrossRef]
- Sahu, S.; Sett, M.; Kjellstrom, T. Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: Implications for a climate change future. Ind. Health 2013, 51, 424–431. [Google Scholar] [CrossRef]
- Yi, W.; Chan, A.P. Effects of heat stress on construction labor productivity in Hong Kong: A case study of rebar workers. Int. J. Environ. Res. Public Health 2017, 14, 1055. [Google Scholar] [CrossRef]
- karim Fahed, A.; Ozkaymak, M.; Ahmed, S. Impacts of heat exposure on workers’ health and performance at steel plant in Turkey. Eng. Sci. Technol. Int. J. 2018, 21, 745–752. [Google Scholar] [CrossRef]
- Nunfam, V.F.; Adusei-Asante, K.; Van Etten, E.J.; Oosthuizen, J.; Frimpong, K. Social impacts of occupational heat stress and adaptation strategies of workers: A narrative synthesis of the literature. Sci. Total Environ. 2018, 643, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Rowlinson, S.; YunyanJia, A.; Li, B.; ChuanjingJu, C. Management of climatic heat stress risk in construction: A review of practices, methodologies, and future research. Accid. Anal. Prev. 2014, 66, 187–198. [Google Scholar] [CrossRef]
- Pogačar, T.; Casanueva, A.; Kozjek, K.; Ciuha, U.; Mekjavić, I.B.; Kajfež Bogataj, L.; Črepinšek, Z. The effect of hot days on occupational heat stress in the manufacturing industry: Implications for workers’ well-being and productivity. Int. J. Biometeorol. 2018, 62, 1251–1264. [Google Scholar] [CrossRef]
- Messeri, A.; Morabito, M.; Bonafede, M.; Bugani, M.; Levi, M.; Baldasseroni, A.; Binazzi, A.; Gozzini, B.; Orlandini, S.; Nybo, L. Heat stress perception among native and migrant workers in Italian industries—Case studies from the construction and agricultural sectors. Int. J. Environ. Res. Public Health 2019, 16, 1090. [Google Scholar] [CrossRef]
- Kawakami, R.; Hasebe, H.; Yamamoto, Y.; Yoda, S.; Takeuchi, G.; Abe, R.; Tosaka, Y.; Nomura, Y. Cooler break areas: Reducing heat stress among construction workers in Japan. Build. Environ. 2024, 262, 111821. [Google Scholar] [CrossRef]
- Wagoner, R.S.; López-Gálvez, N.I.; de Zapien, J.G.; Griffin, S.C.; Canales, R.A.; Beamer, P.I. An occupational heat stress and hydration assessment of agricultural workers in North Mexico. Int. J. Environ. Res. Public Health 2020, 17, 2102. [Google Scholar] [CrossRef]
- Bodin, T.; García-Trabanino, R.; Weiss, I.; Jarquín, E.; Glaser, J.; Jakobsson, K.; Lucas, R.; Wesseling, C.; Hogstedt, C.; Wegman, D. Intervention to reduce heat stress and improve efficiency among sugarcane workers in El Salvador: Phase 1. Occup. Environ. Med. 2016, 73, 409–416. [Google Scholar] [CrossRef] [PubMed]
Labor Productivity | Physical Labor Intensity | |||
---|---|---|---|---|
I | II | III | IV | |
100% | 30 | 28 | 26 | 25 |
75% | 31 | 29 | 28 | 26 |
50% | 32 | 30 | 29 | 28 |
25% | 33 | 32 | 31 | 30 |
Type | Spatio-Temporal Transition |
---|---|
I | HHt → LHt+1, LHt → HHt+1, HLt → LLt+1, LLt → HLt+1 |
II | HHt → HLt+1, LHt → LLt+1, HLt → HHt+1, LLt → HHt+1 |
III | HHt → LLt+1, LLt → HHt+1, LHt → HLt+1, HLt → LHt+1 |
IV | HHt → HHt+1, HLt → HLt+1, LLt → LLt+1, LHt → LHt+1 |
Vintage | Northeast (Billion Yuan) | East (Billion Yuan) | West (Billion Yuan) | Middle (Billion Yuan) | China (Billion Yuan) |
---|---|---|---|---|---|
2010 | 0.228 | 2.911 | 0.609 | 0.63 | 1.343 |
2011 | 0.265 | 4.013 | 0.808 | 0.757 | 1.812 |
2012 | 0.309 | 4.603 | 2.191 | 1.103 | 2.589 |
2013 | 0.354 | 6.419 | 2.890 | 1.513 | 3.537 |
2014 | 0.369 | 6.526 | 2.738 | 1.322 | 3.480 |
2015 | 0.392 | 6.568 | 2.925 | 1.405 | 3.582 |
2016 | 0.399 | 8.758 | 2.178 | 1.802 | 4.118 |
2017 | 0.464 | 9.956 | 1.947 | 1.955 | 4.470 |
2018 | 0.429 | 10.633 | 2.136 | 2.128 | 4.796 |
2019 | 0.384 | 9.266 | 1.976 | 2.001 | 4.252 |
2020 | 0.600 | 11.821 | 2.885 | 2.495 | 5.557 |
Vintage | Center of Gravity | Long Axis/km | Short Axis/km | Azimuth/(°) | ||
---|---|---|---|---|---|---|
Orientation | Length/km | Rate/(km/a) | ||||
2010 | — | — | — | 963.48 | 558.14 | 20.49 |
2015 | southwest | 80.39 | 16.08 | 917.18 | 575.85 | 21.52 |
2020 | southwest | 62.97 | 12.59 | 886.73 | 600.41 | 24.23 |
Vintage | Moran’s I | Z-Value | p-Value |
---|---|---|---|
2010 | 0.208 | 5.457 | 0.000 * |
2011 | 0.195 | 5.202 | 0.000 * |
2012 | 0.131 | 3.546 | 0.000 * |
2013 | 0.290 | 7.588 | 0.000 * |
2014 | 0.315 | 8.363 | 0.000 * |
2015 | 0.319 | 8.528 | 0.000 * |
2016 | 0.344 | 9.051 | 0.000 * |
2017 | 0.350 | 9.168 | 0.000 * |
2018 | 0.327 | 8.525 | 0.000 * |
2019 | 0.346 | 9.165 | 0.000 * |
2020 | 0.310 | 8.077 | 0.000 * |
Vintage | Pattern | HH | LH | LL | HL |
---|---|---|---|---|---|
(2010–2015) | HH | IV (18) | II (2) | III (0) | I (0) |
LH | II (2) | IV (9) | I (0) | III (0) | |
LL | III (0) | I (0) | IV (70) | II (0) | |
HL | I (0) | III (0) | II (1) | IV (2) | |
(2015–2020) | HH | IV (20) | II (1) | III (0) | I (0) |
LH | II (1) | IV (13) | I (0) | III (0) | |
LL | III (0) | I (0) | IV (72) | II (0) | |
HL | I (0) | III (0) | II (0) | IV (2) | |
(2010–2020) | HH | IV (20) | II (3) | III (0) | I (0) |
LH | II (3) | IV (10) | I (0) | III (0) | |
LL | III (0) | I (0) | IV (67) | II (0) | |
HL | I (0) | III (0) | II (1) | IV (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Qi, H.; Gu, K.; Yan, R. Climate Resilience and Sustainable Labor: Spatio-Temporal Shifts in Economic Losses from High Temperatures and Implications for Sustainable Development in China. Sustainability 2025, 17, 9124. https://doi.org/10.3390/su17209124
Yu X, Qi H, Gu K, Yan R. Climate Resilience and Sustainable Labor: Spatio-Temporal Shifts in Economic Losses from High Temperatures and Implications for Sustainable Development in China. Sustainability. 2025; 17(20):9124. https://doi.org/10.3390/su17209124
Chicago/Turabian StyleYu, Xiaogan, Haodong Qi, Kangkang Gu, and Ran Yan. 2025. "Climate Resilience and Sustainable Labor: Spatio-Temporal Shifts in Economic Losses from High Temperatures and Implications for Sustainable Development in China" Sustainability 17, no. 20: 9124. https://doi.org/10.3390/su17209124
APA StyleYu, X., Qi, H., Gu, K., & Yan, R. (2025). Climate Resilience and Sustainable Labor: Spatio-Temporal Shifts in Economic Losses from High Temperatures and Implications for Sustainable Development in China. Sustainability, 17(20), 9124. https://doi.org/10.3390/su17209124