Chemical Composition and Brine Shrimp Toxicity of Twigs Essential Oil from Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Biological Material
2.2. Plant Material and Study Area Characterization
2.3. EO Obtention via the HD Process
2.4. EO Physical Properties (Density and Color) Determination
2.5. EO Chemical Composition Analysis
2.6. EO Toxicity Determination Using the In Vivo BSLA Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Az–CJT EO Obtention and Physical Properties
3.2. Yield of Az–CJT EO
3.3. Chemical Profile of Az–CJT EO
3.4. Toxicity of Az–CJT EO Against A. salina
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Class | Component | RT | RIC | RIL | IP 1 | Relative Content (%) | ||
---|---|---|---|---|---|---|---|---|
Twigs EO 2 | Other AP–EOs 3 | Com. EO 4 | ||||||
MH | Tricyclene | 12.028 | 918 | 921 | a, c | t | 0.1–0.3 | 0.31 |
MH | α-Thujene | 12.180 | 921 | 924 | b, c | 0.15 | 0.7–2.1 | 1.53 |
MH | α-Pinene | 12.603 | 928 | 932 | a, c | 3.59 | 17.0–44.6 | 28.62 |
MH | Camphene | 13.506 | 944 | 946 | a, c | 0.33 | 1.0–2.1 | 1.90 |
MH | Sabinene | 14.788 | 967 | 969 | a, c | 1.00 | 3.9–14.1 | 24.30 |
MH | β-Pinene | 15.094 | 973 | 974 | a, c | 0.29 | 1.1–1.6 | 1.93 |
MH | β-Myrcene | 15.726 | 984 | 988 | a, c | 0.58 | 1.7–4.7 | 5.09 |
MH | δ-3-Carene | 16.951 | 1005 | 1008 | a, c | 0.25 | 0.8–1.3 | 1.36 |
MH | α-Terpinene | 17.466 | 1013 | 1014 | a, c | 0.26 | 0.6–3.4 | 1.40 |
MH | p-Cymene | 17.940 | 1020 | 1020 | a, c | 0.16 | t–0.9 | 0.32 |
MH | Limonene | 18.244 | 1024 | 1024 | a, c | 0.37 | 1.0–3.2 | 4.93 |
MH | β-Phellandrene | 18.346 | 1026 | 1025 | b, c | 0.15 | 0.4–1.1 | 0.79 |
MH | γ-Terpinene | 20.132 | 1053 | 1054 | a, c | 0.46 | 0.8–4.9 | 2.13 |
MH | Terpinolene | 21.952 | 1080 | 1086 | a, c | 0.17 | 0.5–1.3 | 1.06 |
OCM | Linalool | 22.896 | 1094 | 1095 | a, c | 0.11 | t | 0.10 |
OCM | cis-p-Menth-2-en-1-ol | 24.604 | 1119 | 1118 | c | t | t–0.3 | 0.14 |
OCM | trans-Pinocarveol | 25.730 | 1135 | 1135 | c | t | - | - |
OCM | trans-p-Menth-2-en-1-ol | 25.835 | 1137 | 1136 | b, c | t | t–0.2 | 0.08 |
OCM | Camphene hydrate | 26.722 | 1150 | 1145 | c | t | - | t |
OCM | Borneol | 27.880 | 1166 | 1165 | a, c | 0.06 | t–0.5 | 0.07 |
OCM | Isopinocamphone | 28.168 | 1170 | 1153 | c | t | - | t |
OCM | Terpinen-4-ol | 28.500 | 1175 | 1174 | a, c | 1.98 | 2.7–11.8 | 3.38 |
OCM | α-Terpineol | 29.490 | 1189 | 1186 | a, c | 0.33 | t–0.8 | 0.13 |
OCM | cis-Piperitol | 29.693 | 1191 | 1195 | c | t | - | - |
OCM | trans-Piperitol | 30.445 | 1203 | 1207 | c | t | - | t |
OCM | Linalyl acetate | 33.225 | 1244 | 1253 | a, c | 0.07 | - | 0.14 |
OCM | Bornyl acetate | 35.583 | 1278 | 1287 | a, c | 1.45 | 0.2–1.4 | 1.93 |
OCM | Isobornyl acetate | 35.734 | 1280 | 1283 | c | t | - | t |
OCM | Methyl myrtenate | 36.313 | 1289 | 1294 | c | 0.07 | - | - |
OCM | α-Terpenyl acetate | 39.712 | 1340 | 1346 | b, c | 0.12 | t–0.3 | 0.28 |
SH | β-Elemene | 42.544 | 1383 | 1389 | b, c | 0.50 | t–0.4 | 0.15 |
SH | β-Ylangene | 44.370 | 1411 | 1419 | c | t | - | t |
SH | β-Caryophyllene | 44.457 | 1412 | 1417 | b, c | 0.10 | t–0.2 | 0.19 |
SH | β-Copaene | 45.097 | 1423 | 1430 | c | 0.15 | t–0.4 | 0.08 |
SH | trans-β-Farnesene | 46.540 | 1446 | 1454 | c | t | - | t |
SH | α-Humulene | 46.703 | 1448 | 1452 | c | t | t | 0.08 |
SH | β-Acoradiene | 47.374 | 1459 | 1469 | c | t | - | - |
SH | 4,5-di-epi-Aristolochene | 47.599 | 1463 | 1471 | c | t | - | - |
SH | Selina-4,11-diene | 47.814 | 1466 | 1474 | c | 0.06 | - | - |
SH | trans-Cadina-1(6),4-diene | 47.912 | 1468 | 1475 | c | 0.13 | - | t |
SH | cis-4,10-Epoxyamorphene | 48.083 | 1470 | 1481 | c | 0.06 | - | - |
SH | Germacrene D | 48.297 | 1474 | 1484 | a, c | 0.49 | t–0.9 | 0.87 |
SH | β-Selinene | 48.789 | 1481 | 1489 | c | 0.19 | t | 0.08 |
SH | trans-Muurola-4(14),5-diene | 48.974 | 1484 | 1493 | c | 0.06 | - | 0.12 |
SH | α-Selinene | 49.217 | 1488 | 1498 | c | 0.39 | - | 0.08 |
SH | α-Muurolene | 49.375 | 1491 | 1500 | b, c | 0.14 | t–0.3 | 0.40 |
SH | β-Bisabolene | 49.943 | 1500 | 1505 | c | 0.06 | - | t |
SH | γ-Cadinene | 50.257 | 1505 | 1513 | b, c | 0.23 | t–0.4 | 0.55 |
OCS | Cubebol | 50.380 | 1507 | 1514 | c | 0.06 | - | 0.10 |
SH | δ-Cadinene | 50.563 | 1510 | 1514 | a, c | 0.76 | 0.2–1.3 | 1.82 |
SH | Zonarene | 50.835 | 1515 | 1526 | c | t | - | t |
SH | trans-Cadina-1(2),4-diene | 51.409 | 1525 | 1533 | c | t | - | - |
SH | α-Cadinene | 51.666 | 1529 | 1537 | c | 0.06 | t | 0.11 |
OCS | Elemol | 52.414 | 1541 | 1548 | a, c | 12.43 | 2.0–13.6 | 1.49 |
SH | Germacrene B | 52.979 | 1551 | 1559 | c | 0.08 | - | t |
OCS | (E)-Nerolidol | 53.087 | 1553 | 1561 | c | 0.11 | - | t |
OCS | Germacren D-4-ol | 54.021 | 1568 | 1574 | a, c | 0.47 | t–0.7 | t |
OCS | β-Oplopenone | 55.585 | 1595 | 1607 | c | 0.35 | - | t |
OCS | 5,7-di-epi-α-Eudesmol | 55.790 | 1598 | 1607 | c | 0.10 | - | - |
OCS | 1,10-di-Epi-Cubenol | 56.286 | 1607 | 1618 | c | 0.07 | - | t |
OCS | 10-epi-γ-Eudesmol | 56.673 | 1614 | 1622 | c | 0.38 | t–1.0 | t |
OCS | 1-Epi-Cubenol | 56.998 | 1619 | 1627 | c | 0.14 | - | - |
OCS | Eremoligenol isomer | 57.147 | 1622 | - | c | 1.39 | - | - |
OCS | γ-Eudesmol | 57.249 | 1624 | 1630 | a, c | 5.32 | 1.2–3.6 | 0.11 |
OCS | Hinesol | 57.672 | 1631 | 1640 | c | 0.47 | - | - |
OCS | τ-Cadinol | 57.800 | 1634 | 1638 | b, c | 0.45 | t–1.2 | 0.10 |
OCS | epi-α-Cadinol | 57.922 | 1636 | 1638 | c | 0.48 | - | t |
OCS | δ-Cadinol | 58.081 | 1639 | 1644 | c | 0.23 | t | t |
OCS | α-Eudesmol | 58.636 | 1648 | 1652 | a, c | 19.53 | 1.2–5.9 3 | 0.70 |
OCS | Intermedeol | 58.743 | 1650 | 1636 | c | 0.67 | - | - |
OCS | 7-epi-α-Eudesmol | 58.887 | 1653 | 1662 | c | 0.11 | - | - |
OCS | Bulnesol | 59.091 | 1657 | 1670 | c | 0.08 | - | - |
OCS | Elemyl acetate | 59.220 | 1659 | - | c | 0.22 | - | - |
OCS | Hinesol acetate | 65.483 | 1773 | 1783 | c | 0.11 | - | - |
OCS | Oplopanonyl acetate | 69.962 | 1860 | 1851 | c | 0.35 | - | t |
DH | Rimuene | 71.441 | 1888 | 1896 | c | t | t | - |
DH | Sclarene | 71.559 | 1891 | 1974 | c | 0.10 | - | - |
DH | Isopimara-9(11),15-diene | 71.688 | 1893 | 1905 | c | 0.47 | t–0.2 | 0.10 |
DH | Rosa-5,15-diene | 73.061 | 1921 | 1926 | c | 0.15 | - | 0.40 |
DH | Kryptomeren | 73.206 | 1924 | 1933 | c | 1.06 | - | 0.34 |
DH | Pimaradiene | 73.751 | 1935 | 1948 | a, c | 1.55 | - | 0.40 |
DH | Sandaracopimara-8(14),15-diene | 74.652 | 1954 | 1968 | c | 0.82 | t–0.7 | 0.17 |
DH | Isophyllocladene | 74.944 | 1960 | 1966 | c | t | t | - |
OCD | Manool oxide | 76.036 | 1982 | 1987 | c | 0.14 | - | t |
DH | Phyllocladene | 77.453 | 2012 | 2016 | a, c | 14.80 | 2.0–11.6 | 5.10 |
DH | Kaur-16-ene | 78.476 | 2034 | 2042 | a, c | 1.55 | t–0.6 | 0.15 |
DH | Abietatriene | 78.822 | 2041 | 2055 | c | 0.26 | t–0.1 | t |
OCD | Nezukol | 82.516 | 2121 | 2132 | a, c | 11.34 | 0.4–3.3 | 0.28 |
OCD | Sandaracopimarinal | 84.679 | 2170 | 2184 | c | 0.47 | - | - |
OCD | Phyllocladanol | 85.981 | 2199 | 2209 | c | 0.44 | - | - |
OCD | Sandaracopimarinol | 88.450 | 2256 | 2269 | c | 0.06 | - | - |
OCD | Isopimarol | 90.157 | 2296 | 2310 | c | 0.06 | - | - |
OCD | 6,7-Dehydroferruginol | 90.364 | 2301 | 2315 | c | 0.25 | - | - |
OCD | trans-Ferruginol | 90.507 | 2305 | 2297 | c | 0.45 | - | - |
Total identified components (%) | 93.57 | 92.0–97.6 | 95.50 |
References
- Zulak, K.G.; Bohlmann, J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J. Integr. Plant Biol. 2010, 52, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-González, C.; Zas, R.; Erbilgin, N.; Ferrenberg, S.; Rozas, V.; Sampedro, L. Resin ducts as resistance traits in conifers: Linking dendrochronology and resin-based defences. Tree Physiol. 2020, 40, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Hosoo, Y. Development of pollen and female gametophytes in Cryptomeria japonica. Int. J. Plant Dev. Biol. 2007, 1, 116–121. [Google Scholar]
- Dias, E.; Araújo, C.; Mendes, J.; Elias, R.; Mendes, C.; Melo, C. Espécies florestais das ilhas–Açores. In Árvores e Florestas de Portugal; Silva, J.S., Ed.; Público, Comunicação Social, SA/Fundação Luso-Americana/Liga Para a protecção da Natureza: Lisbon, Portugal, 2007; Volume 6, pp. 199–254. [Google Scholar]
- Secretaria Regional do Ambiente e Ação Climática. Relatório do Estado do Ambiente dos Açores 2020-2022; Portal do Estado do Ambiente dos Açores. Available online: https://rea.azores.gov.pt/UltimaEdicao.aspx (accessed on 17 June 2025).
- Mizushina, Y.; Kuriyama, I. Cedar (Cryptomeria japonica) Oils. In Essential Oils in Food Preservation, Flavor and Safety, 1st ed.; Preedy, V.R., Ed.; Academic Press: London, UK, 2015; pp. 317–323. [Google Scholar]
- Fukasawa, Y.; Komagata, Y. Regeneration of Cryptomeria japonica seedlings on pine logs in a forest damaged by pine wilt disease: Effects of wood decomposer fungi on seedling survival and growth. J. For. Res. 2017, 22, 375–379. [Google Scholar] [CrossRef]
- Chang, C.I.; Wang, S.Y.; Wu, M.D.; Cheng, M.J.; Ko, H.H.; Chang, H.S.; Chen, J.J.; Chen, C.C.; Kuo, Y.H. Two new sesquarterpenoids from the bark of Cryptomeria japonica. Phytochem. Lett. 2017, 22, 56–60. [Google Scholar] [CrossRef]
- Cheng, S.S.; Lin, H.Y.; Chang, S.T. Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica). J. Agric. Food Chem. 2005, 53, 614–619. [Google Scholar] [CrossRef]
- Shibutani, S.; Takata, K.; Doi, S. Quantitative comparisons of antitermite extractives in heartwood from the same clones of Cryptomeria japonica planted at two different sites. J. Wood Sci. 2007, 53, 285–290. [Google Scholar] [CrossRef]
- Cha, J.D.; Kim, J.Y. Essential oil from Cryptomeria japonica induces apoptosis in human oral epidermoid carcinoma cells via mitochondrial stress and activation of caspases. Molecules 2012, 17, 3890–3901. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Biological activities of organic extracts and specialized metabolites from different parts of Cryptomeria japonica (Cupressaceae): A critical review. Phytochemistry 2023, 206, 113520. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Variations in essential oil chemical composition and biological activities of Cryptomeria japonica (Thunb. ex Lf) D. Don from different geographical origins: A critical review. Appl. Sci. 2021, 11, 11097. [Google Scholar] [CrossRef]
- Essential Oils Market Report. Available online: https://www.researchandmarkets.com/reports/5741537/essential-oils-market-report (accessed on 17 June 2025).
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolites production in plants: Volatile components and essential oils. Flavour. Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Mclaughlin, J.L.; Rogers, L.L.; Anderson, J.E. The use of biological assays to evaluate botanicals. Drug. Inf. J. 1998, 32, 513–524. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Figueiredo, A.C.; Lima, E. Essential oils from different parts of Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae): Comparison of the yields, chemical compositions, and biological properties. Appl. Sci. 2023, 13, 8375. [Google Scholar] [CrossRef]
- Arruda, F.; Wortham, T.; Rodrigues, T.; Baptista, J.; Lima, E. Variations in essential oil biological activities of female cones at different developmental stages from Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae). Separations 2024, 11, 102. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Frias, J.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Lima, E. Anticholinesterase and anti-inflammatory activities of the essential oils of sawdust and resin-rich bark from Azorean Cryptomeria japonica (Cupressaceae): In vitro and in silico studies. Int. J. Mol. Sci. 2024, 25, 12328. [Google Scholar] [CrossRef]
- Chazarra, A.; Mestre, A.; Pires, V.; Cunha, S.; Silva, Á.; Marques, J.; Carvalho, F.; Mendes, M.; Neto, J.; Gómez, I. Atlas Climático dos Arquipélagos das Canárias, da Madeira e dos Açores; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2011.
- European Directorate for the Quality of Medicines & Healthcare (EDQM) Council of Europe. European Pharmacopoeia, 10th ed.; EDQM Council of Europe: Strasbourg, France, 2021. [Google Scholar]
- Arruda, F.; Rosa, J.S.; Rodrigues, A.; Oliveira, L.; Lima, A.; Barroso, J.G.; Lima, E. Essential oil variability of Azorean Cryptomeria japonica leaves under different distillation methods, Part 1: Color, yield and chemical composition analysis. Appl. Sci. 2022, 12, 452. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allures Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- König, W.A.; Hochmuth, D.H.; Joulain, D. Terpenoids and Related Constituents of Essential Oils; Library of MassFinder; Institute of Organic Chemistry: Hamburg, Germany, 2001. [Google Scholar]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
- ISO 9235; Aromatic Natural Raw Materials–Vocabulary. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Chen, J.; Zhang, N.; Pei, S.; Yao, L. Odor perception of aromatherapy essential oils with different chemical types: Influence of gender and two cultural characteristics. Front. Psychol. 2022, 13, 998612. [Google Scholar] [CrossRef]
- Ho, C.L.; Wang, E.I.; Yu, H.T.; Yu, H.M.; Su, Y.C. Compositions and antioxidant activities of essential oils of different tissues from Cryptomeria japonica D. Don. Q. J. Chin. For. 2010, 32, 63–76. [Google Scholar]
- Chang, C.W.; Chang, W.L.; Chang, S.T.; Cheng, S.S. Antibacterial activities of plant essential oils against Legionella pneumophila. Water Res. 2008, 42, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Chhatwal, H.; Pandey, A. Deciphering the complexity of terpenoid biosynthesis and its multi-level regulatory mechanism in plants. J. Plant Growth Regul. 2024, 43, 3320–3336. [Google Scholar] [CrossRef]
- de las, M.; Oliva, M.; Gallucci, N.; Zygadlo, J.A.; Demo, M.S. Cytotoxic activity of Argentinean essential oils on Artemia salina. Pharm. Biol. 2007, 45, 259–262. [Google Scholar] [CrossRef]
- Svoboda, K.P.; Hampson, J.B. Bioactivity of essential oils of selected temperate aromatic plants: Antibacterial, antioxidant, anti-inflammatory and other related pharmacological activities. Ayr Scotl. Plant Biol. Dep. SAC Auchincruive 1999, 16, 1–7. [Google Scholar]
- Anderson, J.E.; Goetz, C.M.; McLaughlin, J.L.; Suffness, M. A blind comparison of simple bench-top bioassays and human tumour cell cytotoxicities as antitumor prescreens. Phytochem. Anal. 1991, 2, 107–111. [Google Scholar] [CrossRef]
- Lima, L.R.; Andrade, F.K.; Alves, D.R.; de Morais, S.M.; Vieira, R.S. Anti-acetylcholinesterase and toxicity against Artemia salina of chitosan microparticles loaded with essential oils of Cymbopogon flexuosus, Pelargonium x ssp and Copaifera officinalis. Int. J. Biol. Macromol. 2021, 167, 1361–1370. [Google Scholar] [CrossRef]
- Karchesy, Y.M.; Kelsey, R.G.; Constantine, G.; Karchesy, J.J. Biological screening of selected Pacific Northwest forest plants using the brine shrimp (Artemia salina) toxicity bioassay. SpringerPlus 2016, 5, 510. [Google Scholar] [CrossRef]
- Chan, S.W.; Mahmoud, V.L.; Wang, X.; Teoh, M.L.; Loh, K.M.; Ng, C.H.; Wong, W.F.; Looi, C.Y. Chemical profiling and cytotoxicity screening of agarwood essential oil (Aquilaria sinensis) in brine shrimp nauplii and cancer cell lines. PLoS ONE 2024, 19, e0310770. [Google Scholar] [CrossRef]
- Sharma, A.; Bajpai, V.K.; Shukla, S. Sesquiterpenes and cytotoxicity. In Natural Products; Ramawat, K., Mérillon, J.M., Eds.; Springer: Heidelberg, Germany, 2013; pp. 3513–3550. [Google Scholar]
- Bomfim, D.S.; Ferraz, R.P.C.; Carvalho, N.C.; Soares, M.B.P.; Pinheiro, M.L.B.; Costa, E.V.; Bezerra, D.P. Eudesmol isomers induce caspase-mediated apoptosis in human hepatocellular carcinoma HepG2 cells. Basic. Clin. Pharmacol. Toxicol. 2013, 113, 300–306. [Google Scholar] [CrossRef]
- Asakura, K.; Kanemasa, T.; Minagawa, K.; Kagawa, K.; Yagami, T.; Nakajima, M.; Ninomiya, M. Alpha-eudesmol, a P/Q-type Ca(2+) channel blocker, inhibits neurogenic vasodilation and extravasation following electrical stimulation of trigeminal ganglion. Brain Res. 2000, 873, 94–101. [Google Scholar] [CrossRef]
- Asakura, K.; Matsuo, Y.; Oshima, T.; Kihara, T.; Minagawa, K.; Araki, Y.; Kagawa, K.; Kanemasa, T.; Ninomiya, M. Omega-agatoxin IVA-sensitive Ca(2+) channel blocker, alpha-eudesmol, protects against brain injury after focal ischemia in rats. Eur. J. Pharmacol. 2000, 394, 57–65. [Google Scholar] [CrossRef]
- Horak, S.; Koschak, A.; Stuppner, H.; Striessnig, J. Use-dependent block of voltage-gated Cav2.1 Ca2+ channels by petasins and eudesmol isomers. J. Pharmacol. Exp. Ther. 2009, 330, 220–226. [Google Scholar] [CrossRef]
- Bruna, F.; Fernández, K.; Urrejola, F.; Touma, J.; Navarro, M.; Sepúlveda, B.; Larrazabal-Fuentes, M.; Paredes, A.; Neira, I.; Ferrando, M.; et al. The essential oil from Drimys winteri possess activity: Antioxidant, theoretical chemistry reactivity, antimicrobial, antiproliferative and chemical composition. Front. Nat. Prod. 2022, 1, 958425. [Google Scholar] [CrossRef]
- de Moraes, Â.A.B.; Ferreira, O.O.; da Costa, L.S.; Almeida, L.Q.; Varela, E.L.P.; Cascaes, M.M.; de Jesus Pereira Franco, C.; Percário, S.; Nascimento, L.D.d.; de Oliveira, M.S.; et al. Phytochemical profile, preliminary toxicity, and antioxidant capacity of the essential oils of Myrciaria floribunda (H. West ex Willd.) O. Berg. and Myrcia sylvatica (G. Mey) DC. (Myrtaceae). Antioxidants 2022, 11, 2076. [Google Scholar] [CrossRef]
EO Components (EOCs) | C. japonica Origin Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|
Azores | Taiwan | Japan | |||||||
Class | Name | C–EO 1 | FC–EO 2 | MC–EO 2 | L–EO 2 | F–EO 2 | Tw–EO 1 | Tw–EO 3 | Tw–EO 4 |
MH | α-Pinene | 28.62 | 44.6 | 37.6 | 25.8 | 17.0 | 3.59 | 0.2 | - |
MH | Sabinene | 24.30 | 3.9 | 6.1 | 14.1 | 8.1 | 1.00 | - | - |
MH | β-Myrcene | 5.09 | 1.7 | 4.7 | 3.4 | 2.9 | 0.58 | t | - |
MH | Limonene | 4.93 | 1.0 | 3.2 | 1.1 | 1.3 | 0.37 | t | - |
OCM | Terpinen-4-ol | 3.38 | 3.7 | 11.8 | 2.7 | 3.5 | 1.98 | t | - |
OCS | Elemol | 1.49 | 3.9 | 2.0 | 11.5 | 13.6 | 12.43 | 8.7 | 6.80 |
OCS | γ-Eudesmol | 0.11 | 3.5 | 1.2 | 3.5 | 3.6 | 5.32 | 11.8 | 6.05 |
OCS | β-Eudesmol | - | 7.1 | 1.0 | 3.8 | 5.2 | - | NR | NR |
OCS | α-Eudesmol | 0.70 | 5.9 | 1.2 | 5.1 | 6.3 | 19.53 | 25.2 | 10.87 |
DH | Phyllocladene | 5.10 | 2.0 | 4.5 | 7.4 | 11.6 | 14.80 | NR | NR |
OCD | Nezukol | 0.15 | 0.6 | 0.4 | 1.0 | 3.3 | 11.34 | NR | NR |
Total Identified EOCs (%) | 95.50 | 92.0 | 97.6 | 96.6 | 93.7 | 93.57 | 93.1 | 76.8 | |
Total Grouped EOCs (%) | |||||||||
MH | 74.61 | 59.6 | 70.8 | 54.9 | 37.9 | 7.80 | 0.4 | - | |
OCM | 6.42 | 5.7 | 14.5 | 4.1 | 5.5 | 4.47 | 0.5 | - | |
SH | 4.76 | 3.3 | 0.2 | 2.7 | 2.1 | 3.72 | 7.3 | 22.7 | |
OCS | 2.73 | 20.8 | 6.4 | 25.1 | 31.4 | 43.52 | 73.7 | 43.3 | |
DH | 6.69 | 2.0 | 5.3 | 8.8 | 13.5 | 20.85 | 0.1 | 0.6 | |
OCD | 0.29 | 0.6 | 0.4 | 1.0 | 3.3 | 13.21 | 11.1 | 10.2 | |
Total terpenes (%) | 86.06 | 64.9 | 76.3 | 66.4 | 53.5 | 32.37 | 7.8 | 23.3 | |
Total terpenoids (%) | 9.44 | 27.1 | 21.3 | 30.2 | 40.2 | 61.20 | 85.3 | 53.5 | |
Ratio terpenes/terpenoids | 9.10 | 2.4 | 3.6 | 2.2 | 1.3 | 0.53 | 0.1 | 0.4 |
Sample | Concentration (µg/mL) | LC50 (95% CI) 1 | LC90 (95% CI) 1 | Slope ± SEM (95% CI) 1 | H 2 |
---|---|---|---|---|---|
Twigs EO | 40, 70, 80, 100 | 73.99 (68.86–77.75) | 104.86 (97.47–119.25) | 8.46 ± 1.37 (7.09–9.83) | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janeiro, A.; Lima, A.; Arruda, F.; Wortham, T.; Rodrigues, T.; Baptista, J.; Lima, E. Chemical Composition and Brine Shrimp Toxicity of Twigs Essential Oil from Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don. Sustainability 2025, 17, 9118. https://doi.org/10.3390/su17209118
Janeiro A, Lima A, Arruda F, Wortham T, Rodrigues T, Baptista J, Lima E. Chemical Composition and Brine Shrimp Toxicity of Twigs Essential Oil from Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don. Sustainability. 2025; 17(20):9118. https://doi.org/10.3390/su17209118
Chicago/Turabian StyleJaneiro, Alexandre, Ana Lima, Filipe Arruda, Tanner Wortham, Tânia Rodrigues, José Baptista, and Elisabete Lima. 2025. "Chemical Composition and Brine Shrimp Toxicity of Twigs Essential Oil from Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don" Sustainability 17, no. 20: 9118. https://doi.org/10.3390/su17209118
APA StyleJaneiro, A., Lima, A., Arruda, F., Wortham, T., Rodrigues, T., Baptista, J., & Lima, E. (2025). Chemical Composition and Brine Shrimp Toxicity of Twigs Essential Oil from Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don. Sustainability, 17(20), 9118. https://doi.org/10.3390/su17209118