Archaeal Community and Function Disturbed Significantly in Surrounding Soil by Coal Gangue Stockpiling
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Sample Collection
2.3. Measurement of Soil Characteristics
2.4. Metagenomic Sequencing
2.5. Data Processing
3. Results
3.1. Soil Physicochemical Properties
3.2. Archaeal Community Diversity in Different Disturbed Areas
3.3. Archaeal Community Structure in Different Disturbed Areas
3.4. Archaeal Community Function in Different Disturbed Areas
3.4.1. Functional Genetic Composition of Archaeal Communities
3.4.2. Functional Diversity of Archaeal Communities
- (1)
- Carbon fixation function
- (2)
- Nitrogen Metabolism
4. Discussion
4.1. Variations in Soil Physicochemical Properties in Different Disturbed Areas of CG Dump
4.2. Archaeal Community Composition in Different Disturbed Areas of CG Dump
4.3. Composition and Diversity of Archaeal Function in Different Disturbed Areas of CG Dump
4.4. Carbon Fixation and Nitrogen Metabolic Function of Archaeal Community in Different Disturbed Areas of CG Dump
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADF | atmospheric dust fall area |
AK | available potassium |
AP | available phosphorus |
CSL | control soil area |
CST | control sediment area |
EC | electrical conductivity |
LFA | leachate flow area. |
SOC | soil organic carbon |
TK | total potassium |
TP | total phosphorus |
TN | total nitrogen |
References
- Chang, J.; Du, G.J.; Du, J.; Shi, X. Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations. China Environ. Prot. Ind. 2022, 2022, 13–17. [Google Scholar] [CrossRef]
- He, Z.; He, S.; Wang, G.; Li, S.; Chen, G.; Gao, M.; Li, H. Research and progress of comprehensive utilization technologies of China’s coal gangue in the context of carbon peaking and carbon neutrality. Conserv. Util. Miner. Resour. 2024, 44, 1–14. [Google Scholar] [CrossRef]
- Gong, W.; Hui, H.; Ma, S.; Ji, J.; Jiang, H. Preparation of Coal Gangue-Based Artificial Soil and Investigation of the Mechanism of Aggregate Structure Formation. Sustainability 2025, 17, 3318. [Google Scholar] [CrossRef]
- Shi, L.; Peng, J.; Xu, D.; Tian, J.; Liu, T.; Jiang, B.; Zhang, F. Leaching characteristics and pollution risk assessment of potentially harmful elements from coal gangue exposed to weathering for different periods of time. Environ. Sci. Pollut. Res. 2023, 30, 63200–63214. [Google Scholar] [CrossRef]
- Liu, F.; Song, H.; Wu, H.; Feng, Z.; Chai, C.; Zhang, J.; Zhou, J. Research progress on the utilization of coal gangue for soil remediation and as soil amendment agents. Conserv. Util. Miner. Resour. 2023, 43, 14–26. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, H.; Zhao, T.; Shi, C.; Zhang, Y.; Li, F. Characteristics of atmospheric dustfall fluxes and particle size in an open pit coal mining area and surrounding areas. Sci. Rep. 2025, 15, 9597. [Google Scholar] [CrossRef]
- Chen, C.; Chen, L.; Li, Y.; Tang, X.; Wang, L.; Zhao, R. Structural and functional characteristics of microbial communities of typical coal gangue dumps in Guizhou province. Microbiol. China 2023, 50, 5300–5319. [Google Scholar] [CrossRef]
- Shang, Y.; Sang, N. Pollution characteristics and phytotoxicity of heavy metals in the soil around coal gangue accumulation area. Environ. Sci. 2022, 43, 3773–3780. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Li, J.; Li, W.; Zhang, M.; Zhao, C.; Zhang, L.; Li, W. Heavy Metal Pollution Characteristics and Risk Evaluation of Soil Around Coal Gangue Stockpile Area. Bull. Chin. Ceram. Soc. 2021, 40, 3464–3471+3478. [Google Scholar] [CrossRef]
- Lu, H.; Min, W.; Jiang, S.; Lu, Y.; Gou, F.; Cai, T. Analysis of Impact of Coal Gangue Leaching on Surrounding Water in Pangzhuang Coal Mine. Adm. Tech. Environ. Monit. 2023, 35, 64–67. [Google Scholar] [CrossRef]
- Li, N.; Geng, X.; Kang, Y. Investigation on crop planting safety in surrounding environment of coal gangue pile in Jingxi coal mine. Appl. Chem. Ind. 2021, 50, 2909–2912. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, N.; Han, X. Impacts of coal gangue stockpiling on polycyclic aromatic hydrocarbons pollution in soil environment. Acta Sci. Circumstantiate 2013, 33, 3092–3100. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Wang, J. Research of influence of leaching water of gangue on environments. J. Liaoning Technol. Univ. 2005, 24, 280–283. [Google Scholar] [CrossRef]
- Zhao, Z.; Sha, H.; Huang, J.; He, X.; Pan, Q.; Liu, X. Study on the characteristics and causes of groundwater pollution in coal gangue dumps. J. Environ. Eng. Technol. 2023, 13, 1604–1613. [Google Scholar] [CrossRef]
- Yan, H.; Song, L.; Jiang, X.; He, C.; Yan, K.; Zhan, F.; Li, B.; Li, Y. Accumulation characteristics and ecological risk assessment of heavy metals in dominant species of different plant communities in coal gangue dump. Chin. J. Ecol. 2025, 44, 1–11. Available online: https://www.cje.net.cn/EN/10.13292/j.1000-4890.202506.040 (accessed on 10 June 2025).
- She, C.; Tong, C. Vertical distribution of methanogen community structures in Phragmites australis marsh soil in the Min River estuary. Acta Ecol. Sin. 2012, 32, 5299–5308. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Zou, Y.; Xia, C.; Zhu, G. Species, abundance and function of ammonia-oxidizing Archaea in Inland Waters across China. Sci. Rep. 2015, 5, 15969. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, S.; Zhong, Q.; Gong, G.; Wang, G.; Guo, X.; Xu, X. Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities. Sci. Total Environ. 2020, 715, 136904. [Google Scholar] [CrossRef]
- Lu, R. Analytical Methods of Soil Agrochemistry; Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Chen, M.; Zhang, S.; Liu, L.; Wu, L.; Ding, X. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil Tillage Res. 2021, 212, 105060. [Google Scholar] [CrossRef]
- Tang, S.; Nguyen-Sy, T.; Cheng, W.; Sato, C.; Tawaraya, K.; Shiono, H.; Kumagai, K. Long-term application of fused magnesium phosphate and calcium silicate change soil chemical properties, C decomposition and N mineralization in a single rice paddy field of north eastern Japan. Soil Sci. Plant Nutr. 2022, 68, 149–157. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Yu, Z.; Shen, G.; Cheng, H.; Tao, S. Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau. Sci. Total Environ. 2020, 747, 141358. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; Liu, G.; Ma, X.; Mu, C.; Zhao, L. Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan plateau. Appl. Soil Ecol. 2017, 120, 81–88. [Google Scholar] [CrossRef]
- Yang, T.; Tang, G.; Li, L.; Ma, L.; Zhao, Y.; Guo, Z. Interactions between bacteria and eukaryotic microorganisms and their response to soil properties and heavy metal ex changeability nearby a coal-fired power plant. Chemosphere 2022, 302, 134829. [Google Scholar] [CrossRef]
- Zhao, M.; Cong, J.; Cheng, J.; Qi, Q.; Sheng, Y.; Ning, D.; Lu, H.; Wyckof, K.N.; Deng, Y.; Li, D.; et al. Soil microbial community assembly and interactions are constrained by nitrogen and phosphorus in broadleaf forests of southern China. Forests 2020, 11, 285. [Google Scholar] [CrossRef]
- Liu, B.; Yao, J.; Ma, B.; Chen, Z.; Zhao, C.; Zhu, X.; Li, M.; Cao, Y.; Pang, W.; Li, H.; et al. Microbial community profiles in soils adjacent to mining and smelting areas: Contrasting potentially toxic metals and co-occurrence patterns. Chemosphere 2021, 282, 130992. [Google Scholar] [CrossRef] [PubMed]
- Nyuma, H.T.; Njoroge, R.; Otinga, A.N. Agroforestry adoption and its influence on soil quality under smallholder maize production systems in western Kenya. PLoS ONE 2025, 20, e0313385. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Tian, J.C.; Wang, Z. Composition and functional diversity of soil and water microbial communities in the rice-crab symbiosis system. PLoS ONE 2025, 20, e0316815. [Google Scholar] [CrossRef]
- Yin, M.; Sheng, W.; Zhang, X.; Wu, Y.; Ma, X.; Cui, Z.; Bo, H.; Zheng, G.; Liu, L.; Guo, W. Effects of long-term coal gangue dumping on soil chemical environment and microbial community in an abandoned mine. Land. Degrad. Dev. 2024, 35, 4923–4934. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, B.; Li, L.; Zhao, Y.; Shi, Y.; Jiang, Q.; Jia, L. Analysis of microbial community structure and diversity in surroundingrock soil of different waste dump sites in Fushun western opencast mine. Chemosphere 2021, 269, 128777. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, G. Harmful microelements contained in gangue from Yanzhou coal mine and their influence to the soil. China Min. Mag. 2002, 11, 67–69. [Google Scholar] [CrossRef]
- Ribeiro, J.; Silva, E.; Li, Z.; Ward, C.; Flores, D. Petrographic, mineralogical and geochemical characterization of the Serrinha coal waste pile (Douro Coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters. Int. J. Coal Geol. 2010, 83, 456–466. [Google Scholar] [CrossRef]
- Tan, L.; Feng, S.; Cheng, C.; Guo, P. Study on Migration of Heavy Metals in Coal Gangue of Zhuxianzhuang under Leaching Action. Guangzhou Chem. Ind. 2019, 47, 131–133. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Zhang, L.; He, J. A novel archaeal phylum: Thaumarchaeot—A review. Acta Microbiol. Sin. 2012, 52, 411–421. [Google Scholar] [CrossRef]
- Linta, R. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 2020, 14, 2105–2115. [Google Scholar] [CrossRef]
- Li, X.F.; Hou, L.J.; Liu, M. Archaeal community structure and diversity in intertidal sediments of the Yangtze River Estuary. China Environ. Sci. 2019, 39, 1744–1752. [Google Scholar] [CrossRef]
- Yu, B.; Yang, S.; Zhu, L.; Gao, F.; Zeng, C.; Liu, S.; Cui, W. Diversity characteristic of archaeal community responding to soil anion in saline-alkali soil. China Environ. Sci. 2018, 38, 2731–2739. [Google Scholar] [CrossRef]
- Niu, Y.; Yuan, R. Effects of water diversion and seasonal change on archaea community in river sediments. China Environ. Sci. 2020, 40, 1294–1304. [Google Scholar] [CrossRef]
- Xie, X.; Fan, F.; Yuan, X.; Zhu, W.; Liu, N.; Liu, J. Impact on microbial diversity of heavy metal pollution in soils near Dexing copper mine tailings. Microbiol. China 2012, 39, 624–637. [Google Scholar] [CrossRef]
- Lin, Y.; Dang, C.; Zhong, S.; Wang, J.; Zheng, T.; Ni, J. Community Characteristics of Dominant Archaea before and after the Danjiangkou Dam. Acta Sci. Nat. Univ. Peking 2020, 56, 509–517. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, Q.; Guo, D.; Jing, J.; Jiang, A.; Guo, J. The response of soil archaeal community structure to halophyte vegetation succession in the Yellow River Delta. China Environ. Sci. 2016, 36, 2162–2168. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.; Zhang, H.; Li, J. Effects of copper pollution on soil bacterial community structure and heavy-metal resistance genes. Acta Sci. Circumstantiae 2021, 41, 1082–1090. [Google Scholar] [CrossRef]
- Li, W.; Zheng, M.; Wang, C.; Shen, R. Nitrososphaera may be a major driver of nitrification in acidic soils. Soils 2021, 53, 13–20. [Google Scholar] [CrossRef]
- Lehtovirta-Morley, L.; Sayavedra-Soto, L.; Gallois, N.; Schouten, S.; Stein, L.; Prosser, J.; Nicol, G. Identifying potential mechanisms enabling acidophily in the ammonia-oxidizing archaeon “candidatus nitrosotalea devanaterra”. Appl. Environ. Microbiol. 2016, 82, 2608–2619. [Google Scholar] [CrossRef]
- Tourna, M.; Stieglmeier, M.; Spang, A.; Könneke, M.; Schintlmeister, A.; Urich, T.; Engel, M.; Schloter, M.; Wagner, M.; Richter, A.; et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. USA 2011, 108, 8420–8425. [Google Scholar] [CrossRef]
- Marchal, I. Mining archaea for antibiotics. Nat. Biotechnol. 2025, 43, 1425. [Google Scholar] [CrossRef]
- Chen, L.; Hu, M.; Huang, L.; Hua, Z.; Kuang, J.; Li, S.; Shu, W. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 2015, 9, 1579–1592. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, H.; He, Y.; Zeng, H. Advances in plant pyruvate, orthophosphate dikinase. Plant Physiol. J. 2012, 48, 949–957. [Google Scholar] [CrossRef]
- Fang, L.; Ding, Z.; Zhao, M. Characteristics of Drought Tolerance in ppc Overexpressed Rice Seedlings. Acta Agron. Sin. 2008, 34, 1220–1226. Available online: https://zwxb.chinacrops.org/CN/Y2008/V34/I07/1220 (accessed on 12 July 2008). [CrossRef]
- Shi, G.; Peng, J.; Song, Y.; Yuan, L.; Jiang, S. Spatial distribution of methanogenic archaea diversity in the sediments of Hun River. Acta Sci. Circumstantiae 2016, 36, 1766–1773. [Google Scholar] [CrossRef]
- Baker Brett, J.; De Anda, V.; Seitz Kiley, W.; Dombrowski, N.; Santoro Alyson, E.; Lloyd Karen, G. Diversity, ecology and evolution of Archaea. Nat. Microbiol. 2020, 5, 887–900. [Google Scholar] [CrossRef]
- Arnold, W.; Rump, A.; Klipp, W.; Priefer, U.; Pühler, A. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J. Mol. Biol. 1988, 203, 715–738. [Google Scholar] [CrossRef]
- Liu, J.; Wu, W.; Ding, Y.; Shi, D.; Chen, Y. Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling. Chin. J. Appl. Ecol. 2010, 21, 2154–2160. [Google Scholar] [CrossRef]
- Chen, Q.; Fan, J.; Ming, H.; Su, J.; Wang, Y.; Wang, B. Effects of environmental factors on denitrifying bacteria and functional genes in sediments of Bohai Sea, China. Mar. Pollut. Bull. 2020, 160, 111621. [Google Scholar] [CrossRef] [PubMed]
- Regan, K.; Stempfhuber, B.; Schloter, M.; Rasche, F.; Prati, D.; Philippot, L.; Boeddinghaus, R.; Kandrler, E.; Marhan, S. Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biol. Biochem. 2017, 109, 214–226. [Google Scholar] [CrossRef]
- Takai, K.; Olda, H.; Suzuki, Y.; Hirayama, H.; Nakagawa, S.; Nunoura, T.; Inagaki, F.; Nealson, K.; Horikoshi, K. Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Appl. Environ. Microbiol. 2004, 70, 2404–2413. [Google Scholar] [CrossRef] [PubMed]
- Yakimov, M.; Cono, V.; Smedile, F.; Deluca, T.; Juàrez, S.; Ciordia, S.; Fernàndez, M.; Albar, J.; Ferrer, M.; Golyshin, P.; et al. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME J. 2011, 5, 945–961. [Google Scholar] [CrossRef]
- Laanbroek, H.; Keuskamp, J.; Lourenço, K.; Costa, O.; Hefting, M. Changing communities of ammonia-oxidizing Betaproteobacteria and Thaumarchaea at discrete vegetation zones along a hill slope grassland gradient. Appl. Soil Ecol. 2025, 214, 106393. [Google Scholar] [CrossRef]
Name | Explains % | Contribution % | Pseudo-F | p |
---|---|---|---|---|
As | 44 | 44.80 | 14.10 | 0.002 |
EC | 37 | 37.70 | 33.20 | 0.002 |
TN | 7.60 | 7.80 | 10.80 | 0.002 |
Cu | 5.30 | 5.40 | 13.40 | 0.002 |
Cd | 1.10 | 1.10 | 3 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Jin, D.; Zhang, Q.; Bo, H.; Wang, W. Archaeal Community and Function Disturbed Significantly in Surrounding Soil by Coal Gangue Stockpiling. Sustainability 2025, 17, 9094. https://doi.org/10.3390/su17209094
Zhang B, Jin D, Zhang Q, Bo H, Wang W. Archaeal Community and Function Disturbed Significantly in Surrounding Soil by Coal Gangue Stockpiling. Sustainability. 2025; 17(20):9094. https://doi.org/10.3390/su17209094
Chicago/Turabian StyleZhang, Bianhua, Dongsheng Jin, Qiang Zhang, Huijuan Bo, and Wei Wang. 2025. "Archaeal Community and Function Disturbed Significantly in Surrounding Soil by Coal Gangue Stockpiling" Sustainability 17, no. 20: 9094. https://doi.org/10.3390/su17209094
APA StyleZhang, B., Jin, D., Zhang, Q., Bo, H., & Wang, W. (2025). Archaeal Community and Function Disturbed Significantly in Surrounding Soil by Coal Gangue Stockpiling. Sustainability, 17(20), 9094. https://doi.org/10.3390/su17209094