Problems of Synurbization—Wild Boar in the City
Abstract
1. Introduction
- −
- Present the human–wildlife interaction;
- −
- Identify causes and effects of the synurbization phenomenon using the example of Eurasian wild boar;
- −
- Present recommended means and viable methods for counteracting threats posed by wild boars to urban agglomerations and their residents.
2. Species Biology Wild Boar—Sus scrofa
3. Species Expansion
4. Wild Boar—Social Issue
5. Reduction in the Urban Population of Wild Boars—Spatial Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Report. 68% of the World Population Projected to Live in Urban Areas by 2050; UN DESA United Nations Department of Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Ritchie, H.; Samborska, V.; Roser, M. Urbanization. 2024. Available online: https://ourworldindata.org/urbanization (accessed on 30 June 2025).
- Liu, Y.; Yang, M.; Cui, J. Urbanization, economic agglomeration and economic growth. Heliyon 2024, 10, e2377210. [Google Scholar] [CrossRef]
- Girvetz, E.H.; Thorne, J.H.; Berry, A.; Jaeger, J.A.G. Integration of landscape fragmentation analysis into regional planning: A statewide multi-scale case study from California, USA. Landsc. Urban Plan. 2008, 86, 205–218. [Google Scholar] [CrossRef]
- Gwiazdowicz, D.J.; Matulewska, A.E.; Moszczyński, M. Between nature, law and social expectations—A case study of approaches to human–wildlife conflicts resulting from synanthropization and synurbanization in the Republic of Poland. Int. J. Leg. Discourse 2023, 8, 335–363. [Google Scholar] [CrossRef]
- Gortat, T.; Barkowska, M.; Gryczyńska-Siemiątkowska, A.; Pieniążek, A.; Kozakiewicz, A.; Kozakiewicz, M. The effects of urbanization small mammals communities in a gradient of human pressure in Warsaw city, Poland. Pol. J. Ecol. 2014, 62, 163–172. [Google Scholar] [CrossRef]
- Luniak, M. Synurbization–adaptation of animal wildlife to urban development. In Proceedings of the 4th International Symposium on Urban Wildlife Conservation, Tucson, AZ, USA, 1–5 May 1999; pp. 50–55. [Google Scholar]
- Shen, W.; Yang, A.; Wang, Y. Attributions and implications of human and wild boar conflicts in China’s Cities: A case study of Nanjing City, China. Ecol. Indic. 2023, 156, 111089. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Hahs, A.K. Adaptation and adaptedness of organisms to urban environments. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 261–280. [Google Scholar] [CrossRef]
- Shochat, E.; Warren, P.S.; Faeth, S.H.; McIntyre, N.E.; Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 2006, 21, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Slabbekoorn, H.; Peet, M. Birds sing at a higher pitch in urban noise. Nature 2003, 424, 267. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, R.; Jones, D.N. The use of supplementary foods by Australian magpies Gymnorhina tibicen: Implications for wildlife feeding in suburban environments. Austral. Ecol. 2006, 31, 208–216. [Google Scholar] [CrossRef]
- Contesse, P.; Hegglin, D.; Gloor, S.; Bontadina, F.; Deplazes, P. The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zurich, Switzerland. Mamm. Biol. 2004, 69, 81–95. [Google Scholar] [CrossRef]
- Herr, J.; Schley, L.; Engel, E.; Roper, T.J. Den preferences and denning behaviour in urban stone martens (Martes foina). Mamm. Biol. 2010, 75, 138–145. [Google Scholar] [CrossRef]
- Gryz, J.; Lesiński, G.; Krauze-Gryz, D.; Stolarz, P. Woodland reserves within an urban agglomeration as important refuges for small mammals. Folia For. Pol. Ser. A For. 2017, 59, 3–13. [Google Scholar] [CrossRef]
- Pieniążek, A.; Sokół, M.; Kozakiewicz, M. Ecological Characteristics of Two Closely Related Rodent Species in Urban Environment—Permanent Inhabitant vs Newcomer. Nat. Resour. 2017, 8, 69–80. [Google Scholar] [CrossRef]
- Lesiński, G.; Gryz, J.; Krauze-Gryz, D.; Stolarz, P. Population increase and synurbization of the yellow-necked mouse Apodemus flavicollis in some wooded areas of Warsaw agglomeration, Poland, in the years 1983–2018. Urban Ecosyst. 2021, 24, 481–489. [Google Scholar] [CrossRef]
- Lapiedra, O.; Chejanovski, Z.; Kolbe, J.J. Urbanization and biological invasion shape animal personalities. Glob. Change Biol. 2017, 23, 592–603. [Google Scholar] [CrossRef]
- Klimaszewski, K.; Popczyk, B. Synanthropic animals as exemplified by the chiropterofauna of Warsaw. Przegl. Hod. 2014, 6, 31–33. [Google Scholar]
- Russo, D.; Ancillotto, L. Sensitivity of bats to urbanization: A review. Mamm. Biol. 2015, 80, 205–212. [Google Scholar] [CrossRef]
- Starik, N.; Gygax, L.; Göttert, T. Unexpected bat community changes along an urban–rural gradient in the Berlin–Brandenburg metropolitan area. Sci. Rep. 2024, 14, 10552. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, T.J.; Scheiner, S.M. Phenotypic Plasticity: Functional and Conceptual Approaches, 1st ed.; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Alberti, M.; Correa, C.; Marzluff, J.M.; Hendry, A.P.; Palkovacs, E.P.; Gotanda, K.M.; Hunt, V.M.; Apgar, T.M.; Zhou, Y. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. USA 2017, 114, 8951–8956. [Google Scholar] [CrossRef] [PubMed]
- Magle, S.B.; Fidino, M.; Lehrer, E.W.; Gallo, T.; Mulligan, M.P.; Ríos, M.J.; Ahlers, A.A.; Angstmann, J.; Belaire, A.; Dugelby, B.; et al. Advancing urban wildlife research through a multi-city collaboration. Front. Ecol. Environ. 2019, 17, 232–239. [Google Scholar] [CrossRef]
- Nyhus, P.J. Human-wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 2016, 41, 143–171. [Google Scholar] [CrossRef]
- Rekiel, A.; Więcek, J.; Sońta, M. Wild boar (Sus scrofa L. 1758), a problematic but also a useful species—A review. J. Elem. 2024, 29, 575–590. [Google Scholar] [CrossRef]
- König, H.J.; Ceaușu, S.; Reed, M.; Kendall, H.; Hemminger, K.; Reinke, H.; Ostermann Miyashita, E.-F.; Wenz, E.; Eufemia, L.; Hermanns, T.; et al. Integrated framework for stakeholder participation: Methods and tools for identifying and addressing human–wildlife conflicts. Conserv. Sci. Pract. 2021, 3, 3. [Google Scholar] [CrossRef]
- Massei, G.; Genov, P.V. Observations of Black-billed Magpie (Pica pica) and Carrion Crow (Corvus corone cornix) grooming wild boar (Sus scrofa). J. Zool. 2009, 236, 338–341. [Google Scholar] [CrossRef]
- Kover, L.; Gyüre, P.; Balogh, P.; Huettmann, F.; Lemgyel, S.; Juhász, L. Recent colonization and nest site selection of the Hooded Crow (Corvus corone cornix L.) in an urban environment. Landsc. Urban Plann. 2014, 133, 78–86. [Google Scholar] [CrossRef]
- Cahill, S.; Llimona, F.; Cabañeros, L.; Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 2012, 35, 221–233. [Google Scholar] [CrossRef]
- Marin, C.; Werno, J.; Le Campion, G.; Couderchet, L. Navigating discreetly: Spatial ecology of urban wild boar in Bordeaux City’s landscape of fear, France. Sci. Total Environ. 2024, 954, 176436. [Google Scholar] [CrossRef] [PubMed]
- Krokowska-Paluszak, M.; Jamińska, J.; Borkowski, A.; Sagan, J.; Skorupski, M. The ratio of inhabitants of large cities to animals living in urban space on the example on Poznań. Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 2018, 17, 229–240. [Google Scholar] [CrossRef]
- Luniak, M. Species richness and abundance of the fauna of a big city—Case of Warsaw. Kosmos 2006, 55, 45–52. [Google Scholar]
- Basak, S.M.; Wierzbowska, I.A.; Gajda, A.; Czarnoleski, M.; Lesiak, M.; Widera, E. Human-wildlife conflicts in Krakow City Southern Poland. Animals 2020, 10, 1014. [Google Scholar] [CrossRef]
- Dudzik, M.; Rekiel, A. Problems associated with the presence of European wild boar in urbanized areas as exemplified by the city of Gdynia. Prz. Hod. 2025, 2, 22–28. [Google Scholar]
- Massei, G.; Roy, S.; Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Hum.-Wildl. Interact. 2011, 5, 79–99. [Google Scholar] [CrossRef]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gačić, D.; Šprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozoliņš, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef]
- Basak, S.M.; Hossain, M.S.; O’Mahony, D.T.; Okarma, H.; Widera, E.; Wierzbowska, I.A. Public perceptions and attitudes toward urban wildlife encounters—A decade of change. Sci. Total Environ. 2022, 834, 155603. [Google Scholar] [CrossRef]
- Kruuse, M.; Enno, S.E.; Oja, T. Temporal patterns of wild boar-vehicle collisions in Estonia, at the northern limit of its range. Eur. J. Wildl. Res. 2016, 62, 787–791. [Google Scholar] [CrossRef]
- Sáenz-de-Santa-María, A.; Tellería, J.L. Wildlife-vehicle collisions in Spain. Eur. J. Wildl. Res. 2015, 61, 399–406. [Google Scholar] [CrossRef]
- Jägerbrand, A.K.; Gren, I.-M. Consequences of Increases in Wild Boar-Vehicle Accidents 2003–2016 in Sweden on Personal Injuries and Costs. Safety 2018, 4, 53. [Google Scholar] [CrossRef]
- Mayer, J.J. Wild pig attacks on humans. In Proceedings of the 15th Wildlife Damage Management Conference, Clemson, SC, USA, 25–28 March 2013; Armstrong, J.B., Gallagher, G.R., Eds.; Clemson University: Clemson, SC, USA, 2013; pp. 17–35. [Google Scholar]
- Mayer, J.J.; Garabedian, J.E.; Kilgo, J.C. Human fatalities resulting from wild pig attacks worldwide. Hum.-Wildl. Interact. 2023, 17, 3–20. [Google Scholar] [CrossRef]
- Mayer, J.J.; Kilgo, J.C. Reproductive Parameters in an Invasive Wild Pig Population over Five Decades; SRNL-RP-2025-00217; Savannah River National Laboratory: Aiken, SC, USA, 2025; pp. 1–65. [Google Scholar]
- Adámková, J.; Lazárková, K.; Cukor, J.; Brinkeová, H.; Bartošová, J.; Bartoš, L.; Benediktová, K. Wild Boar Attacks on Hunting Dogs in Czechia: The Length of the Hunting Season Matters. Animals 2025, 15, 130. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Aguilar, X.; Gottschalk, M.; Aragón, V.; Càmara, J.; Ardanuy, C.; Velarde, R.; Galofré-Milà, N.; Castillo-Contreras, R.; Lόpez-Olvera, J.R.; Mentaberre, G.; et al. Urban wild boars and risk for zoonotic Streptococcus suis, Spain. Emerg. Infect. Dis. 2018, 24, 1083–1086. [Google Scholar] [CrossRef]
- Wang, H.; Castillo-Contreras, R.; Saguti, F.; López-Olvera, J.R.; Karlsson, M.; Mentaberre, G.; Lindh, M.; Serra-Cobo, J.; Norder, H. Genetically similar hepatitis E virus strains infect both humans and wild boars in the Barcelona area, Spain, and Sweden. Transbound. Emerg. Dis. 2019, 66, 978–985. [Google Scholar] [CrossRef] [PubMed]
- González-Crespo, C.; Martínez-López, B.; Conejero, C.; Castillo Contreras, R.; Serrano, E.; López-Martín, J.M.; Lavín, S.; López-Olvera, J.R. Predicting human-wildlife interaction in urban environments through agent-based models. Landsc. Urban Plan. 2023, 240, 104878. [Google Scholar] [CrossRef]
- Barrios-Garcia, M.N.; Ballari, S.A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 2012, 14, 2283–2300. [Google Scholar] [CrossRef]
- Altaileopard, 2021, Wikimedia Commons. Available online: https://en.wikipedia.org/wiki/Wild_boar#/media/File:Sus_scrofa_range_map.jpg (accessed on 1 September 2025).
- Rekiel, A. Wild Pigs. Biology, Environmental Significance, Population Management. 2022. Warsaw, Ed. SGGW, 1-152. Available online: https://katalogi.bn.org.pl/permalink/48OMNIS_NLOP/2nrd9p/alma991053061319205066 (accessed on 5 July 2025).
- Rutten, A.; Casaer, J.; Swinnen, K.R.; Herremans, M.; Leirs, H. Future distribution of wild boar in a highly anthropogenic landscape: Models combining hunting bag and citizen science data. Ecol. Modell. 2019, 411, 108804. [Google Scholar] [CrossRef]
- Drake, A.; Fraser, D.; Weary, D. 2008. Parent-offspring resource allocation in domestic pigs. Behav. Ecol. Sociobiol. 2008, 62, 309–319. [Google Scholar] [CrossRef]
- Andersen, I.; Naevdal, E.; Bøe, K. Maternal investment, sibling competition, and offspring survival with increasing litter size and parity in pigs (Sus scrofa). Behav. Ecol. Sociobiol. 2011, 65, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Meijaard, E.; d’Huart, J.P.; Oliver, W.L.R. Family Suidae (Pigs). In Handbook of the Mammals of the World. T. 2. Hoofed Mammals; Wilson, D.E., Mittermeier, R.A., Eds.; Lynx Edicions: Barcelona, Spain, 2011; pp. 248–291. [Google Scholar]
- Wickline, K. Sus scrofa. Animal Diversity Web. 2014. Available online: https://animaldiversity.org/accounts/Sus_scrofa (accessed on 23 July 2025).
- Napoletano, P.; Barbarisi, C.; Maselli, V.; Rippa, D.; Arena, C.; Volpe, M.G.; Colombo, C.; Fulgione, D.; De Marco, A. Quantifying the Immediate Response of Soil to Wild Boar (Sus scrofa L.) Grubbing in Mediterranean Olive Orchards. Soil. Syst. 2023, 7, 38. [Google Scholar] [CrossRef]
- Gray, S.; Roloff, G.J.; Kramer, D.B.; Etter, D.R.; Vercauteren, K.C.; Montgomery, R.A. Effects of Wild Pig Disturbance on Forest Vegetation and Soils. J. Wildl. Manag. 2020, 84, 739–748. [Google Scholar] [CrossRef]
- Carpio, A.J.; García, M.; Hillström, L.; Lönn, M.; Carvalho, J.; Acevedo, P.; Bueno, C.G. Wild Boar Effects on Fungal Abundance and Guilds from Sporocarp Sampling in a Boreal Forest Ecosystem. Animals 2022, 12, 2521. [Google Scholar] [CrossRef]
- Fulgione, D.; Buglione, M. The Boar War: Five Hot Factors Unleashing Boar Expansion and Related Emergency. Land 2022, 11, 887. [Google Scholar] [CrossRef]
- Maselli, V.; Rippa, D.; De Luca, A.; Larson, G.; Wilkens, B.; Linderholm, A.; Masseti, M.; Fulgione, D. Southern Italian wild boar population, hotspot of genetic diversity. Hystrix 2016, 27, 137–144. [Google Scholar] [CrossRef]
- Fulgione, D.; Rippa, D.; Buglione, M.; Trapanese, M.; Petrelli, S.; Maselli, V. Unexpected but welcome. Artificially selected traits may increase fitness in wild boar. Evol. Appl. 2016, 9, 769–776. [Google Scholar] [CrossRef]
- Mauri, L.; Sallustio, L.; Tarolli, P. The geomorphologic forcing of wild boars. Earth Surf. Process. Landf. 2019, 44, 2085–2094. [Google Scholar] [CrossRef]
- Pirożnikow, E. The influence of natural and experimental disturbance on emergence and survival of seedlings in an oak-linden-hornbeam (Tilio-Car Pinetum) forest. Pol. J. Ecol. 1998, 46, 137–156. [Google Scholar]
- Macci, C.; Doni, S.; Bondi, G.; Davini, D.; Masciandaro, G.; Pistoia, A. Effects of wild boar (Sus scrofa) grazing on soil properties in Mediterranean environment. Catena 2012, 98, 79–86. [Google Scholar] [CrossRef]
- Rekiel, A.; Sońta, M. The food base of representatives of the Suidae family. Przegl. Hod. 2019, 1, 16–18. [Google Scholar]
- Tobajas, J.; Oliva-Vidal, P.; Piqué, J.; Afonso-Jordana, I.; Garcia-Ferré, D.; Moreno-Opo, R.; Margalida, A. Scavenging patterns of generalist predators in forested areas: The potential implications of increase in carrion availability on a threatened capercaillie population. Anim. Conserv. 2022, 25, 259–272. [Google Scholar] [CrossRef]
- Nasiadka, P. The Composition of Food and Feeding Habits of Wild Boars Inhabiting the Managed Forests of the Nadpilicka Forest in Central Poland; SGGW: Warszawa, Poland, 2019; p. 142. [Google Scholar]
- Pedrosa, F.; Bercê, W.; Levi, T.; Pires, M.; Galetti, M. Seed dispersal effectiveness by a large-bodied invasive species in defaunated landscapes. Biotropica 2019, 51, 793–958. [Google Scholar] [CrossRef]
- Guberti, V.; Khomenko, S.; Masiulis, M.; Kerba, S. African Swine Fever in Wild Boar Ecology and Biosecurity; FAO Animal Production and Health Manual No. 22; FAO: Rome, Italy; OIE: Paris, France; EC: Brussels, Belgium, 2019. [Google Scholar]
- Carpio, A.J.; Apollonio, M.; Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mammal. Rev. 2020, 51, 95–108. [Google Scholar] [CrossRef]
- Keuling, O.; Podgórski, T.; Monaco, A.; Melletti, M.; Merta, D.; Albrycht, M.; Genov, P.V.; Gethöffer, F.; Vetter, S.G.; Jori, F.; et al. Eurasian wild boar Sus scrofa (Linnaeus, 1758). In Ecology, Conservation and Management of Wild Pigs and Peccaries; Melletti, M., Meijaard, E., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 202–233. [Google Scholar]
- Chapman, B.; Trani, M. Feral Pig (Sus scrofa). In The Land Manager’s Guide to Mammals of the South; Trani (Griep), M., Ford, W., Chapman, B., Eds.; The Nature Conservancy and the US Forest Service, Southern Region: Durham, NC, USA, 2007; pp. 540–544. [Google Scholar]
- Meier, R.K.; Ryser-Degiorgis, M.-P. Wild boar and infectious diseases: Evaluation of the current risk to human and domestic animal health in Switzerland: A review. Schweiz. Arch. Tierheilkd. 2018, 160, 443–460. [Google Scholar] [CrossRef]
- Jota Baptista, C.; Gonzalo-Orden, J.N.; Merino-Goyenechea, L.J.; Oliveira, P.A.; Seixas, F. Wild Boars (Sus scrofa, L. 1758) from Castile and Leon Region (Spain): A Histopathology Survey. Animals 2022, 12, 3282. [Google Scholar] [CrossRef] [PubMed]
- Pejsak, Z.; Truszczyński, M.; Tarasiuk, K. Wild boar as the reservoir of pathogens, pathogenic for swine, other species of animals and for humans. Med. Wet. 2019, 75, 5–8. [Google Scholar] [CrossRef]
- Telesiński, A.; Śnioszek, M. Bioindicators of environmental pollution with fluorine. Bromatol. Chem. Toksykol. 2009, XLII, 1148–1154. [Google Scholar]
- Szkoda, J.; Durkalec, M.; Kołacz, R.; Opaliński, S.; Żmudzki, J. Content of cadmium, lead and mercury in the tissues of game animals. Med. Wet. 2012, 68, 689–692. [Google Scholar]
- Kowalczyk, J.; Numata, J.; Zimmermann, B.; Klinger, R.; Habedank, F.; Just, P.; Schafft, H.; Lahrsse-Wiederholt, M. Suitability of Wild Boar (Sus scrofa) as a Bioindicator for Environmental Pollution with Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS). Arch. Environ. Contam. Toxicol. 2018, 75, 594–606. [Google Scholar] [CrossRef]
- González-Gómez, X.; Cambeiro-Pérez, N.; Figueiredo-González, M.; Martínez-Carballo, E. Wild boar (Sus scrofa) as bioindicator for environmental exposure to organic pollutants. Chemosphere 2021, 268, 128848. [Google Scholar] [CrossRef]
- Barrios-Garcia, M.N.; Classen, A.T.; Simberloff, D. Disparate responses of above—And belowground properties to soil disturbance by an invasive mammal. Ecosphere 2014, 5, 1–13. [Google Scholar] [CrossRef]
- Warenik-Bany, M.; Piskorska-Pliszczyńska, J. Wild boars as bioindicators of environmental contamination with dioxins and PCBs. In Proceedings of the 15th Congress of the Polish Society of Veterinary Sciences, Lublin, Poland, 22–24 September 2016. [Google Scholar]
- Strobel, A.; Willmore, W.G.; Sonne, C.; Dietz, R. Organophosphate esters in East Greenland polar bears and ringed seals: Adipose tissue concentrations and in vitro depletion and metabolite formation. Chemosphere 2018, 196, 240–250. [Google Scholar] [CrossRef]
- Piskorová, L.; Vasilková, Z.; Krupicer, I. Heavy metal residues in tissues of wild boar (Sus scrofa) and red fox (Vulpes vulpes) in the Central Zemplin region of the Slovak Republic. Czech J. Anim. Sci. 2003, 48, 134–138. [Google Scholar]
- Amici, A.; Danieli, P.P.; Russo, C.; Primi, R.; Ronchi, B. Concentrations of some toxic and trace elements in wild boar (Sus scrofa) organs and tissues in differentareas of the Province of Viterbo, Central Italy. Italy J. Anim. Sci. 2012, 11, 354–362. [Google Scholar] [CrossRef]
- Danieli, P.P.; Serrani, F.; Primi, R.; Ponzetta, M.P.; Ronchi, B.; Amici, A. Cadmium, Lead, and Chromium in Large Game: A Local-Scale Exposure Assessment for Hunters Consuming Meat and Liver of Wild Boar. Arch. Environ. Contam. Toxicol. 2012, 63, 612–627. [Google Scholar] [CrossRef]
- Lazarus, M.; Crnić, A.P.; Bilandžić, N.; Kusak, J.; Reljic, S. Cadmium, lead, and mercury exposure assessment among croatian consumers of free-living game. Arh. Hig. Rada Toksikol. 2014, 65, 281–292. [Google Scholar] [CrossRef]
- Durkalec, M.; Szkoda, J.; Kołacz, R.; Opaliński, S.; Nawrocka, A.; Żmudzki, J. Bioaccumulation of Lead, Cadmium and Mercury in Roe Deer and Wild Boars from Areas with Different Levels of Toxic Metal Pollution. Intern. J. Environ. Res. 2015, 9, 205–212. [Google Scholar] [CrossRef]
- Florijančić, T.; Ozimec, J.; Jelkić, D.; Vukšić, N.; Bilandžić, N.; Gross Bošković, A.; Bošković, I. Assessment of heavy metal content in wild boar (Sus scrofa L.) hunted in eastern Croatia. J. Environ. Prot. Ecol. 2015, 16, 630–636. [Google Scholar]
- Vidosavljević, D.; Venus, M.; Puntarić, D.; Kalinić, L.; Vidosavljević, M.; Begović, M.; Despot, M.; Gvozdić, V. Assessment of Selected Heavy Metals and Arsenic Concentrations in Wild Boar (Sus scrofa L.) from Papuk Nature Park (Croatia). J. Xenobiot. 2025, 15, 74. [Google Scholar] [CrossRef]
- Rudy, M.; Żurek, J.; Stanisławczyk, R.; Gil, M.; Duma-Kocan, P. Content of toxic elements in tissues of hunted animals on the basis of research results of 2003–2017. Med. Wet. 2019, 75, 203–208. [Google Scholar] [CrossRef]
- Johann, F.; Handschuh, M.; Linderoth, P.; Dormann, C.F.; Arnold, J. Adaptation of wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecol. 2020, 20, 4. [Google Scholar] [CrossRef]
- Flis, M.; Rataj, B. Changes in agricultural landscape and breeding indicators of wild boars. Wiad. Zoot. 2017, 55, 124–131. [Google Scholar]
- Ježek, M.; Holá, M.; Kušta, T.; Červený, J. Creeping into a wild boar stomach to find traces of supplementary feeding. Wildl. Res. 2016, 43, 590–598. [Google Scholar] [CrossRef]
- Nicpoń, J.; Sławuta, P.; Nicpoń, J. Effect of zearalenone toxicosis on the complete blood cell count and serum biochemical analysis in wild boars. Med. Wet. 2016, 72, 250–254. [Google Scholar]
- Mikulka, O.; Zeman, J.; Drimaj, J.; Plahl, R.; Adamec, Z.; Kamler, J.; Heroldova, M. The importance of natural food in wild boar (Sus scrofa) diet during autumn and winter. Folia Zool. 2018, 67, 165–172. [Google Scholar] [CrossRef]
- Vetter, S.G.; Puskas, Z.; Bieber, C.; Ruf, T. How climate change and wildlife management affect population structure in wild boars. Sci. Rep. 2020, 10, 7298. [Google Scholar] [CrossRef]
- Bieber, C.; Ruf, T. Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 2005, 42, 1203–1213. [Google Scholar] [CrossRef]
- Touzot, L.; Schermer, É.; Venner, S.; Delzon, S.; Rousset, C.; Baubet, É.; Gaillard, J.; Gamelon, M. How does increasing mast seeding frequency affect population dynamics of seed consumers? Wild boar as a case study. Ecol. Appl. 2020, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Podgórski, T.; Baś, G.; Jędrzejewska, B.; Sönnichsen, L.; Śnieżko, S.; Jędrzejewski, W.; Okarma, H. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 2013, 94, 109–119. [Google Scholar] [CrossRef]
- Acevedo, P.; Quirós-Fernández, F.; Casal, J.; Vicente, J. Spatial distribution of wild boar population abundance: Basic information for spatial epidemiology and wildlife management. Ecol. Indic. 2014, 36, 594–600. [Google Scholar] [CrossRef]
- Lombardini, M.; Meriggi, A.; Fozzi, A. Factors influencing wild boar damage to agricultural crops in Sardinia (Italy). Curr. Zool. 2017, 63, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Primi, R.; Viola, P.; Serrani, F.; Balzarani, M.; Tiberi, C.; Rossi, C.M.; Amici, A. Update on wild boar (Sus scrofa) distribution in the Metropolitan City of Rome. In Proceedings of the Atti del III Congresso della Fauna Problematica, Cesena, Italy, 24–26 November 2016. Available online: https://www.researchgate.net/publication/310973979 (accessed on 30 June 2025).
- Csókás, A.; Schally, G.; Szabó, L.; Csányi, S.; Kovács, F.; Heltai, M. Space use of wild boar (Sus scrofa) in Budapest: Are they resident or transient city dwellers? Biol. Fut. 2020, 71, 39–51. [Google Scholar] [CrossRef]
- Stillfried, M.; Fickel, J.; Börner, K.; Wittstatt, U.; Heddergott, M.; Ortmann, S.; Kramer-Schadt, S.; Frantz, A.C. Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J. Appl. Ecol. 2017, 54, 272–281. [Google Scholar] [CrossRef]
- Casas-Díaz, E.; Closa-Sebastià, F.; Peris, A.; Torrentó, J.; Casanovas, R.; Marco, I.; Lavín, S.; Fernández-Llario, P.; Serrano, E. Dispersal record of Wild boar (Sus scrofa) in northeast Spain: Implications for implementing disease-monitoring programs. Wildl. Biol. Pract. 2013, 9, 19–26. [Google Scholar] [CrossRef]
- Nasiadka, P. Dispersion and movement pattern of Wild boar (Sus scrofa L.) in agro–forestry landscape under strong pressure from urbanization in central Poland. Sylwan 2013, 157, 937–945. [Google Scholar] [CrossRef]
- Francis, R.A.; Chadwick, M.A. What makes a species synurbic? Appl. Geogr. 2012, 32, 514–521. [Google Scholar] [CrossRef]
- Gliwicz, J.; Goszczyński, J.; Luniak, M. Characteristic features of animal populations under synurbization—The case of the Blackbird and of the Striped Field Mouse. Mem. Zool. 1994, 49, 237–244. [Google Scholar]
- Dominoni, D.M.; Borniger, J.C.; Nelson, R.J. Light at night, clocks and health: From humans to wild organisms. Biol. Lett. 2016, 12, 20160015. [Google Scholar] [CrossRef]
- Hagemann, J.; Conejero, C.; Stillfried, M.; Mentaberre, G.; Castillo-Contreras, R.; Fickel, J.; López-Olvera, J.R. Genetic population structure defines wild boar as an urban exploiter species in Barcelona, Spain. Sci. Total Environ. 2022, 833, 155126. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Contreras, R.; Mentaberre, G.; Aguilar, X.F.; Conejero, C.; Colon-Cadena, A.; Ráez-Bravo, A.; Conzález-Crespo, C.; Espunyes, J.; Lavin, S.; López-Olvera, J.R. Wild boar in the city: Phenotypic responses to urbanisation. Sci. Total Environ. 2021, 773, 145593. [Google Scholar] [CrossRef]
- Rancew-Sikora, D.; Terlikowski, A.; Kamińska, M. Wild boars in the city: An Analysis of the online Vernacular Discourse. Soc. Stud. 2024, 253, 159–183. [Google Scholar] [CrossRef]
- Escobar-González, M.; López-Martín, J.M.; Mentaberre, G.; Valldeperes, M.; Estruch, J.; Tampach, S.; Castillo-Contreras, R.; Conejero, C.; Roldán, J.; Lavín, S.; et al. Evaluating hunting and capture methods for urban wild boar population management. Sci. Total Environ. 2024, 940, 173463. [Google Scholar] [CrossRef]
- Croft, S.; Franzetti, B.; Gill, R.; Massei, G. Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLoS ONE 2020, 15, e0238429. [Google Scholar] [CrossRef] [PubMed]
- Kowal, P.; Jasińska, K.; Werka, J.; Ajdysiński, J.; Mierzwiński, J. Trapping wild boars as a method of reducing their numer in the area of Warsaw. Res. Dev. Young Sci. Pol.—Nat. Sci. 2016, 5, 78–85. [Google Scholar]
- Von Essen, E. How wild boar hunting is becoming a battleground. Leis. Sci. 2020, 42, 552–569. [Google Scholar] [CrossRef]
- Schlageter, A.; Haag-Wackernagel, D. Evaluation of an Odor Repellent for Protecting Crops from Wild Boar Damage. J. Pest. Sci. 2012, 85, 209–215. [Google Scholar] [CrossRef]
- Bíl, M.; Andrášik, R.; Bartonička, T.; Křivánková, Z.; Sedoník, J. An Evaluation of Odor Repellent Effectiveness in Prevention of Wildlife-Vehicle Collisions. J. Environ. Manag. 2018, 205, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Barasona, J.A.; López-Olvera, J.R.; Beltrán-Beck, B.; Gortázar, C.; Vicente, J. Trap-effectiveness and response to tiletamine-zolazepam and medetomidine anaesthesia in Eurasian wild boar captured with cage and corral trap. BMC Vet. Res. 2013, 9, 107. [Google Scholar] [CrossRef]
- Torres-Blas, I.; Mentaberre, G.; Castillo-Contreras, R.; Fernández-Aguilar, X.; Conejero, C.; Valldeperes, M.; González-Crespo, C.; Colom-Cadena, A.; Lavin, S.; López-Olvera, J.R. Assessing methods to live-capture wild boars (Sus scrofa) in urban and peri-urban environments. Vet. Rec. 2020, 187, e85. [Google Scholar] [CrossRef]
- Boklund, A.E.; Ståhl, K.; Chueca, M.A.; Podgórski, T.; Vergne, T.; Cortiñas Abrahantes, J.; Cattaneo, E.; Dhollander, S.; Papanikolaou, A.; Tampach, S.; et al. Risk and protective factors for ASF in domestic pigs and wild boar in the EU, and mitigation measures for managing the disease in wild boar. EFSA J. 2024, 22, e9095. [Google Scholar] [CrossRef]
- Dudzińska, M.; Dawidowicz, A. Detecting the severity of socio-spatial conflicts involving wild boars in the city using social media data. Sensors 2021, 21, 8215. [Google Scholar] [CrossRef]
- Torres, D.F.; Oliveira, E.S.; Alves, R.R.N. Chapter 22—Understanding Human–Wildlife Conflicts and Their Implications. In Ethnozoology; Academic Press: Cambridge, MA, USA, 2018; pp. 421–445. [Google Scholar] [CrossRef]
- Schell, C.J.; Stanton, L.A.; Young, J.K.; Angeloni, L.M.; Lambert, J.E.; Breck, S.W.; Murray, M.H. The evolutionary consequences of human–wildlife conflict in cities. Evol. Appl. 2021, 14, 178–197. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rekiel, A.; Sońta, M.; Więcek, J.; Dudzik, M. Problems of Synurbization—Wild Boar in the City. Sustainability 2025, 17, 8988. https://doi.org/10.3390/su17208988
Rekiel A, Sońta M, Więcek J, Dudzik M. Problems of Synurbization—Wild Boar in the City. Sustainability. 2025; 17(20):8988. https://doi.org/10.3390/su17208988
Chicago/Turabian StyleRekiel, Anna, Marcin Sońta, Justyna Więcek, and Maja Dudzik. 2025. "Problems of Synurbization—Wild Boar in the City" Sustainability 17, no. 20: 8988. https://doi.org/10.3390/su17208988
APA StyleRekiel, A., Sońta, M., Więcek, J., & Dudzik, M. (2025). Problems of Synurbization—Wild Boar in the City. Sustainability, 17(20), 8988. https://doi.org/10.3390/su17208988