Screening Dominant Species and Exploring Heavy Metals Repair Ability of Wild Vegetation for Phytoremediation in Copper Mine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Quadrat Setting
2.2. Collection and Processing of Soil and Plants
2.3. Plant Community Status and Dominant Species Analysis
2.4. Heavy Metals Status Analysis
2.5. Plant Repair Ability Analysis
2.6. Data Processing and Statistical Analyses
3. Results
3.1. Plant Community’s Phyto-Sociological Attributes (Composition, Structure, and Diversity)
3.2. Screening Dominant Species of the Top Level as Candidate Plants for Repair
3.3. Verifying Repair Abilities of Candidate Plants for Further Screening
3.3.1. Heavy Metals Status
3.3.2. Accumulation Effect and Transport Efficiency for Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peinado, F.J.M.; Romero-Freire, A.; Fernández, L.G.; Aragón, M.S.; Ortiz-Bernad, I.; Torres, M.S. Long-term contamination in a recovered area affected by a mining spill. Sci. Total Environ. 2015, 514, 219–223. [Google Scholar] [CrossRef]
- Haider, I.; Ali, M.A.; Sanaullah, M.; Ahmed, N.; Hussain, S.; Shakeel, M.T.; Naqvi, S.A.H.; Dar, J.S.; Moustafa, M.; Alshaharni, M.O. Unlocking the secrets of soil microbes: How decades-long contamination and heavy metals accumulation from sewage water and industrial effluents shape soil biological health. Chemosphere 2023, 342, 140193. [Google Scholar] [CrossRef] [PubMed]
- Cacciuttolo, C.; Cano, D. Environmental impact assessment of mine tailings spill considering metallurgical processes of gold and copper mining: Case studies in the Andean countries of Chile and Peru. Water 2022, 14, 3057. [Google Scholar] [CrossRef]
- Li, Q. A brief review of the heavy metal pollution repair technology for mine soil. In Proceedings of the Legislation, Technology and Practice of Mine Land Reclamation: Beijing International Symposium on Land Reclamation and Ecological Restoration (LRER 2014), Beijing, China, 16–19 October 2014. [Google Scholar]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 168–214. [Google Scholar] [CrossRef]
- Johnson, M.G.; Olszyk, D.; Bollman, M.; Storm, M.J.; Coulombe, R.A.; Nash, M.; Manning, V.; Trippe, K.; Watts, D.; Novak, J. Amendments promote Douglas-fir survival on Formosa mine tailings. J. Environ. Qual. 2024, 53, 553–564. [Google Scholar] [CrossRef]
- Yang, S.X.; Liang, S.C.; Yi, L.B.; Xu, B.B.; Cao, J.B.; Guo, Y.F.; Zhou, Y. Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Front. Environ. Sci. Eng. 2014, 8, 394–404. [Google Scholar] [CrossRef]
- Stylianou, M.; Gavriel, I.; Vogiatzakis, I.N.; Zorpas, A.; Agapiou, A. Native plants for the remediation of abandoned sulphide mines in Cyprus: A preliminary assessment. J. Environ. Manag. 2020, 274, 110531. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef] [PubMed]
- Emenike, C.U.; Jayanthi, B.; Agamuthu, P.; Fauziah, S.H. Biotransformation and removal of heavy metals: A review of phytoremediation and microbial remediation assessment on contaminated soil. Environ. Rev. 2018, 26, 156–168. [Google Scholar] [CrossRef]
- Bi, B.; Xiao, Y.Q.; Xu, X.N.; Chen, Q.Q.; Li, H.Y.; Zhao, Z.W.; Li, T. Diversity and functional roles of root-associated endophytic fungi in two dominant pioneer trees reclaimed from a metal mine slag heap in southwest China. Microorganisms 2024, 12, 2067. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Chen, S.Y.; Graham, I.; Zhao, J.N.; Tain, G.L.; Qin, W.; Guo, K.F.; Chen, J.L. Petrogenesis and geodynamic evolution of Ordovician volcanics from the Baiyinchang volcanic-hosted massive sulphide district, Gansu province, China. Lithos 2018, 314, 562–578. [Google Scholar] [CrossRef]
- Xu, H.C.; Sun, X.; Xiao, K.; Suo, S.J.; Huang, X.Y.; Liu, S.; Zheng, M.J. Classification of volcanogenic massive sulfide deposits in north Qilian, China: Evidenced from lithostratigraphy and geodynamic setting. Ore Geol. Rev. 2024, 173, 106228. [Google Scholar] [CrossRef]
- Soltani Dehnavi, A.; Lentz, D.R.; McFarlane, C.R.M.; Walker, J.A. Patterns of fluid-mobile element incorporation in sulfide minerals from the volcanogenic massive sulfide deposits of the bathurst mining camp, Canada. Can. Mineral. 2018, 56, 745–761. [Google Scholar] [CrossRef]
- Yang, J.J.; Zhang, Z.X.; Yang, C.D.; Yang, F.Q.; Xiao, H.; Chen, Z.S.; Yang, X.K.; He, H.J. Geochronology and metallogenic mechanism of the Ashele copper-zinc deposit in the Altay, Xinjiang, Northwest China: Insights from pyrite Re-Os dating, trace elements and sulfur isotopes. Ore Geol. Rev. 2024, 171, 106193. [Google Scholar] [CrossRef]
- Yang, H.; Sun, H.S. Microfabrics, in situ trace element compositions of pyrite, and the sulfur isotope chemistry of sulfides from the Xitieshan Pb-Zn deposit, Qinghai Province, northwest China: Analysis and implications. Minerals 2023, 13, 1549. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, H.L.; Chen, K.Y.; Bao, Z.A.; Zhu, L.M.; Liang, P. In situ sulfur isotope analysis by laser ablation MC-ICPMS and a case study of the Erlihe Zn-Pb ore deposit, Qinling orogenic belt, Central China. J. Asian Earth Sci. 2019, 176, 325–336. [Google Scholar] [CrossRef]
- Matos, J.X.; Barriga, F.J.A.S.; Relvas, J.M.R.S. Acid Sulphate Alteration in the Iberian Pyrite Belt. In Proceedings of the 14th SGA Biennial Meeting on Mineral Resources to Discover, Québec, QC, Canada, 20–23 August 2017. [Google Scholar]
- Sajjad, W.; Zheng, G.D.; Zhang, G.S.; Ma, X.X.; Xu, W.; Ali, B.; Rafiq, M. Diversity of prokaryotic communities indigenous to acid mine drainage and related rocks from Baiyin open-pit copper mine stope, China. Geomicrobiol. J. 2018, 35, 580–600. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Chen, Z.Z.; Pan, H.J.; Sun, B.B.; Zeng, D.M.; He, L.; Yan, R.; Zhou, G.H. Cadmium contamination in soils and crops in four mining areas, China. J. Geochem. Explor. 2018, 192, 72–84. [Google Scholar] [CrossRef]
- Liu, J.C.; Wu, J.; Feng, W.Y.; Li, X. Ecological risk assessment of heavy metals in water bodies around typical copper mines in China. Int. J. Environ. Res. Public Health 2020, 17, 4315. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.B.; Gou, X.; Su, Y.B.; Wang, G. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. J. Environ. Sci. 2006, 18, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.L.; Ai, S.W.; Zhang, W.Y.; Huang, D.J.; Zhang, Y.M. Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China. Sci. Total Environ. 2017, 609, 822–829. [Google Scholar] [CrossRef]
- Li, W.J.; Yin, Z.X.; Yue, B.; Gao, T.P.; Chang, G.H. Distribution and Risk Assessment of Some Heavy Metal Elements in the Contaminated Soil from Baiyin City, Gansu Province. In Proceedings of the 2nd Global Conference on Ecological Environment and Civil Engineering, Guangzhou, China, 7–9 August 2020. [Google Scholar]
- He, B.; Zhao, X.; Li, P.; Liang, J.J.; Fan, Q.H.; Ma, X.X.; Zheng, G.D.; Qiu, J.L. Lead isotopic fingerprinting as a tracer to identify the pollution sources of heavy metals in the southeastern zone of Baiyin, China. Sci. Total Environ. 2019, 660, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zhang, W.Y.; Yang, Y.; Ding, J.; Ai, S.W.; Yang, W.Z.; Bai, X.J.; Zhang, Y.M. Sperm morphology and motility of bufo raddei under long-term environmental heavy metal stress. Bull. Environ. Contam. Toxicol. 2018, 102, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Z.; Ding, J.; Wang, S.N.; Yang, Y.; Song, G.; Zhang, Y.M. Variation in genetic diversity of tree sparrow (passer montanus) population in long-term environmental heavy metal polluted areas. Environ. Pollut. 2020, 263, 114396. [Google Scholar] [CrossRef]
- Chen, S.; Gao, Y.T.; Wang, C.K.; Gu, H.L.; Sun, M.K.; Dang, Y.H.; Ai, S.W. Heavy metal pollution status, children’s health risk assessment, and source apportionment in farmland soils in a typical polluted area, northwest China. Stoch. Environ. Res. Risk Assess. 2024, 38, 2383–2395. [Google Scholar] [CrossRef]
- Gansu Flora Editorial Committee. Flora of Gansu, 1st ed.; Gansu Science and Technology Press: Lanzhou, China, 2005; Volume 1–8. [Google Scholar]
- Baiyin Municipal Government. Baiyin City Territorial Spatial Master Plan (2021–2035); Baiyin Municipal Government: Baiyin, China, 2024; pp. 1–94.
- Spicer, M.E.; Mellor, H.; Carson, W.P. Seeing beyond the trees: A comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology 2020, 101, 2974. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.H.; Gou, Q.Q.; Zhang, Y.; Liu, J.; Gao, M. Succession of a natural desert vegetation community after long-term fencing at the edge of a desert oasis in northwest China. Front. Plant Sci. 2023, 14, 1091446. [Google Scholar] [CrossRef] [PubMed]
- Hubbell, S.P. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 1979, 4387, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Sumner, M.E. Measurement of soil pH: Problems and solutions. Commun. Soil Sci. Plant Anal. 2008, 39, 3–19. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Comparison of dry combustion and wet oxidation methods for the determination of carbon and nitrogen in soil. Soil Sci. Soc. Am. J. 1996, 50, 580–588. [Google Scholar]
- Hui, W.; Qiang, S.; Qiang, Y.; Chang-He, C. Study on microwave digestion of coal for the determination of multi-element by ICP-OES and ICP-MS. Spectrosc. Spectr. Anal. 2012, 30, 2560–2563. [Google Scholar]
- Margalef, R. Information theory in ecology. Gen. Syst. 1973, 3, 36–71. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Curtis, J.T.; McIntosh, R.P. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 1951, 32, 476–496. [Google Scholar] [CrossRef]
- Nemerow, N.L. Water Pollution Index. In Scientific Stream Pollution Analysis, 2nd ed.; McGraw-Hill: New York, NY, USA, 1974; Volume 1, pp. 1–50. [Google Scholar]
- National Environmental Protection Agency; China National Environmental Monitoring Centre. China’s Soil Element Background Values, 1st ed.; China Environmental Science Press: Beijing, China, 1990; pp. 1–501. ISBN 978-7800107726.
- Shan, C.P.; Shi, C.; Liang, X.R.; Zu, Y.Q.; Wang, J.X.; Li, B.; Chen, J.J. Variations in root characteristics and cadmium accumulation of different rice varieties under dry cultivation conditions. Plants 2024, 13, 2457. [Google Scholar] [CrossRef] [PubMed]
- Tiller, K.G. Heavy metals in soils and their environmental significance. Adv. Soil Sci. 1989, 9, 113–142. [Google Scholar]
- GB 15618-1995; Soil Environmental Quality Standards. Ministry of Ecology and Environment: Beijing, China, 1996.
- GB 2762-2012; Limits of Contaminants in Food. Ministry of Health: Beijing, China, 2013.
- GB 15199-1994; Hygienic Standard for Cu Limits in Food. Ministry of Health: Beijing, China, 1995.
- GB 13106-1991; Hygienic Standard for Zn Limits in Food. Ministry of Health: Beijing, China, 1992.
- Liu, K.H.; Zhang, H.C.; Liu, Y.F.; Li, Y.; Yu, F.M. Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China. Environ. Sci. Pollut. Res. 2020, 27, 19933–19945. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Bao, J.G.; Zheng, J.; Xu, F.; Wang, L.M. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int. J. Phytoremediat. 2018, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kumari, K.; Chakraborty, S.; Bauddh, K. Assessment of plant ecological variability and heavy metal accumulation potential in naturally growing plant species of Pakhar bauxite mine site, Jharkhand, India. Chemosphere. 2023, 344, 140316. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S. Plant-assisted metal remediation in mine-degraded land: A scientometric review. Int. J. Environ. Sci. Technol. 2022, 19, 8085–8112. [Google Scholar] [CrossRef]
- Raizada, A.; Dhyani, S.K.; Sharda, V.N. Potential and prospects of vegetation recovery in degraded lands in India—A review. Indian For. 2004, 130, 441–451. [Google Scholar]
- Matlack, G.R.; Gibson, D.J.; Good, R.E. Clonal propagation, local disturbance, and the structure of vegetation-ericaceous shrubs in the pine-barrens of new-jersey. Biol. Conserv. 1993, 63, 1–8. [Google Scholar] [CrossRef]
- Chen, R.; Han, L.; Liu, Z.; Zhao, Y.H.; Zhai, Y.M.; Li, R.S.; Xia, L.F. Analysis of soil as pollution and investigation of dominant plants in abandon gold mining area. Minerals 2022, 12, 1366. [Google Scholar] [CrossRef]
- Tang, W.M.; Chan, E.; Kwok, C.Y.; Lee, Y.K.; Wu, J.H.; Wan, C.W.; Chan, R.Y.K.; Yu, P.H.F.; Chan, S.W. A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit. Inflammopharmacology 2012, 20, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Tulyaganov, T.S.; Makhmudov, O.E. Alkaloids of Nitraria komarovii. Structures of komarin and peganol-N-oxide. Chem. Nat. Compd. 2000, 36, 76–78. [Google Scholar] [CrossRef]
- Gawronski, S.W.; Graczyk, J.; Popek, R.; Korzeniewski, M.; Sæbo, A.; Gawronska, H. Air Phytoremediation—Removal of Particulate Matter, PAHs, and Metals by Higher Plants. In Proceedings of the 3rd International Symposium on Biotechniques for Air Pollution Control, Delft, The Netherlands, 28–30 September 2009. [Google Scholar]
- Li, S.; Wu, J.L.; Huo, Y.L.; Zhao, X.; Xue, L.G. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in northwest China. Sci. Total Environment. 2021, 752, 141827. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, Y.; Chen, X.Y.; Long, L.L.; Su, Y.D.; Yu, X.K.; Zhang, H.M.; Chen, Y.C.; An, S.K. Analysis of spatial and temporal changes of vegetation cover and its driving forces in the Huainan mining area. Environ. Sci. Pollut. Res. 2022, 29, 60117–60132. [Google Scholar] [CrossRef] [PubMed]
- Ilona, S.; Marcin, S.; Jan, R.; Sarka, M.; Urszula, K.; Roberts, B.; Walter, G.; Ingrid, S.; Michal, G. Geochemical behavior of heavy metals and radionuclides in a pit lake affected by acid mine drainage (AMD) in the Muskau Arch (Poland). Sci. Total Environ. 2024, 908, 168245. [Google Scholar]
- Quan, S.X.; Yan, B.; Lei, C.; Yang, F.; Yang, F.; Li, N.; Xiao, X.M.; Fu, J.M. Distribution of heavy metal pollution in sediments from an acid leaching site of e-waste. Sci. Total Environ. 2014, 499, 349–355. [Google Scholar] [CrossRef]
- Kumar, D.; Malik, S.; Rani, R.; Kumar, R.; Duhan, J.S. Behavior, risk, and bioremediation potential of heavy metals/metalloids in the soil system. Rend.-Sci. Fis. E Nat. 2023, 34, 809–831. [Google Scholar] [CrossRef]
- Yasuyuki, T.; Keisuke, M.; Takao, K.; Osamu, T.; Hiroyuki, I. Annual fluctuation of on-tree fruit softening rate and manganese contents in Japanese persimmon ‘Saijo’ tree. Hortic. Res. 2009, 8, 297–302. [Google Scholar]
- Quoreshi, A.M.; Kumar, V.; Adeleke, R.; Qu, L.Y.; Atangana, A.R. Editorial: Soils and vegetation in desert and arid regions: Soil system processes, biodiversity and ecosystem functioning, and restoration. Front. Environ. Sci. 2022, 10, 962905. [Google Scholar] [CrossRef]
- Bourgeault, A.; Ciffroy, P.; Garnier, C.; Cossu-Leguille, C.; Masfaraud, J.F.; Charlatchka, R.; Garnier, J.M. Speciation and bioavailability of dissolved copper in different freshwaters: Comparison of modelling, biological and chemical responses in aquatic mosses and gammarids. Sci. Total Environ. 2013, 452, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.J.; Guo, J.Y.; Dong, Z.; Li, J.R.; Li, H.L. Spatial distribution of soil particles and heavy metals under different psammophilic shrubs in the Ulanbuh desert. Huanjing Kexue 2017, 38, 4809–4818. [Google Scholar] [PubMed]
- Ogbazghi, Z.M.; Tesfamariam, E.H.; Annandale, J.G.; De Jager, P.C. Mobility and uptake of zinc, cadmium, nickel, and lead in sludge-amended soils planted to dryland maize and irrigated maize-oat rotation. J. Environ. Qual. 2015, 44, 655–667. [Google Scholar] [CrossRef]
- Lei, M.; Tie, B.Q.; Williams, P.N.; Zheng, Y.M.; Huang, Y.Z. Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse. J. Soils Sediments 2011, 11, 115–123. [Google Scholar] [CrossRef]
- Zhou, T.N.; Wang, Y.; Qin, J.Q.; Zhao, S.Y.; Cao, D.Y.; Zhu, M.L.; Jiang, Y.X. Potential risk, spatial distribution, and soil identification of potentially toxic elements in Lycium barbarum L. (wolfberry) fruits and soil system in Ningxia, China. Int. J. Environ. Res. Public Health 2022, 19, 16186. [Google Scholar] [CrossRef]
pH | Macronutrients Required for Biological Growth (%) | |||||
---|---|---|---|---|---|---|
Total C | Total N | Total Na | Total K | Total Ca | ||
quadrat 1 | 2.11 | 0.221 | 0.015 | 0.378 | 0.862 | 1.998 |
quadrat 2 | 2.27 | 0.237 | 0.011 | 0.284 | 0.987 | 2.055 |
quadrat 3 | 2.24 | 0.219 | 0.023 | 0.321 | 0.793 | 1.947 |
quadrat 4 | 2.23 | 0.321 | 0.029 | 0.392 | 0.955 | 1.973 |
quadrat 5 | 2.29 | 0.219 | 0.021 | 0.276 | 0.996 | 2.131 |
quadrat 6 | 2.25 | 0.235 | 0.013 | 0.312 | 0.834 | 2.056 |
quadrat 7 | 2.22 | 0.231 | 0.007 | 0.345 | 0.902 | 2.089 |
quadrat 8 | 2.28 | 0.234 | 0.052 | 0.291 | 1.143 | 1.791 |
quadrat 9 | 2.35 | 0.228 | 0.012 | 0.303 | 0.812 | 1.984 |
quadrat 10 | 2.24 | 0.196 | 0.025 | 0.377 | 0.965 | 2.099 |
quadrat 11 | 2.26 | 0.239 | 0.038 | 0.349 | 0.708 | 1.926 |
quadrat 12 | 2.23 | 0.233 | 0.031 | 0.279 | 0.932 | 2.092 |
quadrat 13 | 2.37 | 0.233 | 0.002 | 0.354 | 0.875 | 1.858 |
quadrat 14 | 2.25 | 0.236 | 0.063 | 0.318 | 1.001 | 1.962 |
quadrat 15 | 2.11 | 0.133 | 0.006 | 0.301 | 0.844 | 1.808 |
mean value | 2.25 ± 0.069 | 0.23 ± 0.037 | 0.02 ± 0.017 | 0.33 ± 0.038 | 0.91 ± 0.106 | 1.98 ± 0.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Tao, C.; An, L. Screening Dominant Species and Exploring Heavy Metals Repair Ability of Wild Vegetation for Phytoremediation in Copper Mine. Sustainability 2025, 17, 784. https://doi.org/10.3390/su17020784
Wang X, Tao C, An L. Screening Dominant Species and Exploring Heavy Metals Repair Ability of Wild Vegetation for Phytoremediation in Copper Mine. Sustainability. 2025; 17(2):784. https://doi.org/10.3390/su17020784
Chicago/Turabian StyleWang, Xiaoli, Caihong Tao, and Lizhe An. 2025. "Screening Dominant Species and Exploring Heavy Metals Repair Ability of Wild Vegetation for Phytoremediation in Copper Mine" Sustainability 17, no. 2: 784. https://doi.org/10.3390/su17020784
APA StyleWang, X., Tao, C., & An, L. (2025). Screening Dominant Species and Exploring Heavy Metals Repair Ability of Wild Vegetation for Phytoremediation in Copper Mine. Sustainability, 17(2), 784. https://doi.org/10.3390/su17020784