Impact Assessment Frameworks for Nature-Based Climate Solutions: A Review of Contemporary Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Verra Climate, Community, and Biodiversity Standards
2.2. International Association for Impact Assessment (IAIA) Best Practice Principles
2.3. IUCN Global Standard for Nature-Based Solutions
2.4. IUCN Measuring Nature-Positive Framework
3. Results
3.1. Framework Comparison
Themes | Assessment Components or Criteria | CCB | BES-IA | NbS-GS | NP |
---|---|---|---|---|---|
Knowledge sources and stakeholder engagement | Use participatory assessment approaches | x | x | x | x |
Incorporate traditional knowledge | x | x | x | x | |
Ensure transparent reporting to stakeholders | x | x | x | x | |
Biodiversity and ecosystem components | Assess:
| x | x | x | x |
| x | x | x | x | |
| x | x | x | x | |
| x | x | |||
| x | x | x | ||
| x | x | x | x | |
Offsetting and mitigation hierarchy | Incorporate mitigation hierarchy in assessment process | x | x | x | |
Avoid impacts on high conservation values | x | x | x | x | |
Avoid impacts that are not possible to offset | x | ||||
Ensure offsets are like for like | x | ||||
Avoid genetically modified organisms (GMOs) | x | ||||
Overall outcome for biodiversity and ecosystem components is positive at appropriate scales | x | x | |||
Monitoring and outcomes verification | Outcomes are long-term/permanent | x | x | ||
Establish monitoring to inform adaptive management and demonstrate long-term outcomes | x | x | x | x | |
Comparative concept/assessment baseline | Adopt fixed reference date as baseline | x | |||
Adopt current ecosystem state as baseline | x | ||||
Develop without-project counterfactual (i.e., baseline that reflects state of the environment without project) | x | x |
3.2. Synthesis of Frameworks
4. Discussion
4.1. Key Roles for Assessment Frameworks
4.2. Influence of the Assessment Baseline or “Counterfactual”
4.3. New Directions for Impact Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawrence, M.G.; Schäfer, S. Promises and perils of the Paris Agreement. Science 2019, 364, 829–830. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Paris Agreement; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Heck, V.; Gerten, D.; Lucht, W.; Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Chang. 2018, 8, 151–155. [Google Scholar] [CrossRef]
- Gasser, T.; Guivarch, C.; Tachiiri, K.; Jones, C.D.; Ciais, P. Negative emissions physically needed to keep global warming below 2 °C. Nat. Commun. 2015, 6, 7958. [Google Scholar] [CrossRef] [PubMed]
- Newell, R.G.; Pizer, W.A.; Raimi, D. Carbon markets 15 years after Kyoto: Lessons learned, new challenges. J. Econ. Perspect. 2013, 27, 123–146. [Google Scholar] [CrossRef]
- Lippke, B.; Perez-Garcia, J. Will either cap and trade or a carbon emissions tax be effective in monetizing carbon as an ecosystem service. For. Ecol. Manag. 2008, 256, 2160–2165. [Google Scholar] [CrossRef]
- Essl, F.; Erb, K.-H.; Glatzel, S.; Pauchard, A. Climate change, carbon market instruments, and biodiversity: Focusing on synergies and avoiding pitfalls. WIREs Clim. Chang. 2018, 9, e486. [Google Scholar] [CrossRef]
- Shah, M.A.R.; Kreuzberg, E.; Braga, D.; Das, N.; Dias, A.; Kandasamy, K.; Kibria, A.; Kumar, A.; Min, W.; Pandey, P.; et al. Climate Mitigation and Biodiversity Conservation: A Review of Progress and Key Issues in Global Carbon Markets and Potential Impacts on Ecosystems; IUCN: Gland, Switzerland, 2024. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- United Nations. Environment Programme, Convention on Biological Diversity; United Nations Environment Programme: Montreal, QC, Canada, 2011. [Google Scholar]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Seddon, N.; Turner, B.; Berry, P.; Chausson, A.; Girardin, C.A.J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Chang. 2019, 9, 84–87. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.B. Protected Areas as a Nature-Based Climate Solution; Canadian Parks and Wilderness Society: Vancouver, BC, Canada, 2023. [Google Scholar]
- Ellis, P.W.; Page, A.M.; Wood, S.; Fargione, J.; Masuda, Y.J.; Carrasco Denney, V.; Moore, C.; Kroeger, T.; Griscom, B.; Sanderman, J.; et al. The principles of natural climate solutions. Nat. Commun. 2024, 15, 547. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Efficiency 2023; International Energy Agency (IEA): Paris, France, 2023; p. 124. [Google Scholar]
- Lindenmayer, D.B.; Hulvey, K.B.; Hobbs, R.J.; Colyvan, M.; Felton, A.; Possingham, H.; Steffen, W.; Wilson, K.; Youngentob, K.; Gibbons, P. Avoiding bio-perversity from carbon sequestration solutions. Conserv. Lett. 2012, 5, 28–36. [Google Scholar] [CrossRef]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190104. [Google Scholar] [CrossRef]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, B.M.; O’Neill, B.C.; Tebaldi, C.; University Corporation for Atmospheric Research, B.C.O. What would it take to achieve the Paris temperature targets? Geophys. Res. Lett. 2016, 43, 7133–7142. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Scholes, R.J.; Agard, J.; Archer, E.; Arneth, A.; Bai, X.; Barnes, D.; Burrows, M.; Chan, L.; Cheung, W.L.; et al. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop on Biodiversity and Climate Change; IPBES secretariat: Bonn, German, 2021. [Google Scholar]
- Arneth, A.; Shin, Y.-J.; Leadley, P.; Rondinini, C.; Bukvareva, E.; Kolb, M.; Midgley, G.F.; Oberdorff, T.; Palomo, I.; Saito, O. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. USA 2020, 117, 30882–30891. [Google Scholar] [CrossRef] [PubMed]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef] [PubMed]
- Breshears, D.D.; López-Hoffman, L.; Graumlich, L.J. When ecosystem services crash: Preparing for big, fast, patchy climate change. Ambio 2011, 40, 256–263. [Google Scholar] [CrossRef] [PubMed]
- United Nations. System of Environmental-Economic Accounting—Ecosystem Accounting (SEEA EA), White cover (pre-edited) version; United Nations: New York, NY, USA, 2021; p. 371. [Google Scholar]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure; Fabis Consulting: Nottingham, UK, 2018; p. 53. [Google Scholar]
- Neuendorf, K.A. The Content Analysis Guidebook, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Boyatzis, R.E. Transforming Qualitative Information: Thematic Analysis and Code Development; Case Western Reserve University: Cleveland, OH, USA; Sage: Thousand Oaks, CA, USA, 1998; p. 204. [Google Scholar]
- Miles, M.; Huberman, M. Qualitative Data Analysis: An Expanded Sourcebook, 2nd ed.; Sage: London, UK; Thousand Oaks, CA, USA, 1994. [Google Scholar]
- Peters-Stanley, M.; Goldstein, A.; Gonzalez, G. Turning over a New Leaf: State of the Forest Carbon Markets 2014; Forest Trends’ Ecosystem Marketplace: Washington, DC, USA, 2014; p. 87. [Google Scholar]
- Langhammer, P.F.; Bakarr, M.I.; Bennun, L.A.; Brooks, T.M.; Clay, R.P.; Darwall, W.; De Silva, N.; Edgar, G.J.; Eken, G.; Fishpool, L.D.C.; et al. Identification and Gap Analysis of Key Biodiversity Areas: Targets for Comprehensive Protected Area Systems; IUCN: Gland, Switzerland, 2007; p. 116. [Google Scholar]
- IUCN. Identifying Sites That Contribute Significantly to the Global Persistence of Biodiversity (Key Biodiversity Areas): Criteria and Delineation Technical Workshop Report; Species Survival Commission and World Commission on Protected Areas, International Union for Conservation of Nature: Gland, Switzerland, 2013. [Google Scholar]
- Conservation International. High-Quality Blue Carbon Principles and Guidance; Conservation International and partners: Arlington, VA, USA, 2022; p. 36. [Google Scholar]
- Brownlie, S.; Treweek, J. Biodiversity and Ecosystem Services in Impact Assessment; Special Publication Series No. 3; International Association for Impact Assessment (IAIA): Fargo, ND, USA, 2018. [Google Scholar]
- IUCN. Global Standard for Nature-based Solutions. In A User-Friendly Framework for the Verification, Design and Scaling up of NbS, 1st ed.; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Vasseur, L.; Andrade, A. Using the Red List of Ecosystems and the Nature-based Solutions Global Standard as an integrated process for climate change adaptation in the Andean high mountains. Philos. Trans. R. Soc. B Biol. Sci. 2024, 379, 20220326. [Google Scholar] [CrossRef]
- Locke, H.; Rockström, J.; Bakker, P.; Bapna, M.; Gough, M.; Lambertini, M.; Morris, J.; Zabey, E.; Zurita, P. A Nature-Positive World: The Global Goal for Nature. 2021. Available online: https://www.nature.org/content/dam/tnc/nature/en/documents/NaturePositive_GlobalGoalCEO.pdf (accessed on 28 August 2024).
- Adams, V.M.; Pressey, R.L.; Álvarez-Romero, J.G. Using optimal land-use scenarios to assess trade-offs between conservation, development, and social values. PLoS ONE 2016, 11, e0158350. [Google Scholar] [CrossRef]
- Whitehead, A.L.; Kujala, H.; Ives, C.D.; Gordon, A.; Lentini, P.E.; Wintle, B.A.; Nicholson, E.; Raymond, C.M. Integrating biological and social values when prioritizing places for biodiversity conservation. Conserv. Biol. 2014, 28, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Mace, G.M.; Barrett, M.; Burgess, N.D.; Cornell, S.E.; Freeman, R.; Grooten, M.; Purvis, A. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 2018, 1, 448–451. [Google Scholar] [CrossRef]
- Milner-Gulland, E.J. Don’t dilute the term Nature Positive. Nat. Ecol. Evol. 2022, 6, 1243–1244. [Google Scholar] [CrossRef]
- Baggaley, S.; Johnston, M.; Dimitrijevic, J.; Le Guen, C.; Howard, P.; Murphy, L.; Booth, H.; Starkey, M. Nature Positive for Business: Developing a Common Approach; IUCN: Gland, Switzerland, 2023; p. 36. [Google Scholar]
- IUCN. Measuring Nature-Positive: Setting and Implementing Verified, Robust Targets for Species and Ecosystems, Commented version 1.0; IUCN: Gland, Switzerland, 2023; p. 103. [Google Scholar]
- Bull, J.W.; Milner-Gulland, E.J.; Addison, P.F.E.; Arlidge, W.N.S.; Baker, J.; Brooks, T.M.; Burgass, M.J.; Hinsley, A.; Maron, M.; Robinson, J.G.; et al. Net positive outcomes for nature. Nat. Ecol. Evol. 2020, 4, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Pilgrim, J.D.; Ekstrom, J.M.M. Technical conditions for positive outcomes from biodiversity offsets. In An Input Paper for the IUCN Technical Study Group on Biodiversity Offsets; IUCN: Gland, Switzerland, 2014; p. 46. [Google Scholar]
- Pilgrim, J.D.; Brownlie, S.; Ekstrom, J.M.M.; Gardner, T.A.; von Hase, A.; Kate, K.t.; Savy, C.E.; Stephens, R.T.T.; Temple, H.J.; Treweek, J.; et al. A process for assessing the offset ability of biodiversity impacts. Conserv. Lett. 2013, 6, 376–384. [Google Scholar] [CrossRef]
- IUCN. Resolution 69 on defining Nature-based Solutions (WCC-2016-Res-069). IUCN Resolutions, Recommendations and Other Decisions. In Proceedings of the World Conservation Congress, Honolulu, HI, USA, 6–10 September 2016.
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- IUCN. Global Standard for Nature-Based Solutions: Guidance; Version 1.0; IUCN: Gland, Switzerland, 2020; p. 62. [Google Scholar]
- Nature Positive Initiative. The Measurable Nature Positive Goal for the CBD Mission; Nature Positive Initiative: Sydney, Australia, 2022; p. 6. [Google Scholar]
- Chapman, P.M.; Maher, B. The need for truly integrated environmental assessments. Integr. Environ. Assess. Manag. 2014, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Maron, M.; Brownlie, S.; Bull, J.W.; Evans, M.C.; von Hase, A.; Quétier, F.; Watson, J.E.M.; Gordon, A. The many meanings of no net loss in environmental policy. Nat. Sustain. 2018, 1, 19–27. [Google Scholar] [CrossRef]
- Verra. Climate, Community and Biodiversity Standards; Version 3.1; Verra: Washington, DC, USA, 2017; p. 53. [Google Scholar]
- Apitz, S.E.; Elliott, M.; Fountain, M.; Galloway, T.S. European environmental management: Moving to an ecosystem approach. Integr. Environ. Assess. Manag. 2006, 2, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Deprez, A.; Leadley, P.; Dooley, K.; Williamson, P.; Cramer, W.; Gattuso, J.-P.; Rankovic, A.; Carlson, E.L.; Creutzig, F. Sustainability limits needed for CO2 removal. Science 2024, 383, 484–486. [Google Scholar] [CrossRef]
- Panfil, S.N.; Harvey, C.A. REDD+ and biodiversity conservation: A review of the biodiversity goals, monitoring methods, and impacts of 80 REDD+ Projects. Conserv. Lett. 2016, 9, 143–150. [Google Scholar] [CrossRef]
- He, F.; Zarfl, C.; Tockner, K.; Olden, J.D.; Campos, Z.; Muniz, F.; Svenning, J.-C.; Jähnig, S.C. Hydropower impacts on riverine biodiversity. Nat. Rev. Earth Environ. 2024, 5, 755–772. [Google Scholar] [CrossRef]
- IUCN. IUCN Green Status of Species: A Global Standard for Measuring Species Recovery and Assessing Conservation Impact; Version 2.0; IUCN: Gland, Switzerland, 2021; p. 25. [Google Scholar]
- Simmonds, J.S.; Sonter, L.J.; Watson, J.E.M.; Bennun, L.; Costa, H.M.; Dutson, G.; Edwards, S.; Grantham, H.; Griffiths, V.F.; Jones, J.P.G.; et al. Moving from biodiversity offsets to a target-based approach for ecological compensation. Conserv. Lett. 2020, 13, e12695. [Google Scholar] [CrossRef]
- Piñero, P.; Bruckner, M.; Wieland, H.; Pongrácz, E.; Giljum, S. The raw material basis of global value chains: Allocating environmental responsibility based on value generation. Econ. Syst. Res. 2019, 31, 206–227. [Google Scholar] [CrossRef]
- O’Laughlin, B. Governing capital? Corporate Social Responsibility and the limits of regulation. Dev. Chang. 2008, 39, 945–957. [Google Scholar] [CrossRef]
- Harding, R. Ecologically sustainable development: Origins, implementation and challenges. Desalination 2006, 187, 229–239. [Google Scholar] [CrossRef]
- Linsley, P.; Abdelbadie, R.; Abdelbadie, R. The Taskforce on Nature-related Financial Disclosures must engage widely and justify its market-led approach. Nat. Ecol. Evol. 2023, 7, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Foley, M.M.; Mease, L.A.; Martone, R.G.; Prahler, E.E.; Morrison, T.H.; Murray, C.C.; Wojcik, D. The challenges and opportunities in cumulative effects assessment. Environ. Impact Assess. Rev. 2017, 62, 122–134. [Google Scholar] [CrossRef]
- Halpern, B.S.; McLeod, K.L.; Rosenberg, A.A.; Crowder, L.B. Managing for cumulative impacts in ecosystem-based management through ocean zoning. Ocean Coast. Manag. 2008, 51, 203–211. [Google Scholar] [CrossRef]
- Nicholson, E.; Andrade, A.; Brooks, T.M.; Driver, A.; Ferrer-Paris, J.R.; Grantham, H.; Gudka, M.; Keith, D.A.; Kontula, T.; Lindgaard, A.; et al. Roles of the Red List of Ecosystems in the Kunming-Montreal Global Biodiversity Framework. Nat. Ecol. Evol. 2024, 8, 614–621. [Google Scholar] [CrossRef]
- IUCN. Guidelines for the Application of IUCN Red List of Ecosystems, Version 2.0; Keith, D.A., Ferrer-Paris, J.R., Ghoraba, S.M.M., Henriksen, S., Monyeki, M., Murray, N.J., Nicholson, E., Rowland, J., Skowno, A., Slingsby, J.A., et al., Eds.; IUCN: Gland, Switzerland, 2024; p. 162. [Google Scholar]
- Beyer, H.L.; Venter, O.; Grantham, H.S.; Watson, J.E.M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 2020, 13, e12692. [Google Scholar] [CrossRef]
- Venegas-Li, R.; Grantham, H.S.; Rainey, H.; Diment, A.; Tizard, R.; Watson, J.E.M. An operational methodology to identify Critical Ecosystem Areas to help nations achieve the Kunming–Montreal Global Biodiversity Framework. Conserv. Lett. 2024, 17, e13037. [Google Scholar] [CrossRef]
- Schipper, A.M.; Hilbers, J.P.; Meijer, J.R.; Antão, L.H.; Benítez-López, A.; de Jonge, M.M.J.; Leemans, L.H.; Scheper, E.; Alkemade, R.; Doelman, J.C.; et al. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob. Change Biol. 2020, 26, 760–771. [Google Scholar] [CrossRef]
- Dooley, K.; Nicholls, Z.; Meinshausen, M. Carbon removals from nature restoration are no substitute for steep emission reductions. One Earth 2022, 5, 812–824. [Google Scholar] [CrossRef]
Proposed Indicator or Metric | |
Nature Positive Initiative † | |
Natural processes |
|
Ecosystems |
|
Species |
|
IUCN Measuring Nature-Positive ‡ | |
Extinction risk |
|
Risk of ecosystem collapse |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orchard, S.; Fitzpatrick, B.M.; Shah, M.A.R.; Andrade, A. Impact Assessment Frameworks for Nature-Based Climate Solutions: A Review of Contemporary Approaches. Sustainability 2025, 17, 677. https://doi.org/10.3390/su17020677
Orchard S, Fitzpatrick BM, Shah MAR, Andrade A. Impact Assessment Frameworks for Nature-Based Climate Solutions: A Review of Contemporary Approaches. Sustainability. 2025; 17(2):677. https://doi.org/10.3390/su17020677
Chicago/Turabian StyleOrchard, Shane, Ben M. Fitzpatrick, Mohammad A. R. Shah, and Angela Andrade. 2025. "Impact Assessment Frameworks for Nature-Based Climate Solutions: A Review of Contemporary Approaches" Sustainability 17, no. 2: 677. https://doi.org/10.3390/su17020677
APA StyleOrchard, S., Fitzpatrick, B. M., Shah, M. A. R., & Andrade, A. (2025). Impact Assessment Frameworks for Nature-Based Climate Solutions: A Review of Contemporary Approaches. Sustainability, 17(2), 677. https://doi.org/10.3390/su17020677