The Impact of Governmental Regulations and Environmental Activities on Innovation Efficiency
Abstract
:1. Introduction
2. Theoretical Foundation
2.1. Innovation
2.2. Innovation Efficiency
2.3. Resource-Based View, Innovation Efficiency and Green Innovation
3. Literature Review and Hypothesis Development
3.1. Legal Requirements and External Factors
3.2. Environmental Sustainability Aspects
4. Material and Method
4.1. Sample
4.2. Data Variables and Statistics
5. Results
5.1. Exploratory Factor Analysis
5.2. Correlation Analysis
5.3. Innovation Efficiency Values
5.4. Pairwise Comparision
5.5. The Effect of Governmental Regulations and Policies on Innovation Efficiency
5.6. The Effect of Environmental Activities on Innovation Efficiency
6. Discussion and Conclusions
7. Theoretical and Practical Implications
8. Limitations
9. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, J.; Kim, C.; Yang, H. The Effect of Sustainability as Innovation Objectives on Innovation Efficiency. Sustainability 2018, 10, 1966. [Google Scholar] [CrossRef]
- Cook, J.; Oreskes, N.; Doran, P.T.; Anderegg, W.R.L.; Verheggen, B.; Maibach, E.W.; Carlton, J.S.; Lewandowsky, S.; Skuce, A.G.; Green, S.A.; et al. Consensus on Consensus: A Synthesis of Consensus Estimates on Human-Caused Global Warming. Environ. Res. Lett. 2016, 11, 048002. [Google Scholar] [CrossRef]
- Kayser, C.; Zülch, H. Understanding the Relevance of Sustainability in Mergers and Acquisitions—A Systematic Literature Review on Sustainability and Its Implications Throughout Deal Stages. Sustainability 2024, 16, 613. [Google Scholar] [CrossRef]
- Schilirò, D. Sustainability, Innovation, and Efficiency: A Key Relationship. In Financing Sustainable Development; Ziolo, M., Sergi, B.S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 83–102. [Google Scholar]
- Karimi Takalo, S.; Sayyadi Tooranloo, H.; Shahabaldini Parizi, Z. Green Innovation: A Systematic Literature Review. J. Clean. Prod. 2021, 279, 122474. [Google Scholar] [CrossRef]
- Saunila, M.; Ukko, J.; Rantala, T. Sustainability as a Driver of Green Innovation Investment and Exploitation. J. Clean. Prod. 2018, 179, 631–641. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Lai, S.-B.; Wen, C.-T. The Influence of Green Innovation Performance on Corporate Advantage in Taiwan. J. Bus. Ethics 2006, 67, 331–339. [Google Scholar] [CrossRef]
- Hernandez-Vivanco, A.; Cruz-Cázares, C.; Bernardo, M. Openness and Management Systems Integration: Pursuing Innovation Benefits. J. Eng. Technol. Manag. 2018, 49, 76–90. [Google Scholar] [CrossRef]
- Weng, H.-H.; Chen, J.-S.; Chen, P.-C. Effects of Green Innovation on Environmental and Corporate Performance: A Stakeholder Perspective. Sustainability 2015, 7, 4997–5026. [Google Scholar] [CrossRef]
- Martínez-Ros, E.; Kunapatarawong, R. Green Innovation and Knowledge: The Role of Size. Bus. Strat. Environ. 2019, 28, 1045–1059. [Google Scholar] [CrossRef]
- Li, X.; Hu, Y.; Guo, X.; Wang, M. Government Environmental Information Regulation and Corporate ESG Performance. Sustainability 2024, 16, 8190. [Google Scholar] [CrossRef]
- Di Zhou, Z.; Lu, Z.; Qiu, Y. Do Carbon Emission Trading Schemes Enhance Enterprise Green Innovation Efficiency? Evidence from China’s Listed Firms. J. Clean. Prod. 2023, 414, 137668. [Google Scholar] [CrossRef]
- Shin, J.; Kim, C.; Yang, H. Does Reduction of Material and Energy Consumption Affect Innovation Efficiency? The Case of Manufacturing Industry in South Korea. Energies 2019, 12, 1178. [Google Scholar] [CrossRef]
- Bresciani, S.; Puertas, R.; Ferraris, A.; Santoro, G. Innovation, Environmental Sustainability, and Economic Development: DEA-Bootstrap and Multilevel Analysis to Compare Two Regions. Technol. Forecast. Soc. Chang. 2021, 172, 121040. [Google Scholar] [CrossRef]
- Kuzma, E.; Padilha, L.S.; Sehnem, S.; Julkovski, D.J.; Roman, D.J. The Relationship Between Innovation and Sustainability: A Meta-Analytic Study. J. Clean. Prod. 2020, 259, 120745. [Google Scholar] [CrossRef]
- Ouyang, Y.; Ye, F.; Tan, K. The Effect of Strategic Synergy Between Local and Neighborhood Environmental Regulations on Green Innovation Efficiency: The Perspective of Industrial Transfer. J. Clean. Prod. 2022, 380, 134933. [Google Scholar] [CrossRef]
- Wang, C.; Ghadimi, P.; Lim, M.K.; Tseng, M.-L. A Literature Review of Sustainable Consumption and Production: A Comparative Analysis in Developed and Developing Economies. J. Clean. Prod. 2019, 206, 741–754. [Google Scholar] [CrossRef]
- Kvasničková Stanislavská, L.; Pilař, L.; Vogli, X.; Hlavsa, T.; Kuralová, K.; Feenstra, A.; Pilařová, L.; Hartman, R.; Rosak-Szyrocka, J. Global Analysis of Twitter Communication in Corporate Social Responsibility Area: Sustainability, Climate Change, and Waste Management. PeerJ Comput. Sci. 2023, 9, e1390. [Google Scholar] [CrossRef] [PubMed]
- Schumpeter, J.A. The Theory of Economic Development; Harvard University Press: Cambridge, MA, USA, 1934. [Google Scholar]
- Lubberink, R.; Blok, V.; van Ophem, J.; Omta, O. Lessons for Responsible Innovation in the Business Context: A Systematic Literature Review of Responsible, Social and Sustainable Innovation Practices. Sustainability 2017, 9, 721. [Google Scholar] [CrossRef]
- Edwards-Schachter, M. The Nature and Variety of Innovation. Int. J. Innov. Stud. 2018, 2, 65–79. [Google Scholar] [CrossRef]
- Bai, Y.; Song, S.; Jiao, J.; Yang, R. The Impacts of Government R&D Subsidies on Green Innovation: Evidence from Chinese Energy-Intensive Firms. J. Clean. Prod. 2019, 233, 819–829. [Google Scholar] [CrossRef]
- Adams, R.; Jeanrenaud, S.; Bessant, J.; Overy, P.; Denyer, D. Innovating for Sustainability: A Systematic Review of the Body of Knowledge. Network for Business Sustainability 2012. Available online: https://www.researchgate.net/publication/270904105_Innovating_for_Sustainability_A_Systematic_Review_of_the_Body_of_Knowledge (accessed on 23 October 2023).
- Fagerberg, J. Innovation Policy: Rationales, Lessons and Challenges. J. Econ. Surv. 2017, 31, 497–512. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green Innovation in Technology and Innovation Management—An Exploratory Literature Review. R&D Manag. 2012, 42, 180–192. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Vladimirova, D.; Evans, S. Sustainable Business Model Innovation: A Review. J. Clean. Prod. 2018, 198, 401–416. [Google Scholar] [CrossRef]
- Ketata, I.; Sofka, W.; Grimpe, C. The Role of Internal Capabilities and Firms’ Environment for Sustainable Innovation: Evidence for Germany. R&D Manag. 2015, 45, 60–75. [Google Scholar] [CrossRef]
- Cruz-Cázares, C.; Bayona-Sáez, C.; García-Marco, T. You Can’t Manage Right What You Can’t Measure Well: Technological Innovation Efficiency. Res. Policy 2013, 42, 1239–1250. [Google Scholar] [CrossRef]
- Guan, J.; Chen, K. Modeling the Relative Efficiency of National Innovation Systems. Res. Policy 2012, 41, 102–115. [Google Scholar] [CrossRef]
- Wang, Q.; Hang, Y.; Sun, L.; Zhao, Z. Two-Stage Innovation Efficiency of New Energy Enterprises in China: A Non-Radial DEA Approach. Technol. Forecast. Soc. Chang. 2016, 112, 254–261. [Google Scholar] [CrossRef]
- Bae, Y.; Chang, H. Efficiency and Effectiveness Between Open and Closed Innovation: Empirical Evidence in South Korean Manufacturers. Technol. Anal. Strateg. Manag. 2012, 24, 967–980. [Google Scholar] [CrossRef]
- Lee, J.; Kim, C.; Choi, G. Exploring Data Envelopment Analysis for Measuring Collaborated Innovation Efficiency of Small and Medium-Sized Enterprises in Korea. Eur. J. Oper. Res. 2019, 278, 533–545. [Google Scholar] [CrossRef]
- Huang, X. The Roles of Competition on Innovation Efficiency and Firm Performance: Evidence from the Chinese Manufacturing Industry. Eur. Res. Manag. Bus. Econ. 2023, 29, 100201. [Google Scholar] [CrossRef]
- Chen, X.H.; Tee, K.; Chang, V. Accelerating Innovation Efficiency through Agile Leadership: The CEO Network Effects in China. Technol. Forecast. Soc. Chang. 2022, 179, 121602. [Google Scholar] [CrossRef]
- Gao, Y.; Tsai, S.B.; Xue, X.; Ren, T.; Du, X.; Chen, Q.; Wang, J. An Empirical Study on Green Innovation Efficiency in the Green Institutional Environment. Sustainability 2018, 10, 724. [Google Scholar] [CrossRef]
- Zhang, D.; Rong, Z.; Ji, Q. Green Innovation and Firm Performance: Evidence from Listed Companies in China. Resour. Conserv. Recycl. 2019, 144, 48–55. [Google Scholar] [CrossRef]
- Pereira, V.; Bamel, U. Extending the Resource and Knowledge Based View: A Critical Analysis Into Its Theoretical Evolution and Future Research Directions. J. Bus. Res. 2021, 132, 557–570. [Google Scholar] [CrossRef]
- Connor, T. The Resource-Based View of Strategy and Its Value to Practising Managers. Strateg. Chang. 2002, 11, 307–316. [Google Scholar] [CrossRef]
- Mahoney, J.T. The Management of Resources and the Resource of Management. J. Bus. Res. 1995, 33, 91–101. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Dangelico, R.M. Green Product Innovation: Where We Are and Where We Are Going. Bus. Strat. Environ. 2016, 25, 560–576. [Google Scholar] [CrossRef]
- Golicic, S.L.; Smith, C.D. A Meta-Analysis of Environmentally Sustainable Supply Chain Management Practices and Firm Performance. J. Supply Chain Manag. 2013, 49, 78–95. [Google Scholar] [CrossRef]
- McDougall, N.; Wagner, B.; MacBryde, J. An Empirical Explanation of the Natural-Resource-Based View of the Firm. Prod. Plan. Control 2019, 30, 1366–1382. [Google Scholar] [CrossRef]
- Khanra, S.; Kaur, P.; Joseph, R.P.; Malik, A.; Dhir, A. A Resource-Based View of Green Innovation as a Strategic Firm Resource: Present Status and Future Directions. Bus. Strat. Environ. 2022, 31, 1395–1413. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Liu, X.; Wang, X. Can Environmental Regulation Promote Urban Green Innovation Efficiency? An Empirical Study Based on Chinese Cities. J. Clean. Prod. 2021, 287, 125060. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, L.; Tarbert, H.; Yan, Z. Analysis on Spatio-Temporal Characteristics and Influencing Factors of Industrial Green Innovation Efficiency—From the Perspective of Innovation Value Chain. Sustainability 2022, 14, 342. [Google Scholar] [CrossRef]
- Zhao, T.; Zhou, H.; Jiang, J.; Yan, W. Impact of Green Finance and Environmental Regulations on the Green Innovation Efficiency in China. Sustainability 2022, 14, 3206. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, Y.; Kaczan, D.; Qiao, Y.; Wang, X.; Chen, B.; Wang, Y. How Has China’s Industrial Eco-Efficiency Been Improved? Evidence from Multi-Scale Countrywide Study. Environ. Sci. Pollut. Res. Int. 2023, 30, 69379–69392. [Google Scholar] [CrossRef] [PubMed]
- Horbach, J.; Rammer, C.; Rennings, K. Determinants of Eco-Innovations by Type of Environmental Impact—The Role of Regulatory Push/Pull, Technology Push and Market Pull. Ecol. Econ. 2012, 78, 112–122. [Google Scholar] [CrossRef]
- Zeng, J.; Ribeiro-Soriano, D.; Ren, J. Innovation Efficiency: A Bibliometric Review and Future Research Agenda. Asia Pac. Bus. Rev. 2021, 27, 209–228. [Google Scholar] [CrossRef]
- Xu, X.; Cui, X.; Zhang, Y.; Chen, X.; Li, W. Carbon Neutrality and Green Technology Innovation Efficiency in Chinese Textile Industry. J. Clean. Prod. 2023, 395, 136453. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y.; Goto, M. A Literature Study for DEA Applied to Energy and Environment. Energy Econ. 2017, 62, 104–124. [Google Scholar] [CrossRef]
- Rosca, E.; Arnold, M.; Bendul, J.C. Business Models for Sustainable Innovation—An Empirical Analysis of Frugal Products and Services. J. Clean. Prod. 2017, 162, S133–S145. [Google Scholar] [CrossRef]
- Dangelico, R.M.; Pujari, D.; Pontrandolfo, P. Green Product Innovation in Manufacturing Firms: A Sustainability-Oriented Dynamic Capability Perspective. Bus. Strat. Environ. 2017, 26, 490–506. [Google Scholar] [CrossRef]
- Klewitz, J.; Hansen, E.G. Sustainability-Oriented Innovation of SMEs: A Systematic Review. J. Clean. Prod. 2014, 65, 57–75. [Google Scholar] [CrossRef]
- Smith, A.; Voß, J.-P.; Grin, J. Innovation Studies and Sustainability Transitions: The Allure of the Multi-Level Perspective and Its Challenges. Res. Policy 2010, 39, 435–448. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y. China’s Regional Sustainability and Diversified Resource Allocation: DEA Environmental Assessment on Economic Development and Air Pollution. Energy Econ. 2015, 49, 239–256. [Google Scholar] [CrossRef]
- Brunekreef, B.; Holgate, S.T. Air Pollution and Health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- García-Granero, E.M.; Piedra-Muñoz, L.; Galdeano-Gómez, E. Eco-Innovation Measurement: A Review of Firm Performance Indicators. J. Clean. Prod. 2018, 191, 304–317. [Google Scholar] [CrossRef]
- Xie, X.; Huo, J.; Zou, H. Green Process Innovation, Green Product Innovation, and Corporate Financial Performance: A Content Analysis Method. J. Bus. Res. 2019, 101, 697–706. [Google Scholar] [CrossRef]
- Park, J.D.; Nishitani, K.; Kokubu, K.; Freedman, M.; Weng, Y. Revisiting Sustainability Disclosure Theories: Evidence from Corporate Climate Change Disclosure in the United States and Japan. J. Clean. Prod. 2023, 382, 135203. [Google Scholar] [CrossRef]
- Zentrum für Europäische Wirtschaftsforschung (ZEW). Mannheimer Innovationspanel—Innovationsaktivitäten der Deutschen Wirtschaft. Available online: https://www.zew.de/forschung/mannheimer-innovationspanel-innovationsaktivitaeten-der-deutschen-wirtschaft (accessed on 23 October 2024).
- Schnell, R.; Hill, P.B.; Esser, E. Methoden der Empirischen Sozialforschung, 11th ed.; De Gruyter Oldenbourg: Berlin, Germany; Boston, MA, USA, 2018. [Google Scholar]
- Cook, W.D.; Tone, K.; Zhu, J. Data Envelopment Analysis: Prior to Choosing a Model. Omega 2014, 44, 1–4. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Nigg-Stock, A.; Bayrle, N.; Brecht, L. Drivers of Exploitative and Explorative Innovation Efficiency. Digit. Bus. 2023, 3, 100062. [Google Scholar] [CrossRef]
- Min, S.; Kim, J.; Sawng, Y.-W. The Effect of Innovation Network Size and Public R&D Investment on Regional Innovation Efficiency. Technol. Forecast. Soc. Chang. 2020, 155, 119998. [Google Scholar] [CrossRef]
- Dziallas, M.; Blind, K. Innovation Indicators Throughout the Innovation Process: An Extensive Literature Analysis. Technovation 2019, 80–81, 3–29. [Google Scholar] [CrossRef]
- Nataraja, N.R.; Johnson, A.L. Guidelines for Using Variable Selection Techniques in Data Envelopment Analysis. Eur. J. Oper. Res. 2011, 215, 662–669. [Google Scholar] [CrossRef]
- Jenkins, L.; Anderson, M. A Multivariate Statistical Approach to Reducing the Number of Variables in Data Envelopment Analysis. Eur. J. Oper. Res. 2003, 147, 51–61. [Google Scholar] [CrossRef]
- Behrens, V.; Berger, M.; Hud, M.; Hünermund, P.; Iferd, Y.; Peters, B.; Rammer, C.; Schubert, T. Innovation Activities of Firms in Germany—Results of the German CIS 2012 and 2014: Background Report on the Surveys of the Mannheim Innovation Panel Conducted in the Years 2013 to 2016; ZEW-Dokumentation No. 17-04; Zentrum für Europäische Wirtschaftsforschung (ZEW): Mannheim, Germany, 2017; pp. 1–223. [Google Scholar]
- Fu, X. How Does Openness Affect the Importance of Incentives for Innovation? Res. Policy 2012, 41, 512–523. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE Publications: London, UK, 2018. [Google Scholar]
- Bithas, K.; Kalimeris, P. Coupling Versus Decoupling? Challenging Evidence Over the Link Between Economic Growth and Resource Use. Sustainability 2022, 14, 1459. [Google Scholar] [CrossRef]
- Bellstam, G.; Bhagat, S.; Cookson, J.A. A Text-Based Analysis of Corporate Innovation. Manag. Sci. 2021, 67, 4004–4031. [Google Scholar] [CrossRef]
Company Size | Group 1 | Percentage | Group 2 | Percentage |
---|---|---|---|---|
<50 people | 705 | 59% | 369 | 55% |
50–250 people | 358 | 30% | 187 | 28% |
>250 people | 133 | 11% | 116 | 17% |
Total | 1196 | 100.00% | 672 | 100% |
GOV | Description |
---|---|
GOVA | Compliance with existing legal requirements and regulations |
GOVB | Existing environmental taxes or levies |
GOVC | Expectation of future legal requirements, regulations and environmental taxes |
GOVD | Public financial support for environmental innovations |
ENV | Description |
ENVA | Reduction of material consumption |
ENVB | Reduction of energy consumption |
ENVC | Reduction of CO2 emissions |
ENVD | Reduction of other air emissions |
ENVE | Reduction of water pollution |
ENVF | Reduction of soil pollution |
ENVG | Reduction of noise pollution |
ENVH | Substitution of hazardous materials |
ENVI | Improvement of recycling |
Factors | Items | Factor Loadings | Factors | Items | Factor Loadings |
---|---|---|---|---|---|
GOV1 | GOV1A | 0.51 | GOV2 | GOV2A | 0.80 |
GOV1B | 0.65 | GOV2B | 0.71 | ||
GOV1C | 0.87 | GOV2C | 0.85 | ||
GOV1D | 0.79 | GOV2D | 0.55 | ||
ENV1 | ENV1A | 0.65 | ENV2 | ENV2A | 0.61 |
ENV1B | 0.74 | ENV2B | 0.65 | ||
ENV1C | 0.75 | ENV2C | 0.70 | ||
ENV1D | 0.71 | ENV2D | 0.69 | ||
ENV1E | 0.70 | ENV2E | 0.66 | ||
ENV1F | 0.70 | ENV2F | 0.55 | ||
ENV1G | 0.66 | ENV2G | 0.35 | ||
ENV1H | 0.54 | ENV2H | 0.48 | ||
ENV1I | 0.61 | ENV2I | 0.51 |
Reliability Statistics | ||
---|---|---|
Factors | Cronbach’s Alpha | Number of Items |
GOV1 (Government and legal regulations 2009) | 0.926 | 4 |
ENV1 (Environmental and resource activities 2009) | 0.905 | 9 |
GOV2 (Government and legal regulations 2015) | 0.872 | 4 |
ENV2 (Environmental and resource activities 2015) | 0.868 | 8 |
Descriptive Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | CA | Mean | SD | GOV1 | ENV1 | GOV2 | ENV2 | IE1 | IE2 |
GOV1 | 0.84 | 1.46 | 0.85 | --- | |||||
ENV1 | 0.89 | 0.67 | 0.68 | 0.49 ** | --- | ||||
GOV2 | 0.85 | 0.85 | 0.88 | 0.26 ** | 0.43 ** | --- | |||
ENV2 | 0.84 | 0.49 | 0.45 | 0.28 ** | 0.53 ** | 0.51 ** | --- | ||
IE1 | 0.91 | 0.05 | 0.11 | 0.18 * | 0.33 ** | 0.26 ** | 0.10 | --- | |
IE2 | 0.89 | 0.07 | 0.13 | 0.16 | 0.37 ** | 0.22 ** | 0.22 ** | 0.63 ** | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knapp, D.; Bayrle-Kelso, N.; Nigg-Stock, A.; Brecht, L. The Impact of Governmental Regulations and Environmental Activities on Innovation Efficiency. Sustainability 2025, 17, 467. https://doi.org/10.3390/su17020467
Knapp D, Bayrle-Kelso N, Nigg-Stock A, Brecht L. The Impact of Governmental Regulations and Environmental Activities on Innovation Efficiency. Sustainability. 2025; 17(2):467. https://doi.org/10.3390/su17020467
Chicago/Turabian StyleKnapp, Daniel, Niklas Bayrle-Kelso, Arabella Nigg-Stock, and Leo Brecht. 2025. "The Impact of Governmental Regulations and Environmental Activities on Innovation Efficiency" Sustainability 17, no. 2: 467. https://doi.org/10.3390/su17020467
APA StyleKnapp, D., Bayrle-Kelso, N., Nigg-Stock, A., & Brecht, L. (2025). The Impact of Governmental Regulations and Environmental Activities on Innovation Efficiency. Sustainability, 17(2), 467. https://doi.org/10.3390/su17020467