Heavy Metal and Antimicrobial Residue Levels in Various Types of Digestate from Biogas Plants—A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Search Strategy
2.3. Ecological Risk Assessment
2.3.1. Geo-Accumulation Index
2.3.2. Potential Ecological Risk Index
2.3.3. Predicted Environmental Concentrations (PECs)
3. Results
3.1. Heavy Metal Content of Various Digestates
3.2. Antimicrobial Residue Levels in Digestates
3.3. Ecological Risks Associated with HM and Antibiotic Contamination
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Czatzkowska, M.; Wolak, I.; Harnisz, M.; Korzeniewska, E. Impact of Anthropogenic Activities on the Dissemination of ARGs in the Environment—A Review. Int. J. Environ. Res. Public Health 2022, 19, 12853. [Google Scholar] [CrossRef]
- Khan, N.; Bolan, N.; Joseph, S.; Anh, M.T.L.; Meier, S.; Kookana, R.; Borchard, N.; Sánchez-Monedero, M.A.; Jindo, K.; Solaiman, Z.M.; et al. Chapter One—Complementing compost with biochar for agriculture, soil remediation and climate mitigation. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 179, pp. 1–90. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Samoraj, M.; Mironiuk, M.; Izydorczyk, G.; Witek-Krowiak, A.; Szopa, D.; Moustakes, K.; Chojnacka, K. The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere 2022, 295, 133799. [Google Scholar] [CrossRef]
- Lamolinara, B.; Pérez-Martínez, A.; Guardado-Yordi, E.; Fiallos, C.G.; Diéguez-Santana, K.; Ruiz-Mercado, G.J. Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Manag. 2022, 140, 14–30. [Google Scholar] [CrossRef]
- Czekała, W.; Lewicki, A.; Pochwatka, P.; Czekała, A.; Wojcieszak, D.; Jóźwiakowski, K.; Waliszewska, H. Digestate management in polish farms as an element of the nutrient cycle. J. Clean. Prod. 2020, 242, 118454. [Google Scholar] [CrossRef]
- Stürmer, B.; Pfundtner, E.; Kirchmeyr, F.; Uschnig, S. Legal requirements for digestate as fertilizer in Austria and the European Union compared to actual technical parameters. J. Environ. Manag. 2020, 253, 109756. [Google Scholar] [CrossRef] [PubMed]
- Pastorelli, R.; Valboa, G.; Lagomarsino, A.; Fabiani, A.; Simoncini, S.; Zaghi, M.; Vignozzi, N. Recycling Biogas Digestate from Energy Crops: Effects on Soil Properties and Crop Productivity. Appl. Sci. 2021, 11, 750. [Google Scholar] [CrossRef]
- Czatzkowska, M.; Wolak, I.; Harnisz, M.; Korzeniewska, E. Microbial diversity and biosafety judgment of digestates derived from different biogas plants for agricultural applications. J. Environ. Manag. 2024, 371, 123329. [Google Scholar] [CrossRef] [PubMed]
- Witorożec-piechnik, A.; Kopiński, J.; Markowska-strzemska, E.; Woźniak, M. Environmental safety aspects of using the digestate from an agricultural biogas plant. Pol. J. Agron. 2023, 52, 54–61. [Google Scholar] [CrossRef]
- Wolak, I.; Bajkacz, S.; Harnisz, M.; Stando, K.; Męcik, M.; Korzeniewska, E. Digestate from Agricultural Biogas Plants as a Reservoir of Antimicrobials and Antibiotic Resistance Genes—Implications for the Environment. Int. J. Environ. Res. Public Health 2023, 20, 2672. [Google Scholar] [CrossRef]
- Visca, A.; Rauseo, J.; Spataro, F.; Patrolecco, L.; Grenni, P.; Massini, G.; Mazzurco Miritana, V.; Barra Caracciolo, A. Antibiotics and antibiotic resistance genes in anaerobic digesters and predicted concentrations in agroecosystems. J. Environ. Manag. 2022, 301, 113891. [Google Scholar] [CrossRef]
- Al Seadi, T.; Drosg, B.; Fuchs, W.; Rutz, D.; Janssen, R. 12—Biogas digestate quality and utilization. In The Biogas Handbook; Wellinger, A., Murphy, J., Baxter, D., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2013; pp. 267–301. [Google Scholar] [CrossRef]
- Shamuyarira, K.K.; Gumbo, J.R. Assessment of Heavy Metals in Municipal Sewage Sludge: A Case Study of Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2014, 11, 2569–2579. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Buta, M.; Korzeniewska, E.; Harnisz, M.; Hubeny, J.; Zieliński, W.; Rolbiecki, R.; Bajkacz, S.; Felis, E.; Kokoszka, K. Microbial and chemical pollutants on the manure-crops pathway in the perspective of ‘One Health’ holistic approach. Sci. Total Environ. 2021, 785, 147411. [Google Scholar] [CrossRef]
- Ji, X.; Shen, Q.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.; Wu, M. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012, 235–236, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Essien, J.P.; Ikpe, D.I.; Inam, E.D.; Okon, A.O.; Ebong, G.A.; Benson, N.U. Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. PLoS ONE 2022, 17, e0263279. [Google Scholar] [CrossRef]
- Caracciolo, A.B.; Visca, A.; Rauseo, J.; Spataro, F.; Garbini, G.L.; Grenni, P.; Mariani, L.; Mazzurco Miritana, V.; Massini, G.; Patrolecco, L. Bioaccumulation of antibiotics and resistance genes in lettuce following cattle manure and digestate fertilization and their effects on soil and phyllosphere microbial communities. Environ. Pollut. 2022, 315, 120413. [Google Scholar] [CrossRef]
- Catenacci, A.; Boniardi, G.; Mainardis, M.; Gievers, F.; Farru, G.; Asunis, F.; Malpei, F.; Goi, D.; Cappai, G.; Canziani, R. Processes, applications and legislative framework for carbonized anaerobic digestate: Opportunities and bottlenecks. A critical review. Energy Convers. Manag. 2022, 263, 115691. [Google Scholar] [CrossRef]
- Yusuf, H.H.; Pan, X.; Cai, G.; Cai, J.; Huang, X.; Ye, Z.L. Semi-solid anaerobic co-digestion of source-separated fecal slag and food waste: Focusing on methane production, ecological risk assessment, and quality evaluation as fertilizer. Environ. Sci. Pollut. Res. 2022, 29, 66578–66590. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Li, Z.; Zhu, R.; Wang, J.; Liu, X.; Liu, X. The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion. Molecules 2023, 28, 4090. [Google Scholar] [CrossRef] [PubMed]
- Tytła, M. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland-Case Study. Int. J. Environ. Res. Public Health 2019, 16, 2430. [Google Scholar] [CrossRef] [PubMed]
- Marutescu, L.G.; Jaga, M.; Postolache, C.; Barbuceanu, F.; Milita, N.M.; Romascu, L.M.; Schmitt, H.; de Roda Husman, A.M.; Sefeedpari, P.; Glaeser, S.; et al. Insights into the impact of manure on the environmental antibiotic residues and resistance pool. Front. Microbiol. 2022, 13, 965132. [Google Scholar] [CrossRef]
- Yin, F.; Dong, H.; Ji, C.; Tao, X.; Chen, Y. Effects of anaerobic digestion on chlortetracycline and oxytetracycline degradation efficiency for swine manure. Waste Manag. 2016, 56, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Tian, Y.; Zhang, H.; Chai, Y. Copper stressed anaerobic fermentation: Biogas properties, process stability, biodegradation and enzyme responses. Biodegradation 2017, 28, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.; Malik, A.H.; Shaukat, S.; Mushtaq, S.; Ashraf, M. Characterization of Heavy Metals in Livestock Manures. Pol. J. Environ. Stud. 2013, 22, 1257–1262. [Google Scholar]
- Adegbeye, M.J.; Adetuyi, B.O.; Igirigi, A.I.; Adisa, A.; Palangi, V.; Aiyedun, S.; Alvarado-Ramírez, E.R.; Elghandour, M.M.M.Y.; Márquez Molina, O.; Oladipo, A.A.; et al. Comprehensive insights into antibiotic residues in livestock products: Distribution, factors, challenges, opportunities, and implications for food safety and public health. Food Control 2024, 163, 110545. [Google Scholar] [CrossRef]
- Liu, W.-R.; Zeng, D.; She, L.; Su, W.-X.; He, D.-C.; Wu, G.-Y.; Ma, X.-R.; Jiang, S.; Jiang, C.-H.; Ying, G.-G. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. Sci. Total Environ. 2020, 734, 139023. [Google Scholar] [CrossRef]
- Zha, Y.; Li, Q.; Liu, H.; Ge, Y.; Wei, Y.; Wang, H.; Zhang, L.; Fan, J.; Chen, Y.; Zhang, C.; et al. Occurrence and ecological risk assessment of antibiotics in manure and the surrounding soil from typical chicken farms in Hangzhou, China. Front. Environ. Sci. 2023, 11, 1241405. [Google Scholar] [CrossRef]
- do Carmo Precci Lopes, A.; Ebner, C.; Gerke, F.; Wehner, M.; Robra, S.; Hupfauf, S.; Bockreis, A. Residual municipal solid waste as co-substrate at wastewater treatment plants: An assessment of methane yield, dewatering potential and microbial diversity. Sci. Total Environ. 2022, 804, 149936. [Google Scholar] [CrossRef]
- Shi, J.C.; Liao, X.D.; Wu, Y.B.; Liang, J.B. Effect of antibiotics on methane arising from anaerobic digestion of pig manure. Anim. Feed Sci. Technol. 2011, 166–167, 457–463. [Google Scholar] [CrossRef]
- Turker, G.; Akyol, Ç.; Ince, O.; Aydin, S.; Ince, B. Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline. Ecotoxicol. Environ. Saf. 2018, 147, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, J.A.; Otero, L.; Lema, J.M.; Omil, F. The effect and fate of antibiotics during the anaerobic digestion of pig manure. Bioresour. Technol. 2010, 101, 8581–8586. [Google Scholar] [CrossRef]
- Coban, H.; Ertekin, E.; Ince, O.; Turker, G.; Akyol, Ç.; Ince, B. Degradation of oxytetracycline and its impacts on biogas-producing microbial community structure. Bioprocess Biosyst. Eng. 2016, 39, 1051–1060. [Google Scholar] [CrossRef]
- Czatzkowska, M.; Harnisz, M.; Korzeniewska, E.; Rusanowska, P.; Bajkacz, S.; Felis, E.; Jastrzębski, J.P.; Paukszto, Ł.; Koniuszewska, I. The impact of antimicrobials on the efficiency of methane fermentation of sewage sludge, changes in microbial biodiversity and the spread of antibiotic resistance. J. Hazard. Mater. 2021, 416, 125773. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, Y.; Wan, Y.; Wang, Q.; Luo, Z.; Qiao, Y.; Su, D.; Li, H. Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.). J. Environ. Manag. 2018, 215, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L.M. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ. 2016, 545–546, 48–56. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Muller, G. Index of geoaccumulation in sediments of the rhine river. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Reimann, C.; Caritat, P. Chemical Elements in the Environment; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, C.; Yang, Y.; Niu, J.; Shen, Z. Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. J. Hazard. Mater. 2012, 241–242, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, Z.; Chen, Z.; Ou, X.; Chen, J. Calculation of Toxicity Coefficient of Potential Ecological Risk Assessment of Rare Earth Elements. Bull. Environ. Contam. Toxicol. 2020, 104, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Larsson, D.G.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016, 86, 140–149. [Google Scholar] [CrossRef] [PubMed]
- EMA. Committee for Medicinal Products for Human Use (CHMP) Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. 2024. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-environmental-risk-assessment-medicinal-products-human-use-revision-1_en.pdf (accessed on 9 October 2024).
- Ajibola, A.S.; Zwiener, C. Occurrence and Risk Assessment of Antibiotic Residues in Sewage Sludge of Two Nigerian Hospital Wastewater Treatment Plants. Water Air Soil Pollut. 2022, 233, 405. [Google Scholar] [CrossRef]
- Vestel, J.; Caldwell, D.J.; Tell, J.; Constantine, L.; Häner, A.; Hellstern, J.; Journel, R.; Ryan, J.J.; Swenson, T.; Xei, W. Default predicted no-effect target concentrations for antibiotics in the absence of data for the protection against antibiotic resistance and environmental toxicity. Integr. Environ. Assess. Manag. 2022, 18, 863–867. [Google Scholar] [CrossRef] [PubMed]
- AMR Industry Alliance. AMR Alliance Science-Based PNEC Targets for Risk Assessments. 2024. Available online: https://www.amrindustryalliance.org/wp-content/uploads/2023/02/AMR-Table-1-Update-20230222_corrected.pdf (accessed on 7 October 2024).
- Buta, M.; Hubeny, J.; Zieliński, W.; Harnisz, M.; Korzeniewska, E. Sewage sludge in agriculture—The effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops—A review. Ecotoxicol. Environ. Saf. 2021, 214, 112070. [Google Scholar] [CrossRef]
- Seiler, C.; Berendonk, T.U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 2012, 3, 399. [Google Scholar] [CrossRef]
- Kang, W.; Zhang, Y.-J.; Shi, X.; He, J.-Z.; Hu, H.-W. Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil. Environ. Sci. Pollut. Res. 2018, 25, 29314–29324. [Google Scholar] [CrossRef] [PubMed]
- Kovačić, Đ.; Lončarić, Z.; Jović, J.; Samac, D.; Popović, B.; Tišma, M. Digestate Management and Processing Practices: A Review. Appl. Sci. 2022, 12, 9216. [Google Scholar] [CrossRef]
- Kupper, T.; Bürge, D.; Bachmann, H.J.; Güsewell, S.; Mayer, J. Heavy metals in source-separated compost and digestates. Waste Manag. 2014, 34, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Zhen, H.; Jia, L.; Huang, C.; Qiao, Y.; Li, J.; Li, H.; Chen, Q.; Wan, Y. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environ. Pollut. 2020, 263, 114552. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Wu, L.; Huang, Y.; Luo, Y.; Christie, P. Total concentrations of heavy metals and occurrence of antibiotics in sewage sludges from cities throughout China. J. Soils Sediments 2014, 14, 1123–1135. [Google Scholar] [CrossRef]
- Fijalkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The presence of contaminations in sewage sludge—The current situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, M.; Marguí, E.; Camps, F.; Hidalgo, M. Extractability and crop transfer of potentially toxic elements from mediterranean agricultural soils following long-term sewage sludge applications as a fertilizer replacement to barley and maize crops. Waste Manag. 2018, 75, 312–318. [Google Scholar] [CrossRef]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221–222, 82–90. [Google Scholar] [CrossRef]
- Liu, C.; Tong, Q.; Li, Y.; Wang, N.; Liu, B.; Zhang, X. Biogas production and metal passivation analysis during anaerobic digestion of pig manure: Effects of a magnetic Fe3O4/FA composite supplement. RSC Adv. 2019, 9, 4488–4498. [Google Scholar] [CrossRef] [PubMed]
- Derehajło, S.; Tymińska, M.; Skibko, Z.; Borusiewicz, A.; Romaniuk, W.; Kuboń, M.; Olech, E.; Koszel, M. Heavy Metal Content in Substrates in Agricultural Biogas Plants. Agric. Eng. 2023, 27, 315–329. [Google Scholar] [CrossRef]
- Golovko, O.; Ahrens, L.; Schelin, J.; Sörengård, M.; Bergstrand, K.-J.; Asp, H.; Hultberg, M.; Wiberg, K. Organic micropollutants, heavy metals and pathogens in anaerobic digestate based on food waste. J. Environ. Manag. 2022, 313, 114997. [Google Scholar] [CrossRef]
- Guo, Q.; Ji, J.; Ling, Z.; Zhang, K.; Xu, R.; Leng, X.; Mao, C.; Zhou, T.; Wang, H.; Liu, P.; et al. Bioaugmentation improves the anaerobic co-digestion of cadmium-containing plant residues and cow manure. Environ. Pollut. 2021, 289, 117885. [Google Scholar] [CrossRef] [PubMed]
- Szaja, A.; Montusiewicz, A.; Lebiocka, M. Variability of Micro- and Macro-Elements in Anaerobic Co-Digestion of Municipal Sewage Sludge and Food Industrial By-Products. Int. J. Environ. Res. Public Health 2023, 20, 5405. [Google Scholar] [CrossRef] [PubMed]
- Legros, S.; Levard, C.; Marcato-Romain, C.-E.; Guiresse, M.; Doelsch, E. Anaerobic Digestion Alters Copper and Zinc Speciation. Environ. Sci. Technol. 2017, 51, 10326–10334. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, X.; Wang, Y.; Tuersun, N.; Ismail, M.; Cheng, C.; Li, Z.; Song, Q.; Wang, Y.; Ma, C. Anaerobic co-digestion of textile dyeing sludge: Digestion efficiency and heavy metal stability. Sci. Total Environ. 2021, 801, 149722. [Google Scholar] [CrossRef] [PubMed]
- Knoop, C.; Tietze, M.; Dornack, C.; Raab, T. Fate of nutrients and heavy metals during two-stage digestion and aerobic post-treatment of municipal organic waste. Bioresour. Technol. 2018, 251, 238–248. [Google Scholar] [CrossRef]
- Carchesio, M.; Di Addario, M.; Tatàno, F.; de Rosa, S.; Gambioli, A. Evaluation of the biochemical methane potential of residual organic fraction and mechanically-biologically treated organic outputs intended for landfilling. Waste Manag. 2020, 113, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Cucina, M.; Tacconi, C.; Ricci, A.; Pezzolla, D.; Sordi, S.; Zadra, C.; Gigliotti, G. Evaluation of benefits and risks associated with the agricultural use of organic wastes of pharmaceutical origin. Sci. Total Environ. 2018, 613–614, 773–782. [Google Scholar] [CrossRef]
- Riaz, L.; Wang, Q.; Yang, Q.; Li, X.; Yuan, W. Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. Sci. Total Environ. 2020, 718, 137414. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Guo, Z.; Xiao, X.; Peng, C.; Zeng, P.; Feng, W.; Xu, W. Feasibility of anaerobic digestion on the release of biogas and heavy metals from rice straw pretreated with sodium hydroxide. Environ. Sci. Pollut. Res. 2019, 26, 19434–19444. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Guo, Y.; Gong, H.; Fang, N.; Tan, Y.; Zhou, W.; Huang, J.; Dai, L.; Dai, X. Variations of heavy metals, nutrients, POPs and particle size distribution during ‘sludge anaerobic digestion-solar drying-land utilization process’: Case study in China. Sci. Total Environ. 2021, 801, 149609. [Google Scholar] [CrossRef]
- Liu, J.; He, X.; Xu, Y.; Zuo, Z.; Lei, P.; Zhang, J.; Yin, Y.; Wei, Y. Fate of mercury and methylmercury in full-scale sludge anaerobic digestion combined with thermal hydrolysis. J. Hazard. Mater. 2021, 406, 124310. [Google Scholar] [CrossRef] [PubMed]
- Montusiewicz, A.; Szaja, A.; Musielewicz, I.; Cydzik-Kwiatkowska, A.; Lebiocka, M. Effect of bioaugmentation on digestate metal concentrations in anaerobic digestion of sewage sludge. PLoS ONE 2020, 15, e0235508. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, Y.; Huang, J.; Du, Z.; Zhouyang, S.; Wang, Y.; Zheng, Y.; Li, Q.; Shen, X. The influence of variables on the bioavailability of heavy metals during the anaerobic digestion of swine manure. Ecotoxicol. Environ. Saf. 2020, 195, 110457. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.M.; Guo, X.J. Sequential extraction of anaerobic digestate sludge for the determination of partitioning of heavy metals. Ecotoxicol. Environ. Saf. 2014, 102, 18–24. [Google Scholar] [CrossRef]
- Raj, D.; Maiti, S.K. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): An epitomised review. Environ. Monit. Assess. 2020, 192, 108. [Google Scholar] [CrossRef]
- Kadam, R.; Khanthong, K.; Jang, H.; Lee, J.; Park, J. Occurrence, Fate, and Implications of Heavy Metals during Anaerobic Digestion: A Review. Energies 2022, 15, 8618. [Google Scholar] [CrossRef]
- Jin, H.; Chang, Z. Distribution of Heavy Metal Contents and Chemical Fractions in Anaerobically Digested Manure Slurry. Appl. Biochem. Biotechnol. 2011, 164, 268–282. [Google Scholar] [CrossRef]
- Qi, G.; Pan, Z.; Sugawa, Y.; Andriamanohiarisoamanana, F.J.; Yamashiro, T.; Iwasaki, M.; Kawamoto, K.; Ihara, I.; Umetsu, K. Comparative fertilizer properties of digestates from mesophilic and thermophilic anaerobic digestion of dairy manure: Focusing on plant growth promoting bacteria (PGPB) and environmental risk. J. Mater. Cycles Waste Manag. 2018, 20, 1448–1457. [Google Scholar] [CrossRef]
- Dong, B.; Liu, X.; Dai, L.; Dai, X. Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge. Bioresour. Technol. 2013, 131, 152–158. [Google Scholar] [CrossRef]
- Choong, Y.Y.; Norli, I.; Abdullah, A.Z.; Yhaya, M.F. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresour. Technol. 2016, 209, 369–379. [Google Scholar] [CrossRef]
- Jolly, Y.N.; Islam, A.; Akbar, S. Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus 2013, 2, 385. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the soil environment—Degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Gurmessa, B.; Pedretti, E.F.; Cocco, S.; Cardelli, V.; Corti, G. Manure anaerobic digestion effects and the role of pre- and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. Sci. Total Environ. 2020, 721, 137532. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Sengar, A.; Basheer, F.; Farooqi, I.H.; Isa, M.H. Anaerobic digestion in the elimination of antibiotics and antibiotic-resistant genes from the environment—A comprehensive review. J. Environ. Chem. Eng. 2022, 10, 106423. [Google Scholar] [CrossRef]
- Koniuszewska, I.; Harnisz, M.; Korzeniewska, E.; Czatzkowska, M.; Jastrzębski, J.P.; Paukszto, Ł.; Bajkacz, S.; Felis, E.; Rusanowska, P. The Effect of Antibiotics on Mesophilic Anaerobic Digestion Process of Cattle Manure. Energies 2021, 14, 1125. [Google Scholar] [CrossRef]
- Kasumba, J.; Appala, K.; Agga, G.E.; Loughrin, J.H.; Conte, E.D. Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics. J. Environ. Sci. Health Part B 2020, 55, 135–147. [Google Scholar] [CrossRef]
- Lu, J.; Xu, S. Post-treatment of food waste digestate towards land application: A review. J. Clean. Prod. 2021, 303, 127033. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ştefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef]
- Nesse, A.S.; Aanrud, S.G.; Lyche, J.L.; Sogn, T.; Kallenborn, R. Confirming the presence of selected antibiotics and steroids in Norwegian biogas digestate. Environ. Sci. Pollut. Res. 2022, 29, 86595–86605. [Google Scholar] [CrossRef]
- Lehmann, L.; Bloem, E. Antibiotic residues in substrates and output materials from biogas plants—Implications for agriculture. Chemosphere 2021, 278, 130425. [Google Scholar] [CrossRef]
- Ratsak, C.; Guhl, B.; Zühlke, S.; Delschen, T. Veterinärantibiotikarückstände in Gülle und Gärresten aus Nordrhein-Westfalen [Veterinary antibiotic residues in manure and digestates in Northrhein-Westfalia]. Environ. Sci. Eur. 2013, 25, 7. [Google Scholar] [CrossRef]
- Sun, C.; Li, W.; Chen, Z.; Qin, W.; Wen, X. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions. Environ. Int. 2019, 133 Pt A, 105156. [Google Scholar] [CrossRef]
- Yin, F.; Lin, S.; Zhou, X.; Dong, H.; Zhan, Y. Fate of antibiotics during membrane separation followed by physical-chemical treatment processes. Sci. Total Environ. 2021, 759, 143520. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Pu, C.; Yu, X.; Sun, Y.; Chen, J. Removal of tetracyclines, sulfonamides, and quinolones by industrial-scale composting and anaerobic digestion processes. Environ. Sci. Pollut. Res. 2018, 25, 35835–35844. [Google Scholar] [CrossRef] [PubMed]
- Patyra, E.; Kwiatek, K.; Nebot, C.; Gavilán, R.E. Quantification of veterinary antibiotics in pig and poultry feces and liquid manure as a non-invasive method to monitor antibiotic usage in livestock by liquid chromatography mass-spectrometry. Molecules 2020, 25, 3265. [Google Scholar] [CrossRef] [PubMed]
- Wolters, B.; Widyasari-Mehta, A.; Kreuzig, R.; Smalla, K. Contaminations of organic fertilizers with antibiotic residues, resistance genes, and mobile genetic elements mirroring antibiotic use in livestock? Appl. Microbiol. Biotechnol. 2016, 100, 9343–9353. [Google Scholar] [CrossRef]
- Feng, L.; Casas, M.E.; Ottosen, L.D.M.; Møller, H.B.; Bester, K. Removal of antibiotics during the anaerobic digestion of pig manure. Sci. Total Environ. 2017, 603–604, 219–225. [Google Scholar] [CrossRef]
- Varel, V.H.; Wells, J.E.; Shelver, W.L.; Rice, C.P.; Armstrong, D.L.; Parker, D.B. Effect of anaerobic digestion temperature on odour, coliforms and chlortetracycline in swine manure or monensin in cattle manure. J. Appl. Microbiol. 2012, 112, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Spielmeyer, A.; Ahlborn, J.; Hamscher, G. Simultaneous determination of 14 sulfonamides and tetracyclines in biogas plants by liquid-liquid-extraction and liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 2513–2524. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.S.; Garner, E.; Pruden, A.; Aga, D.S. Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods. Environ. Pollut. 2018, 236, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.J.; Clay, S.A.; Zhu, Z.; Wong, K.L.; Porath, L.R.; Spellman, G.M. Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion. Water Res. 2009, 43, 4740–4750. [Google Scholar] [CrossRef]
- Widyasari-Mehta, A.; Suwito, H.R.K.A.; Kreuzig, R. Laboratory testing on the removal of the veterinary antibiotic doxycycline during long-term liquid pig manure and digestate storage. Chemosphere 2016, 149, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Bousek, J.; Schöpp, T.; Schwaiger, B.; Lesueur, C.; Fuchs, W.; Weissenbacher, N. Behaviour of doxycycline, oxytetracycline, tetracycline and flumequine during manure up-cycling for fertilizer production. J. Environ. Manag. 2018, 223, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Karcı, A.; Balcıoğlu, I.A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci. Total Environ. 2009, 407, 4652–4664. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Xie, S.; Yang, M.; Tang, S.; Zhou, L.; Jiang, W.; Zhou, B.; Li, Y.; Si, B. A critical review on retaining antibiotics in liquid digestate: Potential risk and removal technologies. Sci. Total Environ. 2022, 853, 158550. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ullman, J.L.; Teel, A.L.; Watts, R.J.; Frear, C. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresour. Technol. 2013, 149, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Miritana, V.M.; Massini, G.; Visca, A.; Grenni, P.; Patrolecco, L.; Spataro, F.; Rauseo, J.; Garbini, G.L.; Signorini, A.; Rosa, S.; et al. Effects of Sulfamethoxazole on the Microbial Community Dynamics During the Anaerobic Digestion Process. Front. Microbiol. 2020, 11, 537783. [Google Scholar] [CrossRef]
- Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. Environ. Sci. Technol. 2019, 53, 7234–7264. [Google Scholar] [CrossRef]
- WHO. WHO’s List of Medically Important Antimicrobials A Risk Management Tool for Mitigating Antimicrobial Resistance Due to Non-Human Use; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Barancheshme, F.; Munir, M. Development of Antibiotic Resistance in Wastewater Treatment Plants. In Antimicrobial Resistance; Kumar, Y., Ed.; IntechOpen: Rijeka, Croatia, 2019; Chapter 5. [Google Scholar] [CrossRef]
- Xiong, W.; Sun, Y.; Ding, X.; Wang, M.; Zeng, Z. Selective pressure of antibiotics on ARGs and bacterial communities in manure-polluted freshwater-sediment microcosms. Front. Microbiol. 2015, 6, 194. [Google Scholar] [CrossRef]
- Santás-Miguel, V.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Díaz-Raviña, M.; Arias-Estévez, M.; Fernández-Calviño, D. Tolerance of soil bacterial community to tetracycline antibiotics induced by As, Cd, Zn, Cu, Ni, Cr, and Pb pollution. Soil 2022, 8, 437–449. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Zhang, H.; Shi, W.; Liu, Y. Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China. Front. Microbiol. 2019, 10, 1916. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Das, K.R.; Naik, M.M. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere 2019, 215, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Graham, D.W.; Sreekrishnan, T.R.; Ahammad, S.Z. Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. Environ. Pollut. 2022, 306, 119326. [Google Scholar] [CrossRef] [PubMed]
- Pedro, F.; Espírito Santo, C.; Branco, R.; Francisco, R.; Santos, S.; Hansen, L.; Sorensen, S.; Morais, P.V. Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields. Appl. Environ. Microbiol. 2015, 81, 2534–2543. [Google Scholar] [CrossRef]
- Fang, L.; Li, X.; Li, L.; Li, S.; Liao, X.; Sun, J.; Liu, Y. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Sci. Rep. 2016, 6, 25312. [Google Scholar] [CrossRef]
- Edet, U.O.; Bassey, I.U.; Joseph, A.P. Heavy metal co-resistance with antibiotics amongst bacteria isolates from an open dumpsite soil. Heliyon 2023, 9, e13457. [Google Scholar] [CrossRef]
- van Midden, C.; Harris, J.; Shaw, L.; Sizmur, T.; Pawlett, M. The impact of anaerobic digestate on soil life: A review. Appl. Soil Ecol. 2023, 191, 105066. [Google Scholar] [CrossRef]
- Gurmessa, B.; Cocco, S.; Ashworth, A.J.; Udawatta, R.P.; Cardelli, V.; Ilari, A.; Serrani, D.; Fornasier, F.; Del Gatto, A.; Foppa Pedretti, E.; et al. Short term effects of digestate and composted digestate on soil health and crop yield: Implications for sustainable bioWaste Management in the bioenergy sector. Sci. Total Environ. 2024, 906, 167208. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidou, C.; Mola, M.; Papakostas, S.; Aschonitis, V.G.; Monokrousos, N.; Kougias, P.G. The effect of anaerobic digestate as an organic soil fertilizer on the diversity and structure of the indigenous soil microbial and nematode communities. Environ. Sci. Pollut. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Doyeni, M.O.; Stulpinaite, U.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System. Plants 2021, 10, 1734. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, Y.; Dong, H.; Li, J.; Zhang, W.; Shao, Y.; Shao, Y. Mechanisms of the effects of humic acid on antibiotic resistance genes and microbial communities in Cd-contaminated soils. Process Saf. Environ. Prot. 2022, 160, 62–69. [Google Scholar] [CrossRef]
- Guo, H.; Xue, S.; Nasir, M.; Gu, J.; Lv, J. Impacts of cadmium addition on the alteration of microbial community and transport of antibiotic resistance genes in oxytetracycline contaminated soil. J. Environ. Sci. 2021, 99, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhu, Y.; Dong, H.; Li, J.; Zhang, W.; Shao, Y.; Shao, Y. Effects of heavy metals and antibiotics on antibiotic resistance genes and microbial communities in soil. Process Saf. Environ. Prot. 2023, 169, 418–427. [Google Scholar] [CrossRef]
- Xiao, Y.; Raheem, A.; Ding, L.; Chen, W.-H.; Chen, X.; Wang, F.; Lin, S.-L. Pretreatment, modification and applications of sewage sludge-derived biochar for resource recovery—A review. Chemosphere 2022, 287, 131969. [Google Scholar] [CrossRef] [PubMed]
Substrate for AD | HM | Concentration | Unit of Measure | Country | References |
---|---|---|---|---|---|
Mixed cattle manure and maize silage | Cd | 0.9–1.6 | mg∙kg−1 DM | Poland | [11] |
Cr | 26–40 | ||||
Hg | 0.31–0.49 | ||||
Ni | 12–19 | ||||
Pb | 7.9–20 | ||||
Zn | 595–790 | ||||
Mixed cattle manure, bovine slurry, and maize silage | Cd | 0.2–0.8 | mg∙kg−1 DM | Poland | [64] |
Cr | 1.5–6.5 | ||||
Hg | 0.01–0.023 | ||||
Ni | 5–15 | ||||
Pb | 2–11.5 | ||||
Mixed food waste, industrial waste, animal by-products/ manure, and slaughterhouse waste | Cd | 0.34–0.37 | mg∙kg−1 DM | Sweden | [65] |
Cr | 8.2–20 | ||||
Cu | 41–100 | ||||
Hg | <0.1 | ||||
Ni | 7.2–15 | ||||
Pb | 2–7.4 | ||||
Zn | 180–540 | ||||
Mixed maize silage, slaughterhouse waste, potato pulp, and confectionery press cake | Cd | 0.02–0.03 | mg∙kg−1 DM | Poland | [11] |
Cr | 0.2–0.25 | ||||
Hg | 0.0037–0.0097 | ||||
Ni | 0.32–0.37 | ||||
Zn | 10.4–11.9 | ||||
Mixed plant residues and cattle manure | Cd | 135.64 | mg∙kg−1 | China | [66] |
Mixed sewage sludge and food by-products | As | 12.15–18.83 | mg∙kg−1 | Poland | [67] |
Cd | 7.57–10.79 | ||||
Cr | 143.65–217.47 | ||||
Cu | 1387–2059 | ||||
Fe | 4629–6685 | ||||
Hg | 19.62–37.16 | ||||
Mn | 124.78–180.53 | ||||
Ni | 56.9–81.38 | ||||
Pb | 18.6–63.83 | ||||
Zn | 3689–5530 | ||||
Mixed sewage sludge and green waste | Cu | 501 | mg∙kg−1 DM | France | [68] |
Fe | 10,400 | ||||
Zn | 842 | ||||
Mixed textile dyeing sludge and soybean okara by-products | Ni | 11.23 | mg∙kg−1 VS | China | [69] |
Cr | 316.97 | ||||
Cu | 37.47 | ||||
Zn | 355.7 | ||||
Municipal organic waste | Cd | 1.4 | mg∙kg−1 DM | Germany | [70] |
Cr | 26.6 | ||||
Cu | 49.1 | ||||
Ni | 12.5 | ||||
Pb | 123.6 | ||||
Zn | 327.3 | ||||
Fine fraction of municipal waste | Cu | 136 | mg∙kg−1 DM | France | [68] |
Fe | 12,100 | ||||
Zn | 634 | ||||
Organic output of mechanical-biological waste treatment facilities | Cd | 0.77–3.5 (SF) <0.58 (LF) | mg∙kg−1 DM | Italy | [71] |
Cr | 41.17–77.54 (SF) 2.31–21.78 (LF) | ||||
Cu | 255.35–315.77 (SF) 1.91–57.58 (LF) | ||||
Ni | 22.61–35.40 (SF) 7.81–32.49 (LF) | ||||
Pb | 34.45–344.13 (SF) 0.26–45.10 (LF) | ||||
Zn | 811.5–920.28 (SF) 14.28–224.63 (LF) | ||||
Pharmaceutical-derived organic wastes | As | 0.19 | mg∙kg−1 DM | Italy | [72] |
Cd | <0.2 | ||||
Cr | <0.5 | ||||
Cu | 23.4 | ||||
Hg | 0.41 | ||||
Ni | <0.5 | ||||
Pb | <1 | ||||
Zn | 117.2 | ||||
Poultry manure | Ag | 0.15 | mg∙kg−1 | China | [73] |
As | 106.65 | ||||
Cd | 0.39 | ||||
Cr | 61.2 | ||||
Cu | 71.72 | ||||
Pb | 22.97 | ||||
Zn | 370.24 | ||||
Rice straw | Cd | 0.4–0.7 | mg L−1 | China | [74] |
Cu | 0.05–0.15 | ||||
Pb | 0.03–0.1 | ||||
Zn | 0.15–0.37 | ||||
Sewage sludge | Al | 3262.3 | mg∙kg−1 | China | [75] |
Fe | 2017.8 | ||||
Hg | 6.37 | [76] | |||
Cu | 487 | mg∙kg−1 DM | France | [68] | |
Fe | 9840 | ||||
Zn | 988 | ||||
Al | 6270–8025 | Poland | [77] | ||
Cd | 2.3–5.4 | ||||
Co | 3.8–5.9 | ||||
Cr | 14–17.9 | ||||
Cu | 87.8–91.3 | ||||
Fe | 4001–4548 | ||||
Mn | 241–267 | ||||
Mo | 3–3.9 | ||||
Ni | 6.6–8 | ||||
Pb | 18.8–25.5 | ||||
Zn | 732–789 | ||||
As | 14.11 | mg∙kg−1 | [67] | ||
Cd | 8.09 | ||||
Cr | 156.58 | ||||
Cu | 1,496.7 | ||||
Fe | 4836 | ||||
Hg | 23.07 | ||||
Mn | 132.51 | ||||
Ni | 61.67 | ||||
Pb | 42.38 | ||||
Zn | 4303 | ||||
Cd | 0.9–1.6 | mg∙kg−1 DM | [11] | ||
Cr | 28–44 | ||||
Hg | 0.41–0.51 | ||||
Ni | 11–17 | ||||
Pb | 7.13–18 | ||||
Zn | 645–830 | ||||
Pig manure | Cu | 788 | mg∙kg−1 DM | France | [68] |
Fe | 3,180 | ||||
Zn | 842 | ||||
As | 7.49 | mg∙kg−1 VS | China | [78] | |
Cd | 0.31 | ||||
Cu | 781.33 | ||||
Ni | 23.13 | ||||
Pb | 7.02 | ||||
Zn | 2146.32 | ||||
Textile dyeing sludge | Ni | 21.74 | mg∙kg−1 VS | China | [69] |
Cr | 525.92 | ||||
Cu | 57.46 | ||||
Zn | 473.08 |
HM | Unit of Measure | Types of Digestate Used as Fertilizers | |||
---|---|---|---|---|---|
Organic Fertilizer | Organic Soil Improver | Growing Medium | Plant Biostimulant | ||
Cd | mg∙kg−1 DM | 1.5 | 2 | 1.5 | 1.5 |
Cr | 2 | 2 | 2 | 2 | |
Hg | 1 | 1 | 1 | 1 | |
Ni | 50 | 50 | 50 | 50 | |
Pb | 120 | 120 | 120 | 120 | |
As | 40 | 40 | 40 | 40 | |
Cu | 300 | 300 | 200 | 600 | |
Zn | 800 | 800 | 500 | 1500 |
Antimicrobial Class and Substance | Concentration of Antimicrobial Substance: Average Value or Minimum−Maximum Range | Substrate | Country | References | ||
---|---|---|---|---|---|---|
β-lactams | Amoxicillin | 460–960 | μg kg−1 DM | Food waste | Norway | [94] |
penicillin G | 510 | μg kg−1 DM | Cattle manure | |||
Fluoroquinolones | Ciprofloxacin | 2100 | μg kg−1 | Italy | [12] | |
776,000 | μg kg−1 DM | Mixed animal substrates | Sweden, Finland, and Germany | [95] | ||
1620 | μg kg−1 DM | Germany | [96] | |||
63,100 | μg kg−1 DM | Mixed pig slurry and sewage sludge | Sweden, Finland, and Germany | [95] | ||
121,000 | μg kg−1 DM | Poultry manure | ||||
430 | μg kg−1 DM | Sewage sludge | Norway | [94] | ||
16.05–45.26 | μg kg−1 | China | [97] | |||
1068 | μg L−1 | Pig manure | [98] | |||
57.3–122.4 | μg kg−1 | [99] | ||||
Danofloxacin | 963 | μg L−1 | [98] | |||
970 | μg kg−1 DM | Mixed animal substrates | Germany | [96] | ||
Enrofloxacin | 147,000 | μg kg−1 DM | Cattle manure | Sweden, Finland, and Germany | [95] | |
82,100 | μg kg−1 DM | Mixed animal substrates | ||||
Max 1090 | μg kg−1 DM | Germany | [96] | |||
50 | μg kg−1 | Mixed plants and animal manure | Poland | [100] | ||
47,700 | μg kg−1 DM | Mix pig slurry and sewage sludge | Sweden, Finland, and Germany | [95] | ||
850,000 | μg kg−1 DM | Poultry manure | ||||
6.28–20.28 | μg kg−1 | Sewage sludge | China | [97] | ||
147.1–387.9 | μg kg−1 | Poland | [11] | |||
200–44,200 | μg kg−1 DM | Pig manure | Sweden, Finland, and Germany | [95,101] | ||
98 | μg L−1 | China | [98] | |||
58.7–61 | μg kg−1 | [99] | ||||
Fleroxacin | 127 | μg L−1 | [98] | |||
Lomefloxacin | 409 | μg L−1 | ||||
Norfloxacin | 132.54–444.27 | μg kg−1 | [97] | |||
55.9–82.4 | μg kg−1 | [99] | ||||
Ofloxacin | 628.89–1751.08 | μg kg−1 | [97] | |||
49.9–60.2 | μg kg−1 | [99] | ||||
184 | μg L−1 | [98] | ||||
Orbifloxacin | 33 | μg L−1 | ||||
Sarafloxacin | 445 | μg L−1 | ||||
Sparfloxacin | 140 | μg L−1 | ||||
MLS | Clarithromycin | 353.28–369.84 | μg L−1 | Pig manure | Denmark | [102] |
0.056–0.208 | μg L−1 (LF) | Sewage sludge | Poland | [11] | ||
62.8 70.7 | μg kg−1 (SF) | |||||
Clindamycin | 0.08–0.268 | μg L−1 (LF) | ||||
Erythromycin | 7.8–624 | μg L−1 | Pig manure | Denmark | [102] | |
Pleuromutilins | Tiamulin | 148 | μg kg−1 | Mixed plants and animal manure | Poland | [100] |
Polyethermonocarboxylic acids | Monensin | 220–720 | μg kg−1 | Cattle manure | USA | [103] |
Sulfonamides | Sulfadiazine | 233,000 | μg kg−1 DM | Sweden, Finland, and Germany | [95] | |
n.d.–0.106 | μg L−1 (LF) | Mixed cattle manure and maize silage | Poland | [11] | ||
105,000 | μg kg−1 DM | Mixed animal substrates | Sweden, Finland, and Germany | [95] | ||
26,300 | μg kg−1 DM | Mixed pig slurry and sewage sludge | ||||
239,000 | μg kg−1 DM | Poultry manure | Sweden, Finland, and Germany | [95,96] | ||
0.098–0.136 | μg L−1 (LF) | Sewage sludge | Poland | [11] | ||
12,400 | μg kg−1 DM | Sweden, Finland, and Germany | [95] | |||
142,000 | μg kg−1 DM | Pig manure | ||||
618 | μg L−1 | Denmark | [102] | |||
n.d.–4.9 | μg kg−1 | China | [99] | |||
Sulfadoxine | n.d. | μg kg−1 DM | Germany | [101] | ||
140 | μg kg−1 DM | Food waste | Norway | [94] | ||
Sulfamethoxazole | 70 | μg kg−1 | Cattle manure | Italy | [12] | |
n.d.–7.4 | μg kg−1 | Pig manure | China | [99] | ||
Sulfamethazine | 1400–200,900 | μg kg−1 DM | Mixed animal substrates | Germany | [104] | |
1.6 | μg kg−1 DM | Mixed cattle and pig manure | Norway | [94] | ||
0.38 | μg kg−1 DM | Mixed food waste and sewage sludge | ||||
66,100 | μg kg−1 DM | Poultry manure | Sweden, Finland, Germany | [95] | ||
0.08 | μg kg−1 DM | Sewage sludge | Norway | [94] | ||
176–3359.9 | μg kg−1 | Pig manure | China | [99] | ||
Tetracyclines | Chlortetracycline | 240–340 | μg kg−1 | Cattle manure | USA | [105] |
3500–36,500 | μg kg−1 DM | Mixed animal substrates | Germany | [104] | ||
1300–10,100 | μg kg−1 DM | Pig manure | [101] | |||
n.d. | μg kg−1 TS | China | [25] | |||
11,600 | μg L−1 DM | USA | [106] | |||
1000–6000 | μg L−1 | [103] | ||||
36 ± 2 | μg L−1 | China | [98] | |||
21,010.6–39,751.4 | μg kg−1 | [99] | ||||
Doxycycline | 0.854–1.555 | μg L−1 (LF) | Mixed cattle manure and maize silage | Poland | [11] | |
396.7–1282.5 | μg kg−1 (SF) | |||||
n.d.–3900 | μg kg−1 DM | Pig manure | Germany | [101,107] | ||
360 | μg L−1 | The Netherlands | [108] | |||
0.62 218.1–800.2 | μg L−1 (LF) μg kg−1 (SF) | Sewage sludge | Poland | [11] | ||
Epichlortetracycline | 99–170 | μg kg−1 TF | Cattle manure | USA | [105] | |
Epitetracycline | 83–102 | µg kg−1 TF | ||||
Oxytetracycline | 196,000 | μg kg−1 DM | Sweden, Finland, and Germany | [95] | ||
21–26 | μg kg−1 TF | USA | [105] | |||
196,000 | μg kg−1 DM | Mixed animal substrates | Sweden, Finland, and Germany | [95] | ||
346,000 | μg kg−1 DM | Poultry manure | ||||
1,256,000 | μg kg−1 DM | Pig manure | ||||
n.d. | μg kg−1 TS | China | [25] | |||
34,911.8–84,687.9 | μg kg−1 | [99] | ||||
38.5 | μg L−1 | The Netherlands | [108] | |||
Tetracycline | 290–450 | μg kg−1 TF | Cattle manure | USA | [105] | |
n.d.–17,030 | μg kg−1 DM | Mixed animal substrates | Germany | [96,104] | ||
193,000 | μg kg−1 DM | Mixed animal substrates | Sweden, Finland, and Germany | [95] | ||
438,000 | μg kg−1 DM | Mixed pig slurry and sewage sludge | ||||
16,399,000 | μg kg−1 DM | Poultry manure | ||||
0.27–0.36 464.8–1164.4 | μg L−1 (LF) μg kg−1 (SF) | Sewage sludge | Poland | [11] | ||
885,000 | μg kg−1 DM | Sweden, Finland, and Germany | [95] | |||
n.d.–6400 | μg kg−1 DM | Pig manure | Germany | [101] | ||
1209.1–1769.7 | μg kg−1 | China | [99] | |||
42.14 | μg L−1 | The Netherlands | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czatzkowska, M.; Rolbiecki, D.; Korzeniewska, E.; Harnisz, M. Heavy Metal and Antimicrobial Residue Levels in Various Types of Digestate from Biogas Plants—A Review. Sustainability 2025, 17, 416. https://doi.org/10.3390/su17020416
Czatzkowska M, Rolbiecki D, Korzeniewska E, Harnisz M. Heavy Metal and Antimicrobial Residue Levels in Various Types of Digestate from Biogas Plants—A Review. Sustainability. 2025; 17(2):416. https://doi.org/10.3390/su17020416
Chicago/Turabian StyleCzatzkowska, Małgorzata, Damian Rolbiecki, Ewa Korzeniewska, and Monika Harnisz. 2025. "Heavy Metal and Antimicrobial Residue Levels in Various Types of Digestate from Biogas Plants—A Review" Sustainability 17, no. 2: 416. https://doi.org/10.3390/su17020416
APA StyleCzatzkowska, M., Rolbiecki, D., Korzeniewska, E., & Harnisz, M. (2025). Heavy Metal and Antimicrobial Residue Levels in Various Types of Digestate from Biogas Plants—A Review. Sustainability, 17(2), 416. https://doi.org/10.3390/su17020416