Digital Economy, R&D Resource Allocation, and Convergence of Regional Green Economy Efficiency
Abstract
:1. Introduction
2. Theoretical Literature Review
2.1. Digital Economy, Factor Allocation, and Green Economic Efficiency
2.2. Analysis of the Mechanism of the Digital Economy Affecting the Efficiency Convergence of Regional Green Economy
3. Empirical Literature Review
4. Data Sources and Research Methods
4.1. Variable Measures and Data Sources
4.1.1. Dependent Variables
4.1.2. Explanatory Variables
4.1.3. Mechanism Variables
- (1)
- Net flow of regional R&D factors
- (2)
- R&D resource mismatch index
4.1.4. Data Sources and Descriptive Statistics
4.2. Methods
5. Empirical Results and Analysis
5.1. Baseline Regression Results
5.2. Robustness Test
5.3. Endogeneity Test
6. Further Discussion
6.1. Heterogeneity Analysis
6.2. Mechanism Analysis
6.2.1. Analysis of the Impact of the Digital Economy on the Flow of R&D Resources
6.2.2. The Mismatch of R&D-Related Factors in Relation to the Digital Economy
7. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, D.; Zhu, Q.; Business, J.O. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Perez, C.; Freeman, C. Structural Crises of Adjustment business Cycles and Investment Behaviour. In Technical Change and Economuic Theory; Ifias Research Series 6; Pinter Pub Ltd.: London, UK, 1988; pp. 38–66. [Google Scholar]
- Perez, C. Structural Change and Assimilation of New Technologies in the Economic and Social Systems. Futures 1983, 15, 357–375. [Google Scholar] [CrossRef]
- Pérez, C. Technological revolutions and financial capital: The dynamics of bubbles and golden ages. Foreign Aff. 2003, 82, 148. [Google Scholar]
- Xiong, S.; Ma, X.; Ji, J. The impact of industrial structure efficiency on provincial industrial energy efficiency in China. J. Clean. Prod. 2019, 215, 925–962. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C. Toward a new conception of the environment competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Shuai, S.; Fan, Z. Modeling the role of environmental regulations in regional green economy efficiency of China: Empirical evidence from super efficiency DEA-Tobit model. J. Environ. Manag. 2020, 261, 110227. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, P.; Hu, D. Influences of the ongoing digital transformation of the Chinese Economy on innovation of sustainable green technologies. Sci. Total Environ. 2023, 875, 162708. [Google Scholar] [CrossRef]
- Faisal, F.; Azizullah Tursoy, T. Does ICT lessen CO2 emissions for fast-emerging economies? An application of the heterogeneous panel estimations. Environ. Sci. Pollut. Res. 2020, 27, 10778–10789. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, Z.; Yang, C. Spatial interaction spillover effects between digital financial technology and urban ecological efficiency in China: An empirical study based on spatial simultaneous equations. Int. J. Environ. Res. Public Health 2021, 18, 8535. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Hao, Y.; Xu, L. Digitalization and energy: How does internet development affect China’s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, R.; Li, G. Environmental decentralization, digital finance and green technology innovation. Struct. Change Econ. Dyn. 2022, 61, 101927. [Google Scholar] [CrossRef]
- Arshad, Z.; Robaina, M.; Botelho, A. The role of ICT in energy consumption and environment: An empirical investigation of Asian economies with cluster analysis. Environ. Sci. Pollut. Res. 2020, 27, 32913–32932. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, Z.; Xie, X. Exploring the Role of Digital Economy in Enhanced Green Productivity in China’s Manufacturing Sector: Fresh Evidence for Achieving Sustainable Development Goals. Sustainability 2024, 16, 4314. [Google Scholar] [CrossRef]
- Li, G.; Wu, H.; Jiang, J.; Zong, Q. Digital finance and the low-carbon energy transition (LCET) from the perspective of capital-biased technical progress. Energy Econ. 2023, 120, 106623. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, R.; Zhan, Y. Digital economy, energy efficiency, and carbon emissions: Evidence from provincial panel data in China. Sci. Total Environ. 2022, 852, 158403. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Yi, M.H. The Effect of the Internet on Economic Growth: Evidence from Cross-country Panel Data. Econ. Lett. 2009, 105, 39–41. [Google Scholar] [CrossRef]
- Noh, Y.H.; Yoo, K. Internet, Inequality and Growth. J. Policy Model. 2008, 30, 1005–1016. [Google Scholar] [CrossRef]
- Vicente, M.R.; Lopez, A.J. Assessing the Regional Digital Divide Across the European Union-27. Telecommun. Policy 2011, 35, 220–237. [Google Scholar] [CrossRef]
- Kong, L.; Li, J. Digital economy development and green economic efficiency: Evidence from province-level empirical data in China. Sustainability 2022, 15, 3. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Qiu, S.; Zhu, L. Effects of Environmental Regulations on Technological Innovation Efficiency in China’s Industrial Enterprises: A Spatial Analysis. Sustainability 2019, 11, 2186. [Google Scholar] [CrossRef]
- Yang, L.; Hu, X.Z. Analysis on Regional differences and convergence of the efficiency of China’s green economy based on DEA. Economist 2010, 11, 46–54. [Google Scholar]
- Qian, Z.M.; Liu, X.C. Regional Differences in China’s Green Economic Efficiency and Their Determinants. China Popul. Resouces Environ. 2013, 23, 104–109. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Shan, H.J. Reestimating the Capital Stock of China: 1952–2006. J. Quant. Technol. Econ. 2008, 25, 17–31. [Google Scholar]
- Bukht, R.; Heeks, R. Defining, Conceptualising and Measuring the Digital Economy. GDI Dev. Inform. Work. Paper. 2017, 68, 1–20. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-i-Martin, X. Technological Diffusion, Convergence, and Growth. J. Econ. Growth. 1997, 2, 1–26. [Google Scholar] [CrossRef]
- Dollar, D.; Wei, S.J. Das (Wasted) Kapital: Firm Ownership and Investment Efficiency in China. NBER Work. Pap. 2007, 13103. [Google Scholar]
- Bai, J.H.; Wang, Y.; Jiang, F.X. R&D Element Flow, Spatial Knowledge Spillovers and Economic Growth. Econ. Res. J. 2017, 52, 109–123. [Google Scholar]
- Czernich, N.; Falck, O.; Kretschmer, T. Broadband Infrastructure and Economic Growth. Econ. J. 2011, 121, 505–532. [Google Scholar] [CrossRef]
- Bian, Y.C.; Wu, L.H.; Bai, J.H. Does the Competition of Fiscal S&T Expenditure Improve the Regional Innovation Performance? —Based on the Perspective of R&D Factor Flow. Publ. Fin. Res. 2020, 1, 45–58. [Google Scholar]
- Krugman, P.R. Increasing Returns and Economic Geography. J. Polit. Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Lowry, I.S. Migration and Metropolitan Growth: Two Analytical Models; Chandler Pub., Co.: San Francisco, CA, USA, 1966. [Google Scholar]
- Liu, Q.; Ma, Y.R.; Xu, S.X. Has the development of digital economy improved the efficiency of China’s green economy? China Popul. Resour. Environ. 2022, 32, 72–85. [Google Scholar]
- Roback, J. Wages, Rents, and the Quality of Life. J. Polit. Econ. 1982, 90, 1257–1278. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S. Digital Economy, Entrepreneurship, and High-Quality Economic Development: Empirical Evidence from Urban China. J. Manag. World 2020, 36, 65–75. [Google Scholar]
- Rosen, S. Wage-based Indexes of Urban Quality of Life. In Current Issues in Urban Economics; Mieszkowski, P., Strazheim, M., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 1979. [Google Scholar]
- Tapscott, D. The Digital Economy: Promise and Peril in the Age of Networked Intelligence; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Wang, X.L.; Shao, Q.L.; Nathwani, J. Measuring wellbeing performance of carbon emissions using hybrid measure and meta-frontier techniques: Empirical tests for G20 countries and implications for China. J. Clean. Prod. 2019, 237, 117758. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A.; York, R. Environmentally efficient well-being: Is there a Kuznets curve? Appl. Geogr. 2012, 32, 21–28. [Google Scholar] [CrossRef]
- Jorgenson, A.K.; Alejseyko, A.; Giedraitis, V. Energy consumption, human well-being and economic development in central and eastern European nations: A cautionary tale of sustainability. Energy Policy 2014, 66, 419–427. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, J. Carbon emissions and the development of digital economy: A perspective of spatial evolution. J. Environ. Prot. Ecol. 2022, 23, 409–416. [Google Scholar]
- Li, J.; Luo, Y.; Wang, S.Y. Spatial effects of economic performance on the carbon intensity of human well-being: The environmental Kuznets curve in Chinese provinces. J. Clean. Prod. 2019, 233, 681–694. [Google Scholar] [CrossRef]
- Lu, C.X.; Venevsky, S.; Shi, X.L. Econometrics of the environmental Kuznets curve: Testing advancement to carbon intensity-oriented sustainability for eight economic zones in China. J. Clean. Prod. 2021, 283, 124561. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, S.J.; Zhou, C.S. Consumption-based carbon intensity of human well-being and its socioeconomic drivers in countries globally. J. Clean. Prod. 2022, 366, 132886. [Google Scholar] [CrossRef]
- Wang, S.J.; Xie, Z.H. WUR How does urbanization affect the carbon intensity of human well-being? A global assessment. Appl. Energy 2022, 312, 118798. [Google Scholar] [CrossRef]
Variable Type | Variable | Code | Number of Observations | Mean | Std. | Min | Max |
---|---|---|---|---|---|---|---|
Explanatory variable | Digital economy | 660 | 18,821,940 | 30,780,601 | 146,390.6 | 2.182 × 108 | |
Explained Variable | Green economy efficiency | GEE | 660 | 0.403 | 0.261 | 0.033 | 1 |
Control variable | Environmental infrastructure | 660 | 1.611 | 18.691 | 0.005 | 420.52 | |
Population size | 660 | 0.962 | 5.012 | 0 | 32.947 | ||
Open to the outside world | 660 | 0.455 | 0.26 | 0.036 | 2.528 | ||
Fiscal decentralization | 660 | 0.648 | 0.356 | 0.23 | 2.509 | ||
Industrial structure | 660 | 0.965 | 0.496 | 0.494 | 4.237 | ||
Gross national product | 660 | 8068.799 | 9014.189 | 288.121 | 63,106.233 | ||
Mechanism variables | Net turnover of R&D personnel | 660 | 0 | 1100.654 | −9097.603 | 5608.326 | |
Net flow of research and development capital | 660 | 0 | 1.751 × 109 | −1.917 × 1010 | 1.364 × 1010 | ||
Mismatch of R&D capital | 660 | 0.658 | 0.501 | 0.002 | 2.825 | ||
Mismatch of R&D personnel | 660 | 1.899 | 2.542 | 0.001 | 11.459 |
Variable | (1) Model 1 | (2) Model 2 |
---|---|---|
−0.641 (0.784) | 2.423 *** (0.450) | |
−0.409 *** (0.072) | −0.408 *** (0.072) | |
0.063 *** (0.023) | 0.063 *** (0.024) | |
−0.000 * (0.000) | ||
−0.004 (0.005) | ||
0.013 (0.016) | ||
−0.008 (0.020) | ||
−0.026 (0.025) | ||
0.031 (0.026) | ||
Yes | Yes | |
Yes | Yes | |
0.752 | 0.755 | |
239.643 | 730.614 |
Variable | (1) Replace Core Explanatory Variables | (2) Lag by One Period | (3) Bilateral Tail Retraction | (4) Replace the Explained Variable |
---|---|---|---|---|
0.078 *** (0.028) | 1.215 *** (0.209) | 1.201 *** (0.180) | −0.042 (0.728) | |
−0.362 *** (0.071) | −0.373 *** (0.072) | −1.207 *** (0.043) | −0.307 *** (0.037) | |
0.052 * (0.074) | −0.014 (0.014) | 0.009 (0.017) | 0.028 *** (0.045) | |
Yes | Yes | Yes | Yes | |
Yes | Yes | Yes | Yes | |
Yes | Yes | Yes | Yes | |
0.639 | 0.660 | 0.463 | 0.361 | |
749.483 | 413.249 | 216.124 | 11.340 |
Variable | (1) First Stage of Regression | (1) Second Stage of Regression |
---|---|---|
−0.362 (0.265) | −0.407 *** (0.074) | |
0.839 *** (0.106) | 0.025 (0.0379) | |
Yes | Yes | |
Yes | Yes | |
No | No | |
statistic | 20.470 | 20.471 |
statistic | 213.340 | 213.336 |
0.359 | 0.334 | |
41.38 | 33.39 |
Variable | (1) East | (2) Central Section | (3) West | |||
---|---|---|---|---|---|---|
1.032 *** (0.161) | 0.156 (0.853) | 1.827 *** (0.472) | 1.674 *** (0.465) | 0.508 *** (0.058) | −0.166 (0.531) | |
−1.176 *** (0.110) | −1.183 *** (0.112) | −1.255 *** (0.051) | −1.26 *** (0.560) | −1.199 *** (0.084) | −1.219 *** (0.076) | |
0.056 (0.055) | 0.025 (0.035) | 0.048 (0.036) | ||||
Yes | Yes | Yes | Yes | Yes | Yes | |
0.598 | 0.602 | 0.621 | 0.622 | 0.665 | 0.670 | |
51.686 | 84.152 | 219.808 | 176.959 | 24.841 | 24.839 |
Variable | (1) Areas with High Resource Endowments | (2) Low Resource Endowment Areas | ||
---|---|---|---|---|
0.537 ** (0.223) | 0.648 *** (0.196) | 1.095 ** (0.471) | 1.089 ** (0.479) | |
−0.482 *** (0.115) | −0.536 *** (0.098) | −0.355 *** (0.045) | −0.356 *** (0.046) | |
−0.067 *** (0.021) | 0.025 (0.091) | |||
Yes | Yes | Yes | Yes | |
0.276 | 0.288 | 0.145 | 0.145 | |
133.577 | 135.456 | 186.812 | 186.910 |
Variable | ||||
---|---|---|---|---|
6.759 ** (2.36) | 0.599 *** (0.06) | 2.038 (0.94) | 0.037 (0.11) | |
−7.9 × 107 (−0.10) | −0.346 * (0.00) | 6.5 × 108 (1.18) | −1.649 *** (0.174) | |
Yes | Yes | Yes | Yes | |
Yes | Yes | Yes | Yes | |
No | No | Yes | Yes | |
510 | 510 | 510 | 510 | |
0.014 | 0.284 | 0.084 | 0.335 | |
6.856 | 5.848 | 101.783 | 5.737 |
Variable | ||||
---|---|---|---|---|
−0.024 ** (2.07) | −0.002 (−0.02) | −0.012 ** (2.52) | −0.252 (1.14) | |
0.842 *** (3.42) | 3.007 * (1.79) | 0.765 * (1.99) | −1.918 (−0.58) | |
Yes | Yes | Yes | Yes | |
Yes | Yes | Yes | Yes | |
No | No | Yes | Yes | |
510 | 510 | 510 | 510 | |
0.041 | 0.004 | 0.501 | 0.116 | |
3.446 | 2.570 | 94.618 | 5.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, G.; Gao, J.; Yuan, W.; Zeng, Y.; Liu, X. Digital Economy, R&D Resource Allocation, and Convergence of Regional Green Economy Efficiency. Sustainability 2025, 17, 384. https://doi.org/10.3390/su17020384
Yi G, Gao J, Yuan W, Zeng Y, Liu X. Digital Economy, R&D Resource Allocation, and Convergence of Regional Green Economy Efficiency. Sustainability. 2025; 17(2):384. https://doi.org/10.3390/su17020384
Chicago/Turabian StyleYi, Guodong, Juan Gao, Wentao Yuan, Yan Zeng, and Xiang Liu. 2025. "Digital Economy, R&D Resource Allocation, and Convergence of Regional Green Economy Efficiency" Sustainability 17, no. 2: 384. https://doi.org/10.3390/su17020384
APA StyleYi, G., Gao, J., Yuan, W., Zeng, Y., & Liu, X. (2025). Digital Economy, R&D Resource Allocation, and Convergence of Regional Green Economy Efficiency. Sustainability, 17(2), 384. https://doi.org/10.3390/su17020384