How E-Commerce Drives Low-Carbon Development: An Empirical Analysis from China
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Overall Assumptions
2.2. Impact Mechanism Analysis and Hypothesis
2.2.1. Electronic Commerce and Industrial Structure Optimization
2.2.2. E-Commerce and Green Technology Innovation
2.2.3. E-Commerce and the Establishment of Resource Sharing Set
3. Research Design
3.1. Econometric Model Setting
3.1.1. Benchmark Regression Model
3.1.2. Mediator Effect Model
3.2. Variable Measurement and Data Description
3.2.1. The Explained Variable
3.2.2. The Core Explanatory Variable
- I.
- Select data: Select m year, k provinces, j index, then Xaij is the value of a year, j index of i province, 1 ≤ i ≤ k, 1 ≤ a ≤ m.
- II.
- Data standardization processing: In the process of obtaining data, because of the inconsistent measurement units of each index, standardizing the extreme difference of each index to avoid the influence of the dimension is necessary.
- III.
- Calculate the index value of item j in the i th province, Paij:
- IV.
- Calculate the entropy value ej for term j:
- V.
- Calculate the difference coefficient of dj; the information utility value of the j th index mainly depends on the difference between the information entropy ej and 1 of the index, and its value directly affects the size of the weight.
- VI.
- Calculate the index weight wj in item j:
- VII.
- Calculate the comprehensive score of the provinces and cities Iai:
3.2.3. Mediator Variables
3.2.4. Control Variables
3.2.5. Descriptive Statistics
4. Empirical Test and Result Analysis
4.1. Analysis of the Benchmark Regression Results
4.2. Mediating Effect
4.3. Heterogeneity Analysis
4.4. Discussion
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Policy Recommendations
6. Future Research and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| EWM | Entropy Weight Method |
References
- Yu, W.; Wu, Y.; Tan, X.; Guo, X. The Nexus between Electronic Commerce and Environmental Pollution: The Roles of Energy Efficiency and Resource Consumption. Bus. Strategy Environ. 2024, 33, 2287–2300. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, H.; Wang, Y. Does E-Commerce Development Drive Regional Entrepreneurial Activity? Spatial Spillover Effect and Mechanism Analysis. Int. J. Prod. Econ. 2025, 284, 109611. [Google Scholar] [CrossRef]
- Qian, X.; Wang, Y.; Pan, M.; Gatto, A.; Taghizadeh-Hesary, F.; Zhao, X. Does E-Commerce Development Reduce Carbon Emissions? Empirical Analysis Based on Spatial Durbin Difference-in-Difference Model. Comput. Ind. Eng. 2025, 203, 110954. [Google Scholar] [CrossRef]
- Cheba, K.; Kiba-Janiak, M.; Baraniecka, A.; Kołakowski, T. Impact of External Factors on E-Commerce Market in Cities and Its Implications on Environment. Sustain. Cities Soc. 2021, 72, 103032. [Google Scholar] [CrossRef]
- Datta, D.; Bohra, M.; Pjain, S.; Baghel, S. Sustainable E-Commerce: Assessing the Environmental Impact of Online Shopping and Exploring Eco-Friendly Solutions. Int. J. Res. Publ. Rev. 2024, 5, 3889–3895. [Google Scholar]
- Niemeijer, R.; Buijs, P. A Greener Last Mile: Analyzing the Carbon Emission Impact of Pickup Points in Last-Mile Parcel Delivery. Renew. Sustain. Energy Rev. 2023, 186, 113630. [Google Scholar] [CrossRef]
- Imran, M.; Khan, I.; Nassani, A.A.; Binsaeed, R.H.; Khan, H.U.R.; Abro, M.M.Q.; Zaman, K.; Haffar, M. A Green Perspective: Investigating the Optical Effects of e-Commerce, Renewable Energy Demand, and Services Trade on Carbon Emissions. Optik 2023, 283, 170918. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, W.; Xin, D. Digital–Real Economy Integration and Urban Low-Carbon Development in China. Econ. Anal. Policy 2025, 86, 606–621. [Google Scholar] [CrossRef]
- Li, K.; Wang, H.; Xie, X. Mechanism and Spatial Spillover Effect of the Digital Economy on Urban Carbon Productivity: Evidence from 271 Prefecture-Level Cities in China. J. Environ. Manag. 2025, 382, 125435. [Google Scholar] [CrossRef]
- Sun, H.; Tang, C.; Gao, P.; Zhou, G. Digital Economy, Energy Consumption and Urban Carbon Emission Reduction: Empirical Evidence from 278 Cities in China. Sustain. Futures 2025, 10, 100858. [Google Scholar] [CrossRef]
- Du, W.; Liu, X.; Liu, Y.; Xie, J. Digital Economy and Carbon Emission Efficiency in Three Major Urban Agglomerations of China: A U-Shaped Journey towards Green Development. J. Environ. Manag. 2025, 373, 123571. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Deng, M.; Li, H. How Does E-Commerce City Pilot Improve Green Total Factor Productivity? Evidence from 230 Cities in China. J. Environ. Manag. 2021, 289, 112520. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Yuan, J.; Li, T. Harmonizing Digital Trade for Sustainable Stride: Unveiling the Industrial Pollution Reduction Effect of China’s Cross-Border E-Commerce Comprehensive Pilot Zones. J. Environ. Manag. 2024, 370, 122834. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Wu, G.; Miao, Z.; Chen, X. E-Commerce and Air Pollution: Evidence from China. J. Clean. Prod. 2024, 480, 144030. [Google Scholar] [CrossRef]
- Qin, J.; Fu, H.; Wang, Z.; Xia, L. Financing and Carbon Emission Reduction Strategies of Capital-Constrained Manufacturers in E-Commerce Supply Chains. Int. J. Prod. Econ. 2021, 241, 108271. [Google Scholar] [CrossRef]
- Pan, X.; Li, M.; Wang, M.; Zong, T.; Song, M. The Effects of a Smart Logistics Policy on Carbon Emissions in China: A Difference-in-Differences Analysis. Transp. Res. Part E Logist. Transp. Rev. 2020, 137, 101939. [Google Scholar] [CrossRef]
- Ding, H.; Liu, C. Carbon Emission Efficiency of China’s Logistics Industry: Measurement, Evolution Mechanism, and Promotion Countermeasures. Energy Econ. 2024, 129, 107221. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, J.; Zhang, D.; Xie, K. Shopping Online: E-Commerce and Household Carbon Emissions in China. J. Environ. Manag. 2025, 373, 123621. [Google Scholar] [CrossRef]
- Li, T.; Jiang, Y.; Zhao, Y. Does Mobile Payment Foster Low-Carbon Lifestyles? Evidence from Alipay’s “Collecting Five Blessings” Campaign. J. Clean. Prod. 2024, 463, 142513. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X. Can Mobile Payment Innovation Contribute to Low-Carbon Sustainable Economic Development? Spatial Econometric Analysis Based on Chinese City-Level Data. Cities 2024, 155, 105425. [Google Scholar] [CrossRef]
- Arnold, F.; Cardenas, I.; Sörensen, K.; Dewulf, W. Simulation of B2C E-Commerce Distribution in Antwerp Using Cargo Bikes and Delivery Points. Eur. Transp. Res. Rev. 2018, 10, 2. [Google Scholar] [CrossRef]
- Liang, C.; Liu, Z.; Geng, Z. Assessing E-Commerce Impacts on China’s CO2 Emissions: Testing the CKC Hypothesis. Environ. Sci. Pollut. Res. 2021, 28, 56966–56983. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, W.; Guo, Z.; Hou, Y.; Chen, T. E-Commerce Development and Carbon Emission Efficiency: Evidence from 240 Cities in China. Econ. Anal. Policy 2024, 82, 586–603. [Google Scholar] [CrossRef]
- Mangiaracina, R.; Marchet, G.; Perotti, S.; Tumino, A. A Review of the Environmental Implications of B2C E-Commerce: A Logistics Perspective. Int. J. Phys. Distrib. Logist. Manag. 2015, 45, 565–591. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, P. Has E-Commerce Promoted Regional Green Consumption Transformation? Evidence from Chinese Provincial Panel Data. Environ. Impact Assess. Rev. 2025, 112, 107833. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Lin, W.; Wei, W. How Does Digital Technology Promote Carbon Emission Reduction? Empirical Evidence Based on e-Commerce Pilot City Policy in China. J. Environ. Manag. 2023, 325, 116524. [Google Scholar] [CrossRef]
- Dong, K.; Yang, S.; Wang, J. How Digital Economy Lead to Low-Carbon Development in China? The Case of e-Commerce City Pilot Reform. J. Clean. Prod. 2023, 391, 136177. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, H.; Xie, K.; Xiao, W.; Bai, C. Toward a Low Carbon Path: Do E-Commerce Reduce CO2 Emissions? Evidence from China. J. Environ. Manag. 2024, 351, 119805. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Fan, B.; Fu, S.; Liu, Y. The Green Side of Digital Trade: Evaluating the Impact of National E-Commerce Demonstration Cities Policy. Int. Rev. Econ. Financ. 2025, 99, 104071. [Google Scholar] [CrossRef]
- Fan, Z.; Long, R.; Shen, Z. Regional Digitalization, Dynamic Capabilities and Green Innovation: Evidence from e-Commerce Demonstration Cities in China. Econ. Model. 2024, 139, 106846. [Google Scholar] [CrossRef]
- Wen, L.; Sun, S. The Impact of Urban E-Commerce Transformation on Carbon Emissions in Chinese Cities: An Empirical Analysis Based on the PSM-DID Method. Sustainability 2023, 15, 5659. [Google Scholar] [CrossRef]
- Brown, J.R.; Guiffrida, A.L. Carbon Emissions Comparison of Last Mile Delivery versus Customer Pickup. Int. J. Logist. Res. Appl. 2014, 17, 503–521. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, L.; Herty, M. Logistics Service Sharing of Sellers on an E-Commerce Platform Considering the Behaviour of Carbon Emission Pooling. Electron. Commer. Res. Appl. 2023, 59, 101267. [Google Scholar] [CrossRef]
- Buldeo Rai, H. The Net Environmental Impact of Online Shopping, beyond the Substitution Bias. J. Transp. Geogr. 2021, 93, 103058. [Google Scholar] [CrossRef]
- Zhong, K.; Fu, H.; Li, T. Can the Digital Economy Facilitate Carbon Emissions Decoupling? An Empirical Study Based on Provincial Data in China. Int. J. Environ. Res. Public Health 2022, 19, 6800. [Google Scholar] [CrossRef]
- Kamboj, S.; Rana, S. Big Data-Driven Supply Chain and Performance: A Resource-Based View. TQM J. 2023, 35, 5–23. [Google Scholar] [CrossRef]
- Singh, P.K.; Chan, S.W. The Impact of Electronic Procurement Adoption on Green Procurement towards Sustainable Supply Chain Performance-Evidence from Malaysian ISO Organizations. J. Open Innov. Technol. Mark. Complex. 2022, 8, 61. [Google Scholar] [CrossRef]
- Huang, C.; Min Du, A.; Lin, B. How Does the Digital Economy Affect the Green Transition: The Role of Industrial Intelligence and E-Commerce. Res. Int. Bus. Financ. 2025, 73, 102541. [Google Scholar] [CrossRef]
- Pålsson, H.; Pettersson, F.; Winslott Hiselius, L. Energy Consumption in E-Commerce versus Conventional Trade Channels—Insights into Packaging, the Last Mile, Unsold Products and Product Returns. J. Clean. Prod. 2017, 164, 765–778. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Z.; Tan, C.; Liu, H. Using a Three-Tier Structural Decomposition Analysis to Assess Industrial Structure Transformation and Carbon Emissions in China. Energy 2025, 335, 137817. [Google Scholar] [CrossRef]
- Xiao, H.; Zhou, Y.; Zhang, N.; Wang, D.; Shan, Y.; Ren, J. CO2 Emission Reduction Potential in China from Combined Effects of Structural Adjustment of Economy and Efficiency Improvement. Resour. Conserv. Recycl. 2021, 174, 105760. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, D.; Wen, H.; Song, H. Does the Digital Economy Promote Upgrading the Industrial Structure of Chinese Cities? Sustainability 2022, 14, 10235. [Google Scholar] [CrossRef]
- Taher, G. E-Commerce: Advantages and Limitations. Int. J. Acad. Res. Account. Financ. Manag. Sci. 2021, 11, 153–165. [Google Scholar] [CrossRef]
- Yandrapalli, V.K.; Sharma, S. Cloud-Powered Distance Learning: Breaking Geographical Barriers in Education. In Cloud Computing for Smart Education and Collaborative Learning; Chapman and Hall/CRC: Boca Raton, FL, USA, 2025; pp. 133–144. ISBN 1-003-47253-2. [Google Scholar]
- Chakraborty, A.; Gupta, S.; Roy, R.; Sarkar, N. E-Commerce Impact on Consumer Behaviour in Healthcare and Pharmaceutical Industries: Extending UTAUT2 Model. Int. J. Behav. Healthc. Res. 2024, 9, 252–272. [Google Scholar] [CrossRef]
- Liu, Y. Digital Financial Policy, Technological Innovation, and the Dynamic Effects of E-Commerce Development. Financ. Res. Lett. 2025, 85, 108257. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, W.; Guo, X. The Digital Economy, Integration of Productive Services and Manufacturing, and High-Quality Development of the Manufacturing Sector: Evidence from China. Sustainability 2024, 16, 10258. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Li, M.; Gou, P.; Cheng, Y. Assessing the Evolution of PM2.5 and Related Health Impacts Resulting from Air Quality Policies in China. Environ. Impact Assess. Rev. 2022, 93, 106727. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, W.; Yang, L.; Gao, L. How Does the Value Co-Creation of e-Commerce Platform and Manufacturers Affect Channel Performance? The Moderating Role of Innovation Capability and Market Turbulence. Electron. Commer. Res. Appl. 2022, 52, 101120. [Google Scholar] [CrossRef]
- Bian, Z.; Zhang, Y. Sustainable Development in the Era of Digital Trade: A Perspective of Industrial Structure Optimization. Sustain. Futures 2025, 9, 100539. [Google Scholar] [CrossRef]
- Beyari, H. Revent E-Commerce Trends and Learnings for E-Commerce System Development from a Quality Perspective. Int. J. Qual. Res. 2021, 15, 797–810. [Google Scholar] [CrossRef]
- Vakeel, K.A.; Malthouse, E.C.; Yang, A. Impact of Network Effects on Service Provider Performance in Digital Business Platforms. J. Serv. Manag. 2021, 32, 461–482. [Google Scholar] [CrossRef]
- Shi, Y.; Wei, F. Comparative Analysis of Digital Economy-Driven Innovation Development in China: An International Perspective. J. Knowl. Econ. 2025, 16, 4422–4464. [Google Scholar] [CrossRef]
- Aksoy, C. Digital Business Ecosystems: An Environment of Collaboration, Innovation, and Value Creation in the Digital Age. J. Bus. Trade 2023, 4, 156–180. [Google Scholar] [CrossRef]
- Liu, L.; Ding, T.; Wang, H. Digital Economy, Technological Innovation and Green High-Quality Development of Industry: A Study Case of China. Sustainability 2022, 14, 11078. [Google Scholar] [CrossRef]
- Chillapalli, N.T.R.; Murganoor, S. The Future of E-Commerce Integrating Cloud Computing with Advanced Software Systems for Seamless Customer Experience. Experience. Libr. Prog.-Libr. Sci. Inf. Technol. Comput. 2024, 44, 22124. [Google Scholar]
- Ratra, K.K.; Seth, D.K.; Uppuluri, S. Energy-Efficient Microservices Architecture for Large-Scale E-Commerce Platforms. In Proceedings of the 2025 IEEE Conference on Technologies for Sustainability (SusTech), Los Angeles, CA, USA, 20–23 April 2025; pp. 1–8. [Google Scholar]
- Malhotra, G.; Kharub, M. Elevating Logistics Performance: Harnessing the Power of Artificial Intelligence in e-Commerce. Int. J. Logist. Manag. 2025, 36, 290–321. [Google Scholar] [CrossRef]
- Han, X.; Zhang, J. Business Model Innovation Paths of Manufacturing Oriented towards Green Development in Digital Economy. Int. J. Environ. Res. Public Health 2022, 19, 16454. [Google Scholar] [CrossRef]
- Liu, X.; Cui, W.; Zhang, S. Better E-Commerce Less Carbon Emissions in China? Energy 2025, 318, 134820. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Luo, Y.; Yu, L.; Zhang, Z. Joint Green Marketing Decision-Making of Green Supply Chain Considering Power Structure and Corporate Social Responsibility. Entropy 2021, 23, 564. [Google Scholar] [CrossRef]
- Mu, Z.; Zheng, Y.; Sun, H. Cooperative Green Technology Innovation of an E-Commerce Sales Channel in a Two-Stage Supply Chain. Sustainability 2021, 13, 7499. [Google Scholar] [CrossRef]
- Bănescu, C.-E.; Țițan, E.; Manea, D. The Impact of E-Commerce on the Labor Market. Sustainability 2022, 14, 5086. [Google Scholar] [CrossRef]
- Dou, Q.; Gao, X. How Does the Digital Transformation of Corporates Affect Green Technology Innovation? An Empirical Study from the Perspective of Asymmetric Effects and Structural Breakpoints. J. Clean. Prod. 2023, 428, 139245. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.; Esfahbodi, A. Digital Transformations of Supply Chain Management via RFID Technology: A Systematic Literature Review. J. Digit. Econ. 2025, in press. [Google Scholar] [CrossRef]
- Shcherbakov, V.; Silkina, G. Supply Chain Management Open Innovation: Virtual Integration in the Network Logistics System. J. Open Innov. Technol. Mark. Complex. 2021, 7, 54. [Google Scholar] [CrossRef]
- Nweje, U.; Taiwo, M. Leveraging Artificial Intelligence for Predictive Supply Chain Management, Focus on How AI-Driven Tools Are Revolutionizing Demand Forecasting and Inventory Optimization. Int. J. Sci. Res. Arch. 2025, 14, 230–250. [Google Scholar] [CrossRef]
- Zhang, A.; Li, S.; Tan, L.; Sun, Y.; Yao, F. Intelligent Measurement and Monitoring of Carbon Emissions for 5G Shared Smart Logistics. J. Sens. 2022, 2022, 8223590. [Google Scholar] [CrossRef]
- Zhao, Y.-B.; Wu, G.-Z.; Gong, Y.-X.; Yang, M.-Z.; Ni, H.-G. Environmental Benefits of Electronic Commerce over the Conventional Retail Trade? A Case Study in Shenzhen, China. Sci. Total Environ. 2019, 679, 378–386. [Google Scholar] [CrossRef]
- Tran, A.V.; Khoa, B.T. Global Research Trends in Circular Economy: A Bibliometric Analysis in E-Commerce. Hum. Behav. Emerg. Technol. 2025, 2025, 8645845. [Google Scholar] [CrossRef]
- Fan, J. The Future of Circular Economy: Second-Hand E-Commerce. Sci. J. Econ. Manag. Res. 2021, 3, 44–49. [Google Scholar]
- Qin, X.; Liu, Z.; Yang, Z.; Tian, L. Carbon Footprint Reduction in an E-Commerce Market: Impacts of Logistics Service Sharing. Omega 2025, 131, 103205. [Google Scholar] [CrossRef]
- Pang, K.-W.; Xu, J.; Jiang, R.; Liu, R. Parcel-Locker-Sharing Model for E-Commerce Logistics Service Providers. Mathematics 2024, 12, 2802. [Google Scholar] [CrossRef]
- Wen, Z.L.; Zhang, L.; Hou, J.T.; Liu, H.Y. Testing and Application of the Mediating Effects. Acta Psychol. Sin. 2004, 36, 614–620. [Google Scholar]
- Ning, K.; Chen, X.; Xiao, Y. Cross-Border e-Commerce, Foreign Investment and Export Trade Resilience. Financ. Res. Lett. 2025, 82, 107595. [Google Scholar] [CrossRef]
- Yang, R.; Liu, J.; Cao, S.; Sun, W.; Kong, F. Impacts of Agri-Food e-Commerce on Traditional Wholesale Industry: Evidence from China. J. Integr. Agric. 2024, 23, 1409–1428. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, M. The Coupling Coordination Development of Rural E-Commerce and Rural Revitalization: A Case Study of 10 Rural Revitalization Demonstration Counties in Guizhou. Procedia Comput. Sci. 2022, 199, 407–414. [Google Scholar] [CrossRef]
- Ou, Y.X.; Liu, Z.Y. Human Capital’s Comprehensive Advantages and Economic Growth in Large Developing Countries—Research Based on Heterogeneity and Adaptability. China Ind. Econ. 2010, 11, 26–35. [Google Scholar] [CrossRef]

| Energy Types | Carbon | Oil | Gas | Hydropower, Nuclear Power, etc. |
|---|---|---|---|---|
| Fi (t carbon/ten t standard coal) | 0.7476 | 0.5852 | 0.4435 | 0 |
| Index | Primary Indicators | Secondary Indicators | Encoded |
|---|---|---|---|
| Electronic Commerce Level of development | Infrastructure | Long-distance optical cable line length (km) | X1 |
| Internet broadband access users (ten thousand households) | X2 | ||
| Mobile phone penetration rate (department/100 people) | X3 | ||
| Number of domain names (ten thousand) | X4 | ||
| Number of web pages (ten thousand) | X5 | ||
| Transaction scale | Proportion of e-commerce-related transaction activities (%) | X6 | |
| E-commerce sales volume (CNY 100 million) | X7 | ||
| E-commerce purchase amount (CNY 100 million) | X8 | ||
| Express delivery business volume (ten thousand pieces) | X9 | ||
| Express delivery business income (CNY 10,000) | X10 | ||
| Development potential | Number of websites owned by enterprises (one) | X11 | |
| Total postal service volume (CNY 100 million) | X12 | ||
| Postal office (office) | X13 | ||
| Total telecom business volume (CNY 100 million) | X14 | ||
| Number of patent applications (pieces) | X15 | ||
| Human capital | R&D personnel full-time equivalent (person-year) | X16 | |
| R&D expenses (CNY 10,000) | X17 | ||
| Transportation, warehousing, and postal service employment personnel (10,000 people) | X18 |
| Variable Name | Variable | Definitions |
|---|---|---|
| Carbon emissions | T | Logarithm of the total carbon emission |
| Carbon emission intensity | CI | Carbon dioxide emissions per unit of gross domestic product |
| E-commerce development level | EC | Entropy right method measures the development level of e-commerce |
| Optimization of industrial structure | IS | Increment of the tertiary industry to the GDP increment |
| Green technology innovation | GTI | Logarithm of the number of patent application grants |
| Establishment of a resource-sharing set | RSS | Proportion of Internet broadband access to users and the permanent resident population |
| Population size | POPU | Logarithm of the population per year |
| Research and development intensity | RD | Ratio of the internal expenditure of the RD funds to the regional GDP |
| Educational level | EL | Average log of students in higher education per 100,000 population |
| Economic level | PGDP | Logarithm of the per-capita GDP |
| Urbanization level | URBAN | Proportion of urban permanent residents to total population |
| Environmental protection expenditure | ENVEXP | Proportion of fiscal environmental protection expenditure to general budgetary expenditure |
| Variable | Obs | Mean | Std. Dev. | Min | Max |
|---|---|---|---|---|---|
| T | 341 | 7.752 | 0.64 | 5.84 | 9.12 |
| CI | 341 | 1.493 | 0.325 | 0.622 | 2.003 |
| EC | 341 | 0.11 | 0.121 | 0.007 | 0.78 |
| IS | 341 | 3.981 | 0.381 | 0.875 | 6.19 |
| GTI | 341 | 9.272 | 1.763 | 2.197 | 12.97 |
| RSS | 341 | 0.279 | 0.115 | 0.06 | 0.523 |
| POPU | 341 | 8.137 | 0.84 | 5.759 | 9.448 |
| RD | 341 | 0.108 | 0.06 | 0.002 | 0.265 |
| EL | 341 | 7.923 | 0.3 | 7.058 | 8.691 |
| PGDP | 341 | 11.006 | 0.445 | 10.05 | 12.899 |
| URBAN | 341 | 60.952 | 12.293 | 23.975 | 89.583 |
| ENVEXP | 341 | 2.862 | 0.967 | 1.03 | 6.814 |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| T | CI | |||
| EC | 0.067 *** | 0.083 | −2.079 *** | −1.754 *** |
| (0.242) | (0.312) | (0.092) | (0.128) | |
| POPU | 0.397 *** | −0.017 | ||
| (0.041) | (0.017) | |||
| RD | 3.102 *** | 0.798 *** | ||
| (0.686) | (0.282) | |||
| EL | −0.409 *** | −0.195 *** | ||
| (0.119) | (0.049) | |||
| PGDP | 0.504 *** | −0.039 | ||
| (0.108) | (0.044) | |||
| URBAN | −0.019 *** | −0.006 *** | ||
| (0.004) | (0.002) | |||
| ENVEXP | −0.015 | −0.013 | ||
| (0.026) | (0.011) | |||
| Cons | 5.417 *** | 3.096 ** | 1.723 *** | 4.027 *** |
| (0.034) | (1.248) | (0.015) | (0.513) | |
| Year | yes | yes | yes | yes |
| Individual | yes | yes | yes | yes |
| N | 341 | 341 | 341 | 341 |
| R2 | 0.304 | 0.553 | 0.601 | 0.706 |
| Data Tail Reduction Processing | Exclude Time Variables | Period of Variation Samples | ||||
|---|---|---|---|---|---|---|
| T | CI | T | CI | T | CI | |
| EC | 0.309 ** | −0.796 *** | 0.194 | −0.656 *** | 0.0112 | −0.1359 |
| (0.133) | (0.097) | (0.137) | (0.098) | (0.1541) | (0.0965) | |
| POPU | 0.385 *** | 0.305 *** | 0.298 ** | 0.232 *** | 0.2325 ** | 0.1445 ** |
| (0.121) | (0.088) | (0.115) | (0.083) | (0.1157) | (0.0724) | |
| RD | 1.901 *** | 1.831 *** | 2.043 *** | 1.791 *** | 1.3918 ** | 0.1745 |
| (0.489) | (0.356) | (0.496) | (0.356) | (0.5523) | (0.3457) | |
| EL | 0.248 *** | −0.044 | 0.181 *** | −0.049 | 0.0635 | −0.0966 * |
| (0.069) | (0.050) | (0.069) | (0.050) | (0.0857) | (0.0537) | |
| PGDP | −0.041 | −0.009 | −0.032 | −0.015 | −0.0327 | −0.0078 |
| (0.043) | (0.031) | (0.042) | (0.030) | (0.0347) | (0.0217) | |
| URBAN | 0.009 *** | −0.019 *** | 0.011 *** | −0.019 *** | 0.0228 *** | 0.0134 *** |
| (0.003) | (0.002) | (0.003) | (0.002) | (0.0058) | (0.0036) | |
| ENVEXP | 0.005 | 0.000 | 0.009 | −0.001 | 0.0157 | −0.0031 |
| (0.010) | (0.007) | (0.009) | (0.007) | (0.0095) | (0.0060) | |
| Cons | 2.348 ** | 0.516 | 3.339 *** | 1.192 | 4.2048 *** | 0.5306 |
| (1.101) | (0.802) | (1.057) | (0.758) | (1.1845) | (0.7414) | |
| Year | yes | yes | yes | yes | YES | yes |
| Individual | yes | yes | yes | yes | YES | yes |
| N | 341 | 341 | 310 | 310 | 310 | 310 |
| R2 | 0.354 | 0.620 | 0.364 | 0.596 | 0.3795 | 0.7033 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| T | IS | T | CI | IS | CI | |
| EC | 0.0832 | 0.5558 ** | 0.0764 | −1.7541 *** | 0.5558 ** | −1.7630 *** |
| (0.3116) | (0.2554) | (0.3143) | (0.1281) | (0.2554) | (0.1291) | |
| IS | 0.0122 | 0.0160 | ||||
| (0.0670) | (0.0275) | |||||
| POPU | 0.3969 *** | −0.0263 | 0.3972 *** | −0.0171 | −0.0263 | −0.0167 |
| (0.0414) | (0.0339) | (0.0415) | (0.0170) | (0.0339) | (0.0170) | |
| RD | 3.1025 *** | −2.0089 *** | 3.1269 *** | 0.7982 *** | −2.0089 *** | 0.8303 *** |
| (0.6863) | (0.5625) | (0.7004) | (0.2821) | (0.5625) | (0.2877) | |
| EL | −0.4086 *** | 0.1836 * | −0.4108 *** | −0.1954 *** | 0.1836 * | −0.1984 *** |
| (0.1188) | (0.0974) | (0.1196) | (0.0488) | (0.0974) | (0.0491) | |
| PGDP | 0.5037 *** | −0.0651 | 0.5045 *** | −0.0388 | −0.0651 | −0.0378 |
| (0.1082) | (0.0886) | (0.1084) | (0.0445) | (0.0886) | (0.0445) | |
| URBAN | −0.0194 *** | 0.0114 *** | −0.0195 *** | −0.0057 *** | 0.0114 *** | −0.0059 *** |
| (0.0041) | (0.0034) | (0.0042) | (0.0017) | (0.0034) | (0.0017) | |
| ENVEXP | −0.0149 | −0.0045 | −0.0148 | 0.0134 | −0.0045 | 0.0135 |
| (0.0256) | (0.0210) | (0.0256) | (0.0105) | (0.0210) | (0.0105) | |
| Cons | 3.0956 ** | 2.9284 *** | 3.0601 ** | 4.0268 *** | 2.9284 *** | 3.9800 *** |
| (1.2479) | (1.0227) | (1.2650) | (0.5129) | (1.0227) | (0.5196) | |
| Year | yes | yes | yes | yes | yes | yes |
| Individual | yes | yes | yes | yes | yes | yes |
| N | 341 | 341 | 341 | 341 | 341 | 341 |
| R2 | 0.5437 | 0.1347 | 0.5423 | 0.7003 | 0.1347 | 0.6997 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| T | GTI | T | CI | GTI | CI | |
| EC | 0.0832 | 0.2407 | 0.1654 | −1.7541 *** | 0.2407 | −1.7426 *** |
| (0.3116) | (0.3222) | (0.2922) | (0.1281) | (0.3222) | (0.1274) | |
| GTI | −0.3417 *** | −0.0478 ** | ||||
| (0.0497) | (0.0217) | |||||
| POPU | 0.3969 *** | 1.2707 *** | 0.8310 *** | −0.0171 | 1.2707 *** | 0.0437 |
| (0.0414) | (0.0428) | (0.0740) | (0.0170) | (0.0428) | (0.0323) | |
| RD | 3.1025 *** | 8.2327 *** | 5.9153 *** | 0.7982 *** | 8.2327 *** | 1.1921 *** |
| (0.6863) | (0.7097) | (0.7620) | (0.2821) | (0.7097) | (0.3323) | |
| EL | −0.4086 *** | 0.2650 ** | −0.3180 *** | −0.1954 *** | 0.2650 ** | −0.1827 *** |
| (0.1188) | (0.1229) | (0.1121) | (0.0488) | (0.1229) | (0.0489) | |
| PGDP | 0.5037 *** | 0.3160 *** | 0.6117 *** | −0.0388 | 0.3160 *** | −0.0237 |
| (0.1082) | (0.1118) | (0.1025) | (0.0445) | (0.1118) | (0.0447) | |
| URBAN | −0.0194 *** | 0.0323 *** | −0.0084 ** | −0.0057 *** | 0.0323 *** | −0.0042 ** |
| (0.0041) | (0.0042) | (0.0042) | (0.0017) | (0.0042) | (0.0018) | |
| ENVEXP | −0.0149 | 0.0046 | −0.0133 | 0.0134 | 0.0046 | 0.0136 |
| (0.0256) | (0.0264) | (0.0240) | (0.0105) | (0.0264) | (0.0105) | |
| Cons | 3.0956 ** | −9.4798 *** | −0.1433 | 4.0268 *** | −9.4798 *** | 3.5732 *** |
| (1.2479) | (1.2904) | (1.2603) | (0.5129) | (1.2904) | (0.5497) | |
| Year | yes | yes | yes | yes | yes | yes |
| Individual | yes | yes | yes | yes | yes | yes |
| N | 341 | 341 | 341 | 341 | 341 | 341 |
| R2 | 0.5437 | 0.9356 | 0.5994 | 0.7003 | 0.9356 | 0.7037 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| T | RSS | T | CI | RSS | CI | |
| EC | 0.0832 | 0.1364 ** | 0.0185 | −1.7541 *** | 0.1364 ** | −1.7474 *** |
| (0.3116) | (0.0623) | (0.3129) | (0.1281) | (0.0623) | (0.1291) | |
| RSS | 0.4744 * | −0.0493 | ||||
| (0.2732) | (0.1127) | |||||
| POPU | 0.3969 *** | −0.0109 | 0.4021 *** | −0.0171 | −0.0109 | −0.0176 |
| (0.0414) | (0.0083) | (0.0413) | (0.0170) | (0.0083) | (0.0171) | |
| RD | 3.1025 *** | −0.0887 | 3.1446 *** | 0.7982 *** | −0.0887 | 0.7938 *** |
| (0.6863) | (0.1373) | (0.6847) | (0.2821) | (0.1373) | (0.2826) | |
| EL | −0.4086 *** | 0.1223 *** | −0.4666 *** | −0.1954 *** | 0.1223 *** | −0.1894 *** |
| (0.1188) | (0.0238) | (0.1231) | (0.0488) | (0.0238) | (0.0508) | |
| PGDP | 0.5037 *** | 0.1551 *** | 0.4302 *** | −0.0388 | 0.1551 *** | −0.0312 |
| (0.1082) | (0.0216) | (0.1159) | (0.0445) | (0.0216) | (0.0478) | |
| URBAN | −0.0194 *** | −0.0025 *** | −0.0182 *** | −0.0057 *** | −0.0025 *** | −0.0059 *** |
| (0.0041) | (0.0008) | (0.0041) | (0.0017) | (0.0008) | (0.0017) | |
| ENVEXP | −0.0149 | −0.0058 | −0.0121 | 0.0134 | −0.0058 | 0.0131 |
| (0.0256) | (0.0051) | (0.0256) | (0.0105) | (0.0051) | (0.0105) | |
| Cons | 3.0956 ** | −2.1452 *** | 4.1134 *** | 4.0268 *** | −2.1452 *** | 3.9209 *** |
| (1.2479) | (0.2496) | (1.3752) | (0.5129) | (0.2496) | (0.5676) | |
| Year | yes | yes | yes | yes | yes | yes |
| Individual | yes | yes | yes | yes | yes | yes |
| N | 341 | 341 | 341 | 341 | 341 | 341 |
| R2 | 0.5437 | 0.4370 | 0.5464 | 0.7003 | 0.4370 | 0.6995 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| T | T | T | CI | CI | CI | |
| EC | −1.605 ** | −1.042 ** | 1.605 | −2.456 *** | −0.677 *** | −3.837 *** |
| (0.679) | (0.412) | (1.625) | (0.379) | (0.133) | (0.831) | |
| POPU | 0.601 *** | 1.180 *** | 0.133 | −0.062 ** | 0.007 | 0.022 |
| (0.050) | (0.174) | (0.082) | (0.026) | (0.036) | (0.037) | |
| RD | 2.669 *** | −3.359 | −3.124 *** | 2.121 *** | −1.095 ** | −0.789 |
| (0.867) | (2.257) | (1.158) | (0.523) | (0.512) | (0.520) | |
| EL | −0.876 *** | −0.894 *** | 0.336 ** | −0.213 ** | 0.035 | −0.185 *** |
| (0.162) | (0.298) | (0.143) | (0.092) | (0.066) | (0.059) | |
| PGDP | 0.242 | 1.180 *** | 0.358 | 0.160 | 0.195 ** | 0.052 |
| (0.229) | (0.316) | (0.219) | (0.120) | (0.084) | (0.090) | |
| URBAN | 0.010 | 0.001 | −0.009 * | −0.015 *** | −0.024 *** | 0.001 |
| (0.008) | (0.019) | (0.005) | (0.005) | (0.005) | (0.002) | |
| ENVEXP | 0.023 | 0.094 *** | −0.314 *** | 0.006 | 0.070 *** | −0.037 ** |
| (0.026) | (0.035) | (0.037) | (0.016) | (0.009) | (0.015) | |
| Cons | 6.318 *** | −7.750 *** | 1.620 | 2.913 ** | 0.422 | 2.640 *** |
| (2.353) | (2.538) | (2.151) | (1.281) | (0.676) | (0.915) | |
| Year | yes | yes | yes | yes | yes | yes |
| Individual | yes | yes | yes | yes | yes | yes |
| N | 114 | 113 | 114 | 114 | 113 | 114 |
| R2 | 0.675 | 0.796 | 0.672 | 0.737 | 0.906 | 0.766 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Ma, D.; Tang, L. How E-Commerce Drives Low-Carbon Development: An Empirical Analysis from China. Sustainability 2025, 17, 8818. https://doi.org/10.3390/su17198818
He X, Ma D, Tang L. How E-Commerce Drives Low-Carbon Development: An Empirical Analysis from China. Sustainability. 2025; 17(19):8818. https://doi.org/10.3390/su17198818
Chicago/Turabian StyleHe, Xuanfang, Danni Ma, and Liwei Tang. 2025. "How E-Commerce Drives Low-Carbon Development: An Empirical Analysis from China" Sustainability 17, no. 19: 8818. https://doi.org/10.3390/su17198818
APA StyleHe, X., Ma, D., & Tang, L. (2025). How E-Commerce Drives Low-Carbon Development: An Empirical Analysis from China. Sustainability, 17(19), 8818. https://doi.org/10.3390/su17198818
