Halophyte-Mediated Metal Immobilization and Divergent Enrichment in Arid Degraded Soils: Mechanisms and Remediation Framework for the Tarim Basin, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Testing
2.3. Analytical Methods
2.4. Geostatistical Analysis and Spatial Validation
3. Results
3.1. Characteristics of Typical Elements in Surface Soils
3.2. Soil–Vegetation Heavy Metal Enrichment Characteristics
3.3. Differential Heavy Metal Enrichment Patterns via BCF
3.4. Driving Factors
4. Discussion
4.1. Synergistic Salinity–Alkalinity Suppression Mechanism on Heavy Metals
4.2. Vegetation-Type-Driven Differentiation in Heavy Metal Enrichment
4.3. Multidimensional Control Framework for Saline Farmland Heavy Metal Risks
4.4. Limitations and Future Research Directions
5. Conclusions
- (1)
- Soil salinity and alkalinity significantly inhibit the mobility of heavy metals. When TS > 200 g/kg and pH > 8.5, the bioavailability of metals such as As, Cd, Cu, and Zn decreases by 42–68%. The mechanisms primarily include the formation of low-solubility precipitates and competitive displacement of heavy metal ions from adsorption sites by Na+/Ca2+.
- (2)
- Plant type significantly influences heavy metal enrichment strategies. P. euphratica exhibits hyperaccumulation capacity for Cd and Zn (BCF > 1), demonstrating potential for targeted phytoremediation, while T. ramosissima tends to accumulate As and Pb, requiring enhanced ecological risk monitoring in multi-metal polluted areas.
- (3)
- Economic crops show notable heavy metal transfer risks. Cotton has the highest enrichment factor for Hg (BCF = 2.15), and jujube roots approach Cd safety thresholds in phosphorus-rich soils, indicating the need for crop-specific pollution control measures.
- (4)
- Key factors driving heavy metal behavior in soil include: pH and TS jointly inhibiting metal activity, while TP and SOC enhance availability through complexation and phosphorus-cadmium synergy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeid, R.; Hossein, K.; Samaneh, S.; Mohammad, H. Environmental monitoring and ecological risk assessment of heavy metals in farmland soils. Hum. Ecol. Risk Assess. 2021, 27, 392–404. [Google Scholar] [CrossRef]
- Galisteo, C.; Sánchez, F.P.; Haba, R.R.; Bertilsson, S.; Porro, C.S.; Ventosa, A. Metagenomic insights into the prokaryotic communities of heavy metal-contaminated hypersaline soils. Sci. Total Environ. 2024, 951, 175497. [Google Scholar] [CrossRef]
- Turki, A.S.; Rakhesh, M.; Tanuspong, P.; Faiza, A.Y.; Raziya, K.; Aws, A.G.; Ali, A.H. Environmental characterization of a semiarid hyper saline system based on dissolved trace metal-macronutrient synergy: A multivariate spatio-temporal approach. Mar. Pollut. Bull. 2018, 129, 846–858. [Google Scholar] [CrossRef]
- Muhammad, W.; Ahmed, J.B.; Naz, F.T.; Gul, T.K.; Imran, H.A.; Sadia, S. Estimation of phytoextraction potential of selected halophytes for accumulation of heavy metals from wetland saline soil. Rend. Lincei Sci. Fis. Nat. 2023, 34, 553–562. [Google Scholar] [CrossRef]
- Liang, L.C.; Liu, W.T.; Sun, Y.B.; Huo, X.H.; Li, S.; Zhou, Q.X. Phytoremediation of heavy metal contaminated saline soils using halophytes: Current progress and future perspectives. Environ. Rev. 2016, 25, 269–281. [Google Scholar] [CrossRef]
- Jiang, H.F.; Okoye, O.C.; Ezenwanne, C.B.; Wu, Y.F.; Jiang, J.X. Synergistic potential of halophytes and halophilic/halotolerant plant growth-promoting bacteria in saline soil remediation: Adaptive mechanisms, challenges, and sustainable solutions. Microbiol. Res. 2025, 298, 128227. [Google Scholar] [CrossRef] [PubMed]
- Irfan, A.; Amtul, M. Halophytes for phytoremediation of hazardous metal(loid)s: A terse review on metal tolerance, bio-indication and hyperaccumulation. J. Hazard. Mater. 2022, 424, 127309. [Google Scholar] [CrossRef]
- Radziemska, M.; Gusiatin, Z.M.; Kumar, V.; Brtnicky, M. Co-application of nanosized halloysite and biochar as soil amendments in aided phytostabilization of metal(-oid)s-contaminated soil under different temperature conditions. Chemosphere 2022, 288, 132452. [Google Scholar] [CrossRef]
- Yao, L.; Wang, J.C.; Li, B.C.; Meng, Y.X.; Ma, X.L.; Si, E.J.; Yang, K.; Shang, X.W.; Wang, H.J. Influences of Heavy Metals and Salt on Seed Germination and Seedling Characteristics of Halophyte Halogeton glomeratus. Bull. Environ. Contam. Toxicol. 2021, 106, 654–661. [Google Scholar] [CrossRef]
- Chen, T.Y.; Aishan, T.; Wang, N.; Halik, Ü.; Yao, S.Y. Heartwood/Sapwood Characteristics of Populus euphratica Oliv. Trunks and Their Relationship with Soil Physicochemical Properties in the Lower Tarim River, Northwest China. Plants 2025, 14, 154. [Google Scholar] [CrossRef]
- DZ/T 0295-2016; Code for Evaluation of Land Quality Geochemistry. Ministry of Land and Resources: Beijing, China, 2016.
- DZ/T 0279-2016; Analysis Methods for Regional Geochemical Samples. Ministry of Land and Resources: Beijing, China, 2016.
- Ivanov, A.V.; Gryazskikh, N.Y.; Chugunova, M.M.; Zyablikov, D.N.; Zyablikova, I.N.; Ermakova, Y.I.; Polunina, E.P.; Alenichev, M.K.; Yushina, A.A. GET 196-2023 State Primary Standard for the units of the mass (molar) fraction and mass (molar) concentration of components in liquid and solid substances and materials based on spectral methods. Meas. Tech. 2024, 66, 543–552. [Google Scholar] [CrossRef]
- GB 5009.17-2021; Determination of Total Mercury and Organic-Mercury in Foods. National Health Commission of the People’s Republic of China: Beijing, China, 2021.
- GB 5009.268-2016; National Food Safety Standard—Determination of Multi-Elements in Foods. National Health Commission of the People’s Republic of China: Beijing, China, 2016.
- Shah, I.M.; Khurshid, I.; Maqbool, N.; Ahmad, F.; Ahmad, S.M. Helminth Parasites as Bioindicators of Heavy Metal Pollution in the Jhelum River: Insights into Bioaccumulation and Ecological Implications. Water Air Soil Pollut. 2025, 236, 492. [Google Scholar] [CrossRef]
- Wen, X.M.; Luo, W.M.; Yang, X.Y.; Li, F.P.; Zhang, Z.M. Comparative analysis of soil organic carbon across different land types in plateau wetlands using Kriging interpolation based on spatial heterogeneity. PLoS ONE 2025, 20, e0328246. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Z.; Li, S.; Zhao, Y.X.; Xu, Y.; Liu, Y.Q. Correcting correlation quality of portable X-ray fluorescence to better map heavy metal contamination by spatial co-kriging interpolation. Ecotoxicol. Environ. Saf. 2024, 271, 115962. [Google Scholar] [CrossRef] [PubMed]
- Abu, M.; Egbueri, C.J.; Agbasi, C.J. Kriging-interpolated mapping and predictive modeling of groundwater F− and NO3− contamination with chemometric and health risk assessments in Ghana’s Birimian Province. Environ. Geochem. Health 2025, 47, 165. [Google Scholar] [CrossRef] [PubMed]
- GB 15618-2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment: Beijing, China, 2018.
- Kaur, M.; Kaur, J.; Sood, A.; Katnoria, J.K.; Nagpal, A.K.; Bhatia, A.; Verma, P.; Kumar, V.; Singh, I.; Bhatti, S.S. Potentially toxic metal contamination in semi-arid agricultural soils: Sources, risk analysis, and spatial distribution. Environ. Monit. Assess. 2025, 197, 783. [Google Scholar] [CrossRef]
- Wu, Q.M.; Hu, W.Y.; Tian, K.; Fan, Y.N.; Khan, K.S.; Hansen, H.C.B.; Huang, B. Quantification of sources and input-output pathways of heavy metals in soils from an abandoned mining watershed using Cd isotope tracing and inventory analysis. Geoderma 2025, 459, 117359. [Google Scholar] [CrossRef]
- Farajollahi, M.; Fahiminia, M.; Fard, R.F.; Rezaali, M.; Sorooshian, A. Human and ecological risk assessment, geo-accumulation, and source apportionment of road dust heavy metals in a semi-arid region of central Iran. Int. J. Environ. Anal. Chem. 2024, 104, 6495–6518. [Google Scholar] [CrossRef]
- Zhou, H.H.; Li, W.H. The effects of oasis ecosystem hydrological processes on soil salinization in the lower reaches of the Tarim River, China. Ecohydrology 2013, 6, 1009–1020. [Google Scholar] [CrossRef]
- Gao, J.W.; Gong, J.J.; Yang, J.Z.; Wang, Z.L.; Fu, Y.G.; Tang, S.X.; Ma, S.M. Spatial distribution and ecological risk assessment of soil heavy metals in a typical volcanic area: Influence of parent materials. Heliyon 2023, 9, e12993. [Google Scholar] [CrossRef]
- Liu, J.Y.; Liu, Y.H.; Meng, L.Q.; Niu, H.S.; Geng, J.Y.; Guo, S.; He, L. Investigating the Pollution Profile and Risk Assessment of Heavy Metals in Soil Samples From Oasis Regions in the Eastern Tarim Basin: A Comprehensive Analysis for Environmental Management and Conservation. Int. J. Environ. Res. 2025, 19, 205. [Google Scholar] [CrossRef]
- Jia, Y.G.; Yang, X.; Yan, X.L.; Duguer, W.W.; Hu, H.L.; Chen, J. Accumulation, potential risk and source identification of toxic metal elements in soil: A case study of a coal-fired power plant in Western China. Environ. Geochem. Health 2023, 45, 7389–7404. [Google Scholar] [CrossRef]
- Xia, Y.F.; Liu, Y.H.; Chen, T.; Xu, Y.D.; Qi, M.; Sun, G.Y.; Wu, X.; Chen, M.J.; Xu, W.P.; Liu, C.S. Combining Cd and Pb isotope analyses for heavy metal source apportionment in facility agricultural soils around typical urban and industrial areas. J. Hazard. Mater. 2024, 466, 133568. [Google Scholar] [CrossRef]
- Qian, F.H.; Huang, X.J.; Bao, Y.Y. Heavy metals reshaping the structure and function of phylloplane bacterial community of native plant Tamarix ramosissima from Pb/Cd/Cu/Zn smelting regions. Ecotoxicol. Environ. Saf. 2023, 251, 114495. [Google Scholar] [CrossRef]
- Xue, W.X.; Jiang, Y.; Shang, X.S.; Zou, J.H. Characterisation of early responses in lead accumulation and localization of Salix babylonica L. roots. BMC Plant Biol. 2020, 20, 296. [Google Scholar] [CrossRef]
- Bokossa, H.K.J.; Bello, D.O.; Loko, Y.L.E.; Ahouanse, D.B.; Saka, G.A.; Johnson, R.C. Assessment of the Levels of Pesticide Residues and Trace Metal Elements (TME) in Soils in the Cotton-Growing Region of North-West Benin. Soil Sediment Contam. 2025, 34, 752–761. [Google Scholar] [CrossRef]
- Yan, C.X.; Feng, B.; Zhao, Z.Y.; Zhang, Y.; Yin, K.X.; Liu, Y.; Zhang, X.M.; Liu, J.; Li, J.; Zhao, R.; et al. Populus euphratica R2R3-MYB transcription factor RAX2 binds ANN1 promoter to increase cadmium enrichment in Arabidopsis. Plant Sci. 2024, 344, 112082. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.K.; Gao, B.; Zhan, X.F. Agricultural wastes improve soil quality and enhance the phytoremediation efficiency of economic crops for heavy metal-contaminated soils in mining areas. Environ. Geochem. Health 2025, 47, 65. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Jin, Q.Q.; Yin, N.; Zhang, G.J.; Xu, X.X. Establishment of Regeneration and Transformation Systems of Tamarix ramosissima and Functional Analysis of Transient Transformation of TcSYP121 Gene. J. South. Agric. 2024, 55, 823–833. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, L.L.; Xu, L.G.; Wang, X.L. Uptake and allocation of selected metals by dominant vegetation in Poyang Lake wetland: From rhizosphere to plant tissues. Catena 2020, 189, 104477. [Google Scholar] [CrossRef]
- Wang, X.L.; Tao, C.H.; An, L.Z. Screening Dominant Species and Exploring Heavy Metals Repair Ability of Wild Vegetation for Phytoremediation in Copper Mine. Sustainability 2025, 17, 784. [Google Scholar] [CrossRef]
- Galal, T.M.; Hassan, L.M.; Ahmed, D.A.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M. Heavy metals uptake by the global economic crop (Pisum sativum L.) grown in contaminated soils and its associated health risks. PLoS ONE 2021, 16, 252229. [Google Scholar] [CrossRef]
- Huang, W.G.; Liu, Y.W.; Bi, X.Y.; Wang, Y.; Li, H.S.; Qin, J.H.; Chen, J.J.; Ruan, Z.P.; Chen, G.K.; Qiu, R.L. Source-specific soil heavy metal risk assessment in arsenic waste mine site of Yunnan: Integrating environmental and biological factors. J. Hazard. Mater. 2024, 486, 136902. [Google Scholar] [CrossRef]
- Gabarrón, M.; Faz, A.; Acosta, J.A. Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment. J. Environ. Manag. 2018, 206, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Małgorzata, S.; Assem, V.; Marya, I.; Maksat, P.; Marcin, S.; Kristina, T.; Monika, M. Spatial and In-Depth Distribution of Soil Salinity and Heavy Metals (Pb, Zn, Cd, Ni, Cu) in Arable Irrigated Soils in Southern Kazakhstan. Agronomy 2022, 12, 1207. [Google Scholar] [CrossRef]
- Wang, Y.H.; Sakai, T.; Shibata, N.; Anatoly, Z.; Masaki, N. Soil improvement by biomass polyions and compaction: Reinforcement, biodegradation resistance, and retention of heavy metal ions. J. Environ. Chem. Eng. 2023, 12, 111676. [Google Scholar] [CrossRef]
- Su, K.J.; Zhang, Q.L.; Chen, A.J.; Wang, X.Q.; Zhan, L.L.; Rao, Q.; Wang, J.X.; Yang, H.J. Heavy metals concentrations in commercial organic fertilizers and the potential risk of fertilization into soils. Sci. Rep. 2025, 15, 1230. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.B.; Wang, F.X.; Qi, X.P.; Che, S.L.; Che, Y.C.; Li, J.N.; Wei, Z.M. Effect of Biochar-Based Organic Fertilizers on the Transport and Accumulation of Heavy Metals in Soil and Plants. Fermentation 2025, 11, 48. [Google Scholar] [CrossRef]
- Yu, D.D.; Miao, Q.F.; Shi, H.B.; Feng, Z.Z.; Feng, W.Y.; Li, Z.; Gonçalves, Z.M. Influence and Mechanism of Fertilization and Irrigation of Heavy Metal Accumulation in Salinized Soils. Agriculture 2024, 14, 1694. [Google Scholar] [CrossRef]
- Atav, V.; Yüksel, O. Heavy Metal Accumulation in Soil and Plants Using Municipal Solid Waste Compost in Variable pH Conditions. Soil Sediment Contam. 2025, 34, 696–712. [Google Scholar] [CrossRef]
- Liang, B.; Ye, Q.T.; Shi, Z.Q. Stable isotopic signature of cadmium in tracing the source, fate, and translocation of cadmium in soil: A review. J. Hazard. Mater. 2024, 472, 134531. [Google Scholar] [CrossRef]
- Wan, D.; Chen, J.B.; Zhang, T.; An, Y.C.; Shuai, W.C. Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review. Rock Miner. Anal. 2022, 41, 341–352. [Google Scholar] [CrossRef]
- Li, L.Z.; Tu, C.; Wu, L.H.; Peijnenburg, W.J.G.M.; Ebbs, S.; Luo, Y.M. Pathways of root uptake and membrane transport of Cd2+ in the zinc/cadmium hyperaccumulating plant Sedum plumbizincicola. Environ. Toxicol. Chem. 2017, 36, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.R.; Chen, Y.N.; Wang, W.H.; Jiang, J.X.; Cai, M.; Xu, Y.J. Evolution characteristics of groundwater and its response to climate and land-cover changes in the oasis of dried-up river in Tarim Basin. J. Hydrol. 2020, 12, 125644. [Google Scholar] [CrossRef]
- Lv, F.L.; Shan, Q.H.; Qiao, K.; Zhang, H.Z.; Zhou, A.M. Populus euphratica plant cadmium resistance 2 mediates Cd tolerance by root efflux of Cd ions in poplar. Plant Cell Rep. 2023, 42, 1777–1789. [Google Scholar] [CrossRef]
- Shelke, B.D.; Chambhare, R.M.; Sonawane, B.H.; Islam, F.N.; Patowary, R.; Das, R.M.; Mohanta, K.Y.; Patowary, K.; Joshi, J.S.; Narayan, M.; et al. Synergistic approaches in halophyte-microbe interactions: Mitigating soil salinity and industrial contaminants for sustainable agriculture. Discov. Life 2025, 55, 11. [Google Scholar] [CrossRef]
- Li, C.X.; Yuan, S.X.; Li, H.F.; Lu, Y.P.; Yang, W.C.; Ke, W.S.; Tang, L.; Tang, C.J.; Hartley, W.; Xue, S.G. Effect of slow-release phosphate on stabilization and long-term stability of Zn and Cd in soil. Trans. Nonferrous Met. Soc. China 2025, 35, 2091–2104. [Google Scholar] [CrossRef]
- Qi, Y.C.; Muhammad, A.; Zhi, D.; Wang, T.; Yang, Q.; Pu, B.; Wang, P.; Hong, W. The effect of hydrological regimes on the concentrations of nonstructural carbohydrates and organic acids in the roots of Salix matsudana in the Three Gorges Reservoir, China. Ecol. Indic. 2022, 142, 109176. [Google Scholar] [CrossRef]
- Mei, L.; Li, L.; Daud, M.K.; Chen, J.H.; He, Q.L.; Zhu, J.S. Advance on Respones and Resistance to Heavy Metal Stress in Cotton. Cotton Sci. 2018, 30, 102–110. [Google Scholar] [CrossRef]
- Kamal, A.; Nazish, M.; Kamal, K.; Akbar, M.; Ansir, F.; Aslam, N.; Riaz, M.S.; Albasher, G.; Munis, M.F.H. Trichoderma harzianum-loaded maize biochar enhances Cd–Cu immobilization and reduces bio-accessibility in contaminated soil. Sci. Rep. 2025, 15, 28099. [Google Scholar] [CrossRef]
- Chen, Y.L.; Yang, W.; Liu, H.Y.; Mao, W.J.; Zhang, J.; Wang, B.; Yang, L.Y.; Wang, S.S.; Zhou, H.; Zeng, P.; et al. Phosphorus-loaded magnetic biochar for remediation of cadmium contaminated paddy soil: Efficacy and identification of limiting factors. J. Hazard. Mater. 2025, 492, 138162. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.X.; Zou, L.N.; Zheng, L.; Yuan, Z.F.; Huang, K.T.; Gustave, W.; Shi, L.X.; Tang, X.J.; Liu, X.M.; Xu, J.M. Iron-based passivator mitigates the coupling process of anaerobic methane oxidation and arsenate reduction in paddy soils. Environ. Pollut. 2022, 313, 120182. [Google Scholar] [CrossRef] [PubMed]
- Narjary, B.; Kumar, S.; Meena, D.M.; Kamra, S.K.; Sharma, D.K. Effects of Shallow Saline Groundwater Table Depth and Evaporative Flux on Soil Salinity Dynamics using Hydrus-1D. Agric. Res. 2020, 10, 105–115. [Google Scholar] [CrossRef]
- Huang, T.M.; Pang, Z.H.; Chen, Y.N.; Kong, Y.L. Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river. Chin. Sci. Bull. 2013, 58, 3088–3097. [Google Scholar] [CrossRef]





| Matrix | Parameter | Analytical Method | Detection Limit | Precision (%) | Recovery (%) | Instrument Model |
|---|---|---|---|---|---|---|
| Soil | As | XRF | 0.2 | 3.2 | 98.5 ± 2.1 | Shimadzu, Kyoto, Japan (EDX-8000, 2018) |
| Hg | HG-AFS | 0.005 | 5.8 | 102.3 ± 4.7 | Jitian, Beijing, China (AFS-9700, 2019) | |
| Cr | ICP-MS | 0.2 | 4.1 | 97.2 ± 3.0 | Thermo Fisher, Waltham, MA, USA (iCAP RQ, 2020) | |
| Ni | ICP-MS | 0.6 | 4.3 | 101.5 ± 3.5 | Agilent, Santa Clara, CA, USA (7900 ICP-MS, 2019) | |
| Cu | ICP-MS | 0.6 | 3.9 | 99.8 ± 2.8 | PerkinElmer, Waltham, MA, USA (NexION 350D, 2018) | |
| Zn | ICP-MS | 0.03 | 4.0 | 96.7 ± 3.2 | PerkinElmer, Waltham, MA, USA (NexION 350D, 2018) | |
| Cd | GFAAS | 0.05 | 4.5 | 103.4 ± 4.0 | Analytik Jena, Jena, Germany (ZEEnit 700P, 2020) | |
| Pb | ICP-MS | 0.5 | 3.7 | 98.1 ± 2.5 | Thermo Fisher, Waltham, MA, USA (iCAP RQ, 2020) | |
| TS | Conductivity conversion method | 20 | 2.5 | 100.8 ± 1.5 | STEP Systems, Heidelberg, Germany (PNT3000, 2019) | |
| pH | Ion-selective electrode | 0.01 | 0.8 | — | Oakton, Vernon Hills, IL, USA (PCSTestr 35, 2018) | |
| TN | Kjeldahl digestion | 0.01 | 2.2 | 99.3 ± 1.8 | Elementar, Langenselbold, Germany (vario MACRO cube, 2019) | |
| TP | Molybdenum blue spectrophotometry | 5–10 | 3.0 | 97.6 ± 2.4 | Hach, Loveland, CO, USA (DR3900 Spectrophotometer, 2018) | |
| SOC | Potassium dichromate oxidation | 0.1 | 2.8 | 101.2 ± 2.0 | Elementar, Langenselbold, Germany (vario MACRO cube, 2019) | |
| TK | Flame photometry | 0.2 | 1.9 | 98.9 ± 1.2 | Sherwood, Cambridge, UK (Model 410 Flame Photometer, 2018) | |
| Plant | As | HG-AFS | 0.01 | 6.1 | 94.8 ± 5.2 | Thermo Fisher, Waltham, MA, USA (iCE 3500, 2020) |
| Hg | CVAAS | 0.005 | 7.3 | 105.6 ± 6.8 | Milestone, Milan, Italy (DMA-80, 2019) | |
| Cr | ICP-MS | 0.01 | 5.2 | 97.5 ± 4.3 | Agilent, Santa Clara, CA, USA (8900 ICP-MS + 1260 HPLC, 2020) | |
| Ni | GFAAS | 0.05 | 6.5 | 102.4 ± 5.7 | Thermo Fisher, Waltham, MA, USA (SOLAAR M6, 2019) | |
| Cu | ICP-OES | 0.5 | 5.8 | 99.2 ± 4.9 | PerkinElmer, Waltham, MA, USA (Avio 500, 2018) | |
| Zn | ICP-OES | 0.1 | 4.7 | 96.3 ± 3.8 | Agilent, Santa Clara, CA, USA (5110 VDV, 2019) | |
| Cd | GFAAS | 0.01 | 6.9 | 101.7 ± 6.0 | Thermo Fisher, Waltham, MA, USA (iCE 3500, 2020) | |
| Pb | ICP-MS | 0.005 | 5.5 | 98.4 ± 4.5 | Agilent, Santa Clara, CA, USA (7900 ICP-MS, 2020) |
| Element | Theoretical model | Nugget (C0) | Sill (C0 + C) | Nugget Ratio (%) | Range (m) | R2 | RSS | Confidence (%) |
|---|---|---|---|---|---|---|---|---|
| As | Index | 0.02 | 0.14 | 14.28 | 4920 | 0.77 | 6.10 × 10−5 | 98% |
| Hg | Gauss | 0.02 | 0.14 | 14.28 | 3222 | 0.21 | 1.08 × 10−4 | 84% |
| Cr | Index | 0.01 | 0.06 | 16.67 | 4200 | 0.35 | 9.66 × 10−5 | 94% |
| Ni | Index | 0.01 | 0.07 | 14.28 | 3570 | 0.22 | 4.01 × 10−5 | 85% |
| Cu | Index | 0.01 | 0.12 | 8.33 | 2520 | 0.23 | 1.16 × 10−4 | 86% |
| Zn | Index | 0.01 | 0.07 | 14.28 | 3240 | 0.24 | 4.20 × 10−5 | 95% |
| Cd | Gauss | 0.01 | 0.06 | 16.67 | 2286 | 0.24 | 5.15 × 10−5 | 88% |
| Pb | Gauss | 0.01 | 0.04 | 24.85 | 3186 | 0.38 | 8.35 × 10−6 | 92% |
| TS | Gauss | 0.01 | 0.02 | 50 | 3984 | 0.21 | 1.76 × 10−8 | 82% |
| Element | Min | Max | Mean | SD | Skewness | Kurtosis | CV | Xinjiang Background Value |
|---|---|---|---|---|---|---|---|---|
| As | 1.76 | 24.60 | 10.08 | 3.88 | 1.05 | 1.01 | 0.39 | 11.2 |
| Hg | 0.01 | 0.14 | 0.02 | 0.01 | 5.87 | 80.19 | 0.53 | 0.02 |
| Cr | 21.10 | 75.70 | 42.30 | 9.27 | 0.63 | 0.29 | 0.22 | 49.3 |
| Ni | 10.50 | 39.20 | 22.26 | 5.37 | 0.51 | 0.05 | 0.24 | 26.6 |
| Cu | 7.78 | 40.90 | 18.89 | 6.27 | 0.94 | 0.73 | 0.33 | 26.7 |
| Zn | 26.10 | 93.80 | 53.62 | 13.10 | 0.45 | -0.11 | 0.24 | 68.8 |
| Cd | 0.06 | 0.66 | 0.14 | 0.04 | 3.32 | 31.06 | 0.31 | 0.12 |
| Pb | 10.08 | 32.58 | 17.62 | 2.83 | 0.98 | 1.83 | 0.16 | 19.4 |
| TS | 0.26 | 393.00 | 21.32 | 36.33 | 4.18 | 26.98 | 1.70 | — |
| pH | 7.47 | 9.84 | 8.59 | 0.30 | 0.15 | 0.56 | 0.03 | — |
| TN | 0.01 | 0.16 | 0.04 | 0.02 | 1.15 | 2.45 | 0.48 | — |
| TP | 281.00 | 1213.00 | 572.58 | 119.20 | 1.22 | 3.43 | 0.21 | — |
| SOC | 0.05 | 2.17 | 0.47 | 0.30 | 1.24 | 2.56 | 0.64 | — |
| TK | 1.23 | 3.10 | 2.24 | 0.24 | 0.03 | 1.50 | 0.11 | — |
| Feature | Explained Variance (%) | Contribution (%) | F-Value | p-Value |
|---|---|---|---|---|
| TK | 29.3 | 37.4 | 14.7 | 0.002 |
| SOC | 19.8 | 21.6 | 10.2 | 0.008 |
| TP | 15.3 | 13.3 | 6.4 | 0.016 |
| TS | 14.9 | 11.2 | 7.3 | 0.022 |
| pH | 14.2 | 8.9 | 6.0 | 0.038 |
| TN | 7.1 | 7.6 | 3.4 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, L.; Guo, S.; Hu, H. Halophyte-Mediated Metal Immobilization and Divergent Enrichment in Arid Degraded Soils: Mechanisms and Remediation Framework for the Tarim Basin, China. Sustainability 2025, 17, 8771. https://doi.org/10.3390/su17198771
Liu J, Wang L, Guo S, Hu H. Halophyte-Mediated Metal Immobilization and Divergent Enrichment in Arid Degraded Soils: Mechanisms and Remediation Framework for the Tarim Basin, China. Sustainability. 2025; 17(19):8771. https://doi.org/10.3390/su17198771
Chicago/Turabian StyleLiu, Jingyu, Lang Wang, Shuai Guo, and Hongli Hu. 2025. "Halophyte-Mediated Metal Immobilization and Divergent Enrichment in Arid Degraded Soils: Mechanisms and Remediation Framework for the Tarim Basin, China" Sustainability 17, no. 19: 8771. https://doi.org/10.3390/su17198771
APA StyleLiu, J., Wang, L., Guo, S., & Hu, H. (2025). Halophyte-Mediated Metal Immobilization and Divergent Enrichment in Arid Degraded Soils: Mechanisms and Remediation Framework for the Tarim Basin, China. Sustainability, 17(19), 8771. https://doi.org/10.3390/su17198771

