Carbon Abatement Effect of Chinese Certified Emission Reduction Projects in Agriculture and Forestry: An Empirical Study
Abstract
1. Introduction
2. Policy Background
3. Literature Review and Hypothesis Development
4. Methods and Data
4.1. CCER Projects Dataset Development
4.2. Empirical Strategies
4.3. Variable Definitions
4.3.1. Dependent Variables
4.3.2. Independent Variables
4.3.3. Control Variables
4.4. Data Sources and Cleaning
5. Results and Discussion
5.1. Features of CCER Projects in Agriculture and Forestry
5.2. Carbon Abatement Effect
5.3. Robustness Checks
5.3.1. Preliminary Tests for Propensity Score Matching
5.3.2. Placebo Test
5.3.3. Examination of Short-Term Effects
6. Further Discussion on Socio-Economic Benefits
7. Validation on Grid-Level Data
7.1. Validation of Carbon Abatement Effect on Grid-Level Data
7.2. Validation of Socio-Economic Benefits on Grid-Level Data
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCER | Chinese Certified Emission Reduction |
CDM | Clean Development Mechanism |
REDD+ | Reducing Emissions from Deforestation and Degradation |
ETSs | Emissions trading systems |
GDP | Gross domestic product |
PSM | Propensity Score Matching |
PDDs | Project Design Documents |
EDGAR | Emissions Database for Global Atmospheric Research |
DID | Difference-in-difference |
CQC | China Quality Certification Centre China Electronic Product Reliability and Environment Testing Institute |
CEPREI | |
NDVI | Normalized Difference Vegetation Index |
References
- Chen, M.; Cui, Y.; Jiang, S.; Forsell, N. Toward carbon neutrality before 2060: Trajectory and technical mitigation potential of non-CO2 greenhouse gas emissions from Chinese agriculture. J. Clean. Prod. 2022, 368, 133186. [Google Scholar] [CrossRef]
- Luo, C.; Li, S.; Hua, E.; Forsell, N.; Chen, M. Synthesizing mitigation ambitions and implementation of the agriculture, forestry, and other land use (AFOLU) sector. Ecosyst. Health Sustain. 2024, 10, 0217. [Google Scholar] [CrossRef]
- Toyama, Y. Dynamic incentives and permit market equilibrium in cap-and-trade regulation. Am. Econ. J. Microecon. 2024, 16, 374–423. [Google Scholar] [CrossRef]
- Wongpiyabovorn, O.; Plastina, A.; Crespi, J.M. Challenges to voluntary Ag carbon markets. Appl. Econ. Perspect. Policy 2023, 45, 1154–1167. [Google Scholar] [CrossRef]
- Luo, C.; Chen, M. Theoretical and pathway analysis of utilizing carbon trading to promote agricultural emission reductions: International experience and its implications for China. Clim. Change Res. 2023, 19, 761–770. [Google Scholar]
- Xu, Y.; Peng, J.; Tian, J.; Fu, S.; Hu, C.; Fu, S.; Feng, Y. The impact and mechanism analysis of Clean Development Mechanism on the synergistic effects of pollution mitigation and carbon reduction. Environ. Res. 2024, 260, 119659. [Google Scholar] [CrossRef]
- West, T.A.; Börner, J.; Sills, E.O.; Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2020, 117, 24188–24194. [Google Scholar] [CrossRef] [PubMed]
- Xu, S. Forestry Offsets Under China’s Certificated Emission Reduction (CCER) for Carbon Neutrality: Regulatory Gaps and the Ways Forward. Int. J. Clim. Change Strateg. Manag. 2024, 16, 140–156. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, B. The impact of carbon market on city greening: Quasi-experimental evidence from China. Resour. Conserv. Recycl. 2023, 193, 106960. [Google Scholar] [CrossRef]
- Yu, R.; Ma, S.; Zhang, D.; Zhang, X. Forest vegetation increased across China’s carbon offset projects and positively impacted neighboring areas. Commun. Earth Environ. 2024, 5, 767. [Google Scholar] [CrossRef]
- Beiser-McGrath, L.F.; Bernauer, T.; Prakash, A. Command and control or market-based instruments? Public support for policies to address vehicular pollution in Beijing and New Delhi. Environ. Polit. 2023, 32, 586–618. [Google Scholar] [CrossRef]
- Streck, C. How voluntary carbon markets can drive climate ambition. J. Energy Nat. Resour. Law 2021, 39, 367–374. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Zhang, X. Collaborative Strategy Within China’s Emission Trading Scheme: Evidence from a Tripartite Evolutionary Game Model. J. Clean. Prod. 2023, 382, 135255. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, W. Green Finance: The Catalyst for Artificial Intelligence and Energy Efficiency in Chinese Urban Sustainable Development. Energy Econ. 2024, 139, 107883. [Google Scholar] [CrossRef]
- Kreibich, N. Toward Global Net Zero: The Voluntary Carbon Market on Its Quest to Find Its Place in the Post-Paris Climate Regime. Wiley Interdiscip. Rev. Clim. Change 2024, 15, e892. [Google Scholar] [CrossRef]
- Wu, F.; Wang, S.Y.; Zhou, P. Marginal Abatement Cost of Carbon Dioxide Emissions: The Role of Abatement Options. Eur. J. Oper. Res. 2023, 310, 891–901. [Google Scholar] [CrossRef]
- Spilker, G.; Nugent, N. Voluntary Carbon Market Derivatives: Growth, Innovation & Usage. Borsa Istanb. Rev. 2022, 22, S109–S118. [Google Scholar] [CrossRef]
- Bayer, P.; Urpelainen, J.; Wallace, J. Who uses the Clean Development Mechanism? An empirical analysis of projects in Chinese provinces. Glob. Environ. Change 2013, 23, 512–521. [Google Scholar] [CrossRef]
- Lo, A.Y.; Cong, R. After CDM: Domestic carbon offsetting in China. J. Clean. Prod. 2017, 141, 1391–1399. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, A.; Deng, M. Voluntary emission reduction market in China: Development, management status and future supply. Chin. J. Popul. Resour. Environ. 2019, 17, 1–11. [Google Scholar] [CrossRef]
- Lu, Y.; Guo, J.; Ahmad, M.; Zhang, H. Can sci-tech finance pilot policies reduce carbon emissions? Evidence from 252 cities in China. Front. Environ. Sci. 2022, 10, 933162. [Google Scholar] [CrossRef]
- Tang, D.Y.; Yan, J.; Yao, Y. The Determinants of ESG Ratings: Rater Ownership Matters. J. Account. Res. 2025. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C. Co-benefits and additionality of the clean development mechanism: An empirical analysis. J. Environ. Econ. Manag. 2011, 62, 140–154. [Google Scholar] [CrossRef]
- Kilinc-Ata, N.; Camkaya, S.; Topal, S. What Role Do Foreign Direct Investment and Technology Play in Shaping the Impact on Environmental Sustainability in Newly Industrialized Countries (NIC)?: New Evidence from Wavelet Quantile Regression. Sustainability 2025, 17, 4966. [Google Scholar] [CrossRef]
- Murawska, A.; Goryńska-Goldmann, E. Greenhouse Gas Emissions in the Agricultural and Industrial Sectors—Change Trends, Economic Conditions, and Country Classification: Evidence from the European Union. Agriculture 2023, 13, 1354. [Google Scholar] [CrossRef]
- Kong, D.; Zhu, L. Governments’ Fiscal Squeeze and Firms’ Pollution Emissions: Evidence from a Natural Experiment in China. Environ. Resour. Econ. 2022, 81, 833–866. [Google Scholar] [CrossRef]
- Sarwar, S.; Streimikiene, D.; Waheed, R.; Mighri, Z. Revisiting the Empirical Relationship Among the Main Targets of Sustainable Development: Growth, Education, Health and Carbon Emissions. Sustain. Dev. 2021, 29, 419–440. [Google Scholar] [CrossRef]
- Khatri-Chhetri, A.; Sapkota, T.B.; Maharjan, S.; Konath, N.C.; Shirsath, P. Agricultural Emissions Reduction Potential by Improving Technical Efficiency in Crop Production. Agric. Syst. 2023, 207, 103620. [Google Scholar] [CrossRef]
- Cong, R.; Lo, A.Y.; Yu, W. The distribution and regional determinants of nationally financed emissions-reduction projects in China. Energy Policy 2021, 152, 112215. [Google Scholar] [CrossRef]
- Simonsohn, U.; Simmons, J.P.; Nelson, L.D. Specification Curve Analysis. Nat. Hum. Behav. 2020, 4, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; Bergamaschi, P.; Pagliari, V.; Olivier, J.G.J.; Peters, J.A.H.W.; et al. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 2019, 11, 959–1002. [Google Scholar] [CrossRef]
- Ni, Y.; Zhang, M.; Qian, X.; Shen, G.; Mwabonje, O. Anaerobic digestion of rice straw as profitable climate solution reduces paddy field greenhousegas emissions and produces climate-smart fertilizer under carbon trading mechanisms. Sustainability 2025, 17, 2439. [Google Scholar] [CrossRef]
- Luo, C.; Yan, X.; Wang, B.; Ali, A. Long-term adaptation mitigates the promotion effect of air pollution on short-term population movements. Front. Environ. Sci. 2025, 13, 1620499. [Google Scholar] [CrossRef]
- Liu, Y.; Mabee, W.; Zhang, H. Upgrading the development of Hubei biogas with ETS in China. J. Clean. Prod. 2019, 213, 745–752. [Google Scholar] [CrossRef]
- Li, Z.; Yu, Z.; Zhang, P.; Wang, S.; Tan, R.R.; Jia, X.; Pang, X. Comparative Analysis of Certified Emission Reduction Methodologies for Methane Emission Reduction in China. J. Environ. Manag. 2025, 375, 124242. [Google Scholar] [CrossRef]
- Pan, C.; Shrestha, A.; Innes, J.L.; Zhou, G.; Li, N.; Li, J.; He, Y.; Sheng, C.; Niles, J.O.; Wang, G. Key challenges and approaches to addressing barriers in forest carbon offset projects. J. For. Res. 2022, 33, 1109–1122. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, D.; Zhang, X.; Huang, X. Machine learning for data verification in emissions trading system. Resour. Conserv. Recycl. 2023, 199, 107239. [Google Scholar] [CrossRef]
- Kurz, C.F.; Krzywinski, M.; Altman, N. Propensity score matching. Nat. Methods 2024, 21, 1770–1772. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zheng, W.; Zeng, W.; Lan, H. The economic effects of clean development mechanism afforestation and reforestation project: Evidence from China. Int. J. Clim. Change Strateg. Manag. 2021, 13, 142–161. [Google Scholar] [CrossRef]
- Natarajan, N.; Newsham, A.; Rigg, J.; Suhardiman, D. A Sustainable Livelihoods Framework for the 21st Century. World Dev. 2022, 155, 105898. [Google Scholar] [CrossRef]
- Paul, K.I.; Reeson, A.; Polglase, P.J.; Ritson, P. Economic and employment implications of a carbon market for industrial plantation forestry. Land Use Policy 2013, 30, 528–540. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Ma, L.; Gu, Q.; Wang, K.; Xu, Z. Assessment on the impact of arable land protection policies in a rapidly developing region. ISPRS Int. J. Geo-Inf. 2016, 5, 69. [Google Scholar] [CrossRef]
- Du, Y.; Takeuchi, K. Can climate mitigation help the poor? Measuring impacts of the CDM in rural China. J. Environ. Econ. Manag. 2019, 95, 178–197. [Google Scholar] [CrossRef]
- Ottonelli, J.; Lazaro, L.L.B.; Andrade, J.C.S.; Abram, S. Do solar photovoltaic clean development mechanism projects contribute to sustainable development in Latin America? Prospects for the Paris Agreement. Energy Policy 2023, 174, 113428. [Google Scholar] [CrossRef]
- Zheng, L. Does off-farm work induce farmland abandonment? Evidence from China. China Agric. Econ. Rev. 2024, 16, 664–682. [Google Scholar] [CrossRef]
- Aaronson, D.; Faber, J.; Hartley, D.; Mazumder, B.; Sharkey, P. The long-run effects of the 1930s HOLC “redlining” maps on place-based measures of economic opportunity and socioeconomic success. Reg. Sci. Urban Econ. 2021, 86, 103622. [Google Scholar] [CrossRef]
- Kummu, M.; Kosonen, M.; Masoumzadeh Sayyar, S. Downscaled gridded global dataset for gross domestic product (GDP) per capita PPP over 1990–2022. Sci. Data 2025, 12, 178. [Google Scholar] [CrossRef]
- Lebakula, V.; Sims, K.; Reith, A.; Rose, A.; McKee, J.; Coleman, P.; Kaufman, J.; Urban, M.; Jochem, C.; Whitlock, C.; et al. LandScan Global 30 arcsecond annual global gridded population datasets from 2000 to 2022. Sci. Data 2025, 12, 495. [Google Scholar] [CrossRef] [PubMed]
- Multi-Period Land Use Remote Sensing Monitoring Dataset of China. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=54 (accessed on 3 May 2025).
- Liang, Z.; Wu, S.; He, Y.; Zhou, C.; Yu, J.; Nie, X.; Luo, J.; Hao, Y.; Wang, J.; Zhao, W.; et al. China Certified Emission Reduction projects: Historical and current status, development, and future prospects—Taking forestry projects as an example. Sustainability 2025, 17, 3284. [Google Scholar] [CrossRef]
- Unlocking India’s Voluntary Carbon Market: Challenges and the Path Forward. Available online: https://www.ceew.in/publications/voluntary-carbon-offset-mechanism-and-challenges-in-carbon-credit-trading-scheme-market-for-india (accessed on 20 September 2025).
- Mori-Clement, Y. Impacts of CDM projects on sustainable development: Improving living standards across Brazilian municipalities. World Dev. 2019, 113, 222–236. [Google Scholar] [CrossRef]
- Cui, J.; Wang, Z.; Yu, H. Can international climate cooperation induce knowledge spillover to developing countries? Evidence from CDM. Environ. Resour. Econ. 2022, 82, 923–951. [Google Scholar] [CrossRef]
Variables | Definitions | Mean | Std. Dev. | Expected Directions |
---|---|---|---|---|
EMISS | Log of county-level greenhouse gas emissions | 14.286 | 1.113 | - |
CCER | Policy indicator, equal to 1 if the county implemented a CCER project; 0 otherwise | 0.241 | 0.427 | negative |
lnGDP | Log of gross domestic product (GDP) | 13.786 | 0.940 | positive |
First_ind | Share of the first industry in GDP | 0.229 | 0.104 | positive |
Second_ind | Share of secondary industry in GDP | 0.423 | 0.137 | positive |
lnPop | Log of total population | 3.830 | 0.738 | positive |
Stress | General public budget expenditure/general public budget revenue | 5.616 | 5.711 | positive |
Tax | Share of tax revenue in the general public budget revenue | 0.810 | 0.366 | negative |
lnLand | Log of the county territorial area | 7.765 | 0.727 | positive |
Education | Number of students enrolled in secondary schools/total population | 0.048 | 0.014 | negative |
lnGrain | Log of grain output | 12.165 | 1.114 | positive |
lnOilseed | Log of oilseed output | 9.068 | 1.628 | positive |
Variables | (1) | (2) |
---|---|---|
EMISS | EMISS | |
CCER | −0.029 *** | −0.028 *** |
(0.008) | (0.008) | |
lnGDP | 0.129 *** | |
(0.041) | ||
First_ind | 0.304 ** | |
(0.134) | ||
Second_ind | 0.047 | |
(0.099) | ||
lnPop | −0.006 | |
(0.045) | ||
Stress | 0.000 | |
(0.001) | ||
Tax | −0.006 | |
(0.010) | ||
lnLand | −0.112 | |
(0.079) | ||
Education | −0.220 | |
(0.448) | ||
lnGrain | 0.000 | |
(0.017) | ||
lnOilseed | −0.005 | |
(0.009) | ||
Constant | 14.293 *** | 13.374 *** |
(0.002) | (0.854) | |
County FE | Y | Y |
Year FE | Y | Y |
Adjusted R2 | 0.990 | 0.990 |
N | 4128 | 4128 |
Variables | Project Heterogeneity | Verification Heterogeneity | ||||
---|---|---|---|---|---|---|
Biogas Projects | Afforestation Projects | CQC | CEPREI | Other Agencies | ||
(1) | (2) | (3) | (4) | (5) | (6) | |
EMISS | EMISS | NDVI | EMISS | EMISS | EMISS | |
CCER | −0.025 *** | −0.018 | 0.003 | −0.020 * | −0.085 ** | −0.013 |
(0.008) | (0.016) | (0.004) | (0.011) | (0.035) | (0.019) | |
Controls | Y | Y | Y | Y | Y | Y |
County FE | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
Adjusted R2 | 0.990 | 0.995 | 0.993 | 0.989 | 0.988 | 0.995 |
N | 3767 | 1032 | 1032 | 1580 | 1235 | 935 |
CCER Projects | Estimation Results (Unit: MtCO2-eq) | Self-Declaration Results (Unit: MtCO2-eq) | Comparison |
---|---|---|---|
All projects | 45.52 | 68.34 | Overstated but within the 95% confidence interval |
(20.65–70.39) | |||
Biogas projects | 30.27 | 58.58 | Overstated and beyond the 95% confidence interval |
(10.99–49.54) | |||
Afforestation projects | 7.74 | 9.76 | Overstated but within the 95% confidence interval |
(5.82–21.30) |
Variables | (1) | (2) |
---|---|---|
First Year After Implementation | Three Years After Implementation | |
EMISS | EMISS | |
CCER | −0.018 *** | −0.024 *** |
(0.007) | (0.007) | |
Controls | Y | Y |
County FE | Y | Y |
Year FE | Y | Y |
Adjusted R2 | 0.990 | 0.991 |
N | 3231 | 3557 |
Variable | (1) | (2) | (3) |
---|---|---|---|
INC | EMP | LAND | |
CCER | 0.056 *** | 0.012 ** | 0.224 *** |
(0.015) | (0.006) | (0.027) | |
Controls | Y | Y | Y |
County FE | Y | Y | Y |
Year FE | Y | Y | Y |
Adjusted R2 | 0.980 | 0.958 | 0.982 |
N | 2923 | 1087 | 2214 |
Variables | (1) | (2) |
---|---|---|
Gridded_EMISS | Gridded_EMISS | |
Gridded_CCER | −0.037 *** | −0.036 *** |
(0.013) | (0.014) | |
Controls | N | Y |
County FE | Y | Y |
Year FE | Y | Y |
Adjusted R2 | 0.982 | 0.982 |
N | 3048 | 3048 |
Variables | Panel OLS Model | Panel Poisson Model | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Gridded_GDP | Gridded_GDP | Gridded_POP | Gridded_POP | |
CCER | 0.041 *** | 0.030 ** | 0.185 * | 0.154 * |
(0.015) | (0.014) | (0.100) | (0.080) | |
Controls | N | Y | N | Y |
County FE | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y |
Adjusted R2 | 0.994 | 0.994 | — | — |
χ2 | — | — | 157.502 | 629.149 |
N | 1434 | 1434 | 1422 | 1422 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, C.; Zhou, X. Carbon Abatement Effect of Chinese Certified Emission Reduction Projects in Agriculture and Forestry: An Empirical Study. Sustainability 2025, 17, 8772. https://doi.org/10.3390/su17198772
Luo C, Zhou X. Carbon Abatement Effect of Chinese Certified Emission Reduction Projects in Agriculture and Forestry: An Empirical Study. Sustainability. 2025; 17(19):8772. https://doi.org/10.3390/su17198772
Chicago/Turabian StyleLuo, Chongjia, and Xuhai Zhou. 2025. "Carbon Abatement Effect of Chinese Certified Emission Reduction Projects in Agriculture and Forestry: An Empirical Study" Sustainability 17, no. 19: 8772. https://doi.org/10.3390/su17198772
APA StyleLuo, C., & Zhou, X. (2025). Carbon Abatement Effect of Chinese Certified Emission Reduction Projects in Agriculture and Forestry: An Empirical Study. Sustainability, 17(19), 8772. https://doi.org/10.3390/su17198772