A Methodological Framework for Technology Selection and Regional Implementation of Residual Bioenergy in Colombia
Abstract
1. Introduction
- A structured overview of biomass to electricity pathways, covering residue identification, biofuel conversion, and power generation.
- A departmental decision matrix that links biomass residues with the most suitable conversion technologies for each region.
2. Methodology
2.1. Theoretical Concepts of Biomass
Types of Biomass
3. Technological Pathway from Biomass to Electricity Generation
4. Review of Biomass Conversion Technologies
- Biochemical Conversion:
- Method: Anaerobic DigestionTechnology: Biogas Anaerobic Digester
- Method: FermentationTechnology: Ethanol Bioreactor
- Thermochemical Conversion:
- Method: Direct CombustionTechnology: Biomass Boilers
- Method: GasificationTechnologies: Fixed-Bed Gasifier, Fluidized-Bed Gasifier
- Method: PyrolysisTechnologies: Pyrolysis Reactor, Continuous Pyrolyzers
- Physical or Mechanical Conversion:
- Method: DensificationTechnologies: Pellet Press, Briquetting Machine
- Method: Oil ExtractionTechnology: Biodiesel Processing Plant
4.1. Biogas Anaerobic Digester
4.2. Ethanol Bioreactor
4.3. Fixed-Bed and Fluidized-Bed Gasifiers
4.4. Fixed-Bed and Fluidized-Bed Pyrolysis Reactors
Mode | Conditions | Composition | ||
---|---|---|---|---|
Liquid | Char | Gas | ||
Fast pyrolysis | Moderate temperature, short residence time | 75% | 12% | 13% |
Carbonization | Low temperature, very long residence time | 30% | 35% | 35% |
Gasification | High temperature, long residence time | 5% | 10% | 85% |
4.5. Pellet Press and Briquetting Machine
4.6. Biodiesel Processing Plants
4.7. Summary of Biomass Conversion Technologies
5. Use of Biomass Conversion Technologies for Electricity Generation
5.1. Steam Turbine
5.2. Gas Turbine
5.3. Reciprocating Internal Combustion Engines
5.4. Fuel Cells
5.5. Process Flow Diagram and Technological Compatibility
- Biogas: Produced through anaerobic digestion of organic waste, primarily animal manure. Biogas can be used in gas turbines, where it is combusted to generate high-temperature, high-pressure gases that drive the turbine. In this configuration, residual heat can be recovered for cogeneration, thereby improving overall system efficiency [24]. It can also be utilized in Otto cycle internal combustion engines specifically designed for this biofuel [24] or in solid oxide fuel cells capable of operating directly with biogas [25]. Finally, in steam turbines, biogas like other biofuels is burned in a boiler to produce high-pressure steam that powers the turbine.
- Ethanol: Although its use in gas turbines is not common, it is technically feasible with adaptations to the combustion chamber. A notable case is the Juiz de Fora power plant in Brazil, where ethanol derived from sugarcane is used for power generation [26]. Ethanol is more widely applied as a fuel in internal combustion engines, either in pure form or blended with gasoline (e.g., E10 or E20). However, engine modifications are required due to its higher octane rating and lower calorific value compared to gasoline [27]. For use in fuel cells, ethanol must first be reformed into hydrogen, which serves as the feed gas for the cell [28].
- Syngas: Before utilization, syngas must be purified to remove impurities. Similar to natural gas, its combustion generates high-temperature, high-pressure gases that can drive a turbine [29]. It can also fuel reciprocating internal combustion engines, where it is mixed with air, compressed, and ignited to produce mechanical energy [30]. Furthermore, syngas can be used in solid oxide fuel cells, which take advantage of its compatibility with high operating temperatures [25].
- Pellets and briquettes: These solid biofuels are primarily used in steam turbines. They are combusted in boilers to generate high-pressure steam that drives the turbine, a process commonly applied in cogeneration systems [31].
- Biodiesel: This biofuel can be used either partially blended or as a full substitute for conventional diesel in gas turbines, particularly in combined cycle configurations that couple gas and steam turbines to enhance efficiency [32]. It is also suitable for internal combustion engines, where it provides greater safety in storage and transport compared to petroleum diesel [33]. Like ethanol, biodiesel can be reformed to produce hydrogen for fuel cell applications [34].
- Pyrolysis products: Biochar can be utilized in combustion processes similar to those for pellets and briquettes [35]. Pyrolysis gas, with properties comparable to syngas, can be applied in similar electricity generation technologies. Bio oil, despite having different characteristics from biodiesel or ethanol, can also be used in energy applications, provided that the processes are adapted accordingly [35].
5.6. Biofuel Trends
6. Analysis of the Current Situation in Colombia
6.1. Inventory of Residual Biomass in Colombia
✓ | The residue is highly compatible with the technology. |
✓ | The residue requires pretreatment to be compatible with the technology. |
× | The residue is poorly compatible with the technology. |
6.2. Current Electricity Generation from Residual Biomass in Colombia
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Net Zero by 2050 Data Explorer. International Energy Agency. 2023. Available online: https://www.iea.org/data-and-statistics/data-tools/net-zero-by-2050-data-explorer (accessed on 5 May 2024).
- Unidad de Planeación Minero Energética (UPME). Balance Energético Colombiano 2022–2023; Ministerio de Minas y Energía: Bogotá, Colombia, 2025; pp. 1–29. [Google Scholar]
- Fernández Salgado, J. Guía Completa de la Biomasa y los Biocombustibles; Madrid Vicente, Ediciones: Madrid, Spain, 2010. [Google Scholar]
- International Energy Agency. Clean Energy Demonstration Projects Database: Biofuels. Available online: https://www.iea.org/data-and-statistics/data-tools/clean-energy-demonstration-projects-database?subsector=Biofuels (accessed on 5 May 2024).
- Gazzotti, S.; De Felice, B.; Ortenzi, M.A.; Parolini, M. Approaches for Management and Valorization of Non-Homogeneous, Non-Recyclable Plastic Waste. Int. J. Environ. Res. Public Health 2022, 19, 10088. [Google Scholar] [CrossRef] [PubMed]
- Glavaš, H.; Ivanović, M.; Mandić, N. Resources and possibilities of agro biomass usage for energy purposes in Slavonia region (Croatia). In Proceedings of the 2014 IEEE International Energy Conference (ENERGYCON), Dubrovnik, Croatia, 13–16 May 2014; pp. 1150–1155. [Google Scholar]
- Santi, E.; Paloscia, S.; Pettinato, S.; Fontanelli, G.; Clarizia, M.P.; Guerriero, L.; Pierdicca, N. Forest Biomass Estimate on Local and Global Scales Through GNSS Reflectometry Techniques. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 8680–8683. [Google Scholar]
- Ganesh, Y.N.V.; Resmi, R. Hardware Implementation of Anaerobic Biogas Digester for Household and Community Purposes. In Proceedings of the 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 8–10 December 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Imtiaz, U.; Jamuar, S.S.; Sahu, J.N. Bioreactor Profile Design and Optimization for Ethanol Production. In Proceedings of the 2024 International Conference on Biotechnology and Bioengineering Applications, Barcelona, Spain, 25–27 August 2024; IEEE: Kuala Lumpur, Malaysia, 2024. [Google Scholar]
- Yepes Maya, D.M.; Chejne Janna, F. Gasification of waste biomass in the flower industry, case: Eastern Antioquia. Rev. ION 2012, 25, 49–55. [Google Scholar]
- Damartzis, T.; Zabaniotou, A. Thermochemical Conversion of Biomass to Second Generation Biofuels Through Integrated Process Design: A Review. Renew. Sustainable Energy Rev. 2011, 15, 366–378. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Y.; Zhang, Q.; Zhou, J.; Wang, H.; Tong, P. Design and Experimental Study of a Two-Stage Pilot Scale Biomass Fixed Bed Gasifier. In Proceedings of the 2013 IEEE Conference on Emerging Technologies and Factory Automation (ETFA), Cagliari, Italy, 10–13 September 2013; IEEE: Nanjing, China, 2013; pp. 1–6. [Google Scholar]
- Flórez Ramos, D.F.; Barco Burgos, J.; Rincón Prat, S.L. Análisis comparativo de la carbonización de cuesco de palma de aceite en reactores de lecho fijo. Rev. Tecnura 2016, 20, 45–58. [Google Scholar] [CrossRef]
- Faxas Esaclona, R.; Suárez Rodríguez, J.A.; Beatón, P.A. Reactores en lecho fluidizado. Tecnol. Quím. 2009, XXIX, 205–212. Available online: http://www.redalyc.org/articulo.oa?id=445543761025 (accessed on 6 February 2025).
- Ministerio de Minas y Energía (MME), Unidad de Planeación Minero Energética (UPME), Agencia Danesa de Energía (DEA), Emergente. Catálogo Tecnológico Colombiano para Tecnologías de Generación y Almacenamiento de Energía 2025; UPME: Bogotá, Colombia, 2025. Available online: https://www.upme.gov.co/ (accessed on 12 February 2025).
- Forero Núñez, C.A.; Guerrero Fajardo, C.A.; Sierra Vargas, F.E. Producción y uso de pellets de biomasa para la generación de energía térmica: Una revisión a los modelos del proceso de gasificación. ITECKNE 2012, 9, 21–30. [Google Scholar] [CrossRef]
- Mayasari, F.; Dalimi, R. Vegetable Oil Based Biodiesel Feedstock Potential in Indonesia. In Proceedings of the 2014 Makassar International Conference on Electrical Engineering and Informatics (MICEEI), Makassar, Indonesia, 26–30 November 2014; IEEE: Makassar, Indonesia, 2014; pp. 37–41. [Google Scholar]
- Méndez Quezada, V.H. Generación Distribuida: Aspectos Técnicos y su Tratamiento Regulatorio; Tesis para la Obtención del grado de Doctor, Universidad Pontificia Comillas de Madrid: Madrid, Spain, 2005; Directed by Prof. Dr. Juan Rivier Abbad; Available online: https://www.comillas.edu/ (accessed on 18 February 2025).
- Carlos Augusto. Gasificación de Biomasa para Producción de Combustibles de Bajo Poder Calorífico y su Utilización en Generación de Potencia y Calor; Informe Técnico; Bogotá, Colombia, 2024. [Google Scholar]
- García Jaime, R. Estudio del Hidrógeno como Combustible Libre de Carbono en Motores de Combustión Interna Alternativos; Trabajo de Fin de Grado en Ingeniería Mecánica, Universitat Politècnica de Catalunya: Barcelona, Spain, 2024; Directed by Carlos Ruiz Moya; Available online: https://upc.edu/ (accessed on 20 February 2025).
- Huang, Y. MEMS-Based Electrochemical Power Sources for Extended Operational Duration of Micro Unmanned Vehicles; Ph.D. Dissertation, Chemical and Biomolecular Engineering, University of Pennsylvania: Philadelphia, PA, USA, 2024; Supervised by Dr. Sue Ann Bidstrup Allen and Dr. Mark G. Allen; Available online: https://repository.upenn.edu/ (accessed on 21 February 2025).
- Wang, C.; Nehrir, M.H. Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System. IEEE Trans. Energy Convers. 2008, 23, 957–967. [Google Scholar] [CrossRef]
- Acuña Garrido, F.; Muñoz Yi, V. Celdas de combustible: Una alternativa amigable con el medio ambiente para la generación de potencia y su impacto en el desarrollo sostenible de Colombia en el siglo XXI. Ing. Desarro. 2010, 10, 94–104. [Google Scholar]
- Castro Reyes, J.A. Evaluación del uso de Residuos Agrícolas para la Producción de Energía Renovable por Medio de un Proceso de Gasificación; Trabajo de grado para optar al título de Magíster en Ingeniería—Ingeniería Química, Universidad Nacional de Colombia, Facultad de Ingeniería, Sede Bogotá: Bogotá, Colombia, 2023; Director: Ana María Castillo Moreno. [Google Scholar]
- Castro, L.; Gómez, J.; Gutiérrez, C.; Orjuela, P. Cogeneración a través de uso de celdas de combustible. Tecnura 2019, 23, 51–61. [Google Scholar]
- General Electric (GE). Brasil se Convierte en el Primer país en Producir Electricidad en Base a Etanol. Available online: https://n9.cl/6ciqg (accessed on 28 May 2025).
- Bradley, C.; Runnion, K. Understanding El Etanol Combustible: Producción and Uso; Paper Technical #3, Volunteers in Technical Assistance (VITA): Arlington, VA, USA, 1984; ISBN 0-86619-203-4. [Google Scholar]
- Bahamonde, R.; Sánchez, J.; Muñoz, M. Evaluación energética y ambiental de la gasificación de biomasa residual en Chile. Rev. Ing. Recursos Nat. Ambient. 2023, 22, e003. [Google Scholar]
- Martínez Reina, J. Estudio del Aprovechamiento Energético de Residuos Agrícolas Mediante Digestión Anaerobia para su Aplicación en el Sector Primario; Proyecto Fin de Carrera para optar al título de Grado en Ingeniería Mecánica, Universidad de Córdoba, Escuela Politécnica Superior: Córdoba, Spain, 2020; Director: Rafael Martín Ramos. [Google Scholar]
- García Linares, J.D.; Hurtado Pérez, J.E.; Zafra Meza, F.A. Gasificación de biomasa residual para generación distribuida de energía eléctrica: Análisis del potencial técnico en Colombia. Tecnol. Ciencia-TECNOLÓGICAS 2022, 25, e206. [Google Scholar]
- Comisión Nacional de Energía (CNE). Tecnologías de Generación de Energía a Partir de Biomasa Forestal; Documento técnico de apoyo a la Estrategia de Biomasa Forestal, Gobierno de Chile, Ministerio de Energía: Santiago, Chile, 2015; Available online: https://energia.gob.cl/ (accessed on 20 May 2025).
- Energía Estratégica. Informe Técnico de la UTN Muestra Importantes Avances en el uso de Biodiesel para la Generación Eléctrica en Turbinas de ciclo Combinado. Available online: https://www.energiaestrategica.com/informe-tecnico-de-la-utn-muestra-importantes-avances-en-el-uso-de-biodiesel-para-la-generacion-electrica-en-turbinas-de-ciclo-combinado/ (accessed on 28 May 2025).
- Alfonso Álvarez, J.A. Análisis del Aprovechamiento Energético de Residuos Agroindustriales Mediante Gasificación para su Aplicación en Zonas Rurales Aisladas; Trabajo Fin de Máster para optar al título de Máster en Ingeniería Industrial, Universidad de Sevilla, Escuela Técnica Superior de Ingeniería: Sevilla, Spain, 2022; Tutor: Juan Manuel Rodríguez Hidalgo. [Google Scholar]
- Tomás Pardillos, V. Estudio del Potencial Energético de Residuos Agrícolas y Forestales de Aragón: Aplicación en Sistemas de Trigeneración Mediante Gasificación; Trabajo Fin de Máster en Ingeniería Industrial, Universidad de Zaragoza, Escuela de Ingeniería y Arquitectura: Zaragoza, Spain, 2023; Director: Julio Martínez Gracia; Available online: https://zaguan.unizar.es/record/149461 (accessed on 22 May 2025).
- Segovia Espinoza, I.J. Evaluación Técnica y Económica de un Proceso de Gasificación para la Valorización Energética de Digestato Proveniente de lodos Sanitarios; Memoria para optar al título de Ingeniera Civil Química e Ingeniera Civil en Biotecnología, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Química, Biotecnología y Materiales: Santiago, Chile, 2024; Profesor guía: Felipe Díaz Alvarado. [Google Scholar]
- International Energy Agency. Renewables 2024: Analysis and Forecast to 2030, Revised version; International Energy Agency: Paris, France, October 2024; Available online: https://www.iea.org/ (accessed on 27 May 2025).
- Unidad de Planeación Minero Energética (UPME). Atlas del Potencial Energético de la Biomasa Residual en Colombia; Publicación técnica desarrollada para evaluar el potencial energético de la biomasa residual en los sectores agrícola, pecuario y de residuos sólidos urbanos, Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Departamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias), Universidad Industrial de Santander (UIS): Santander, Colombia, 2010. Available online: https://www.minenergia.gov.co/ (accessed on 8 May 2025).
- Montenegro Orozco, K.T.; Rojas Carpio, A.S.; Cabeza Rojas, I.; Hernández Pardo, M.A. Potencial de biogás de los residuos agroindustriales generados en el departamento de Cundinamarca. Rev. ION 2016, 29, 23–37. [Google Scholar] [CrossRef]
- Genia Bioenergy. Funciones del Digestor. Available online: https://geniabioenergy.com/funciones-del-digestor/ (accessed on 17 May 2025).
- Operador del Sistema Interconectado Nacional (XM). Generación del Sistema Interconectado Nacional (SIN). Available online: https://sinergox.xm.com.co/oferta/Paginas/Informes/GeneracionSIN.aspx (accessed on 2 May 2025).
Aspect | Fixed-Bed Gasifier | Fluidized-Bed Gasifier |
---|---|---|
Electricity generation range | 10 to 100 kW. | Generally used for capacities over 100 kW. |
Operating temperature | Between 750 and 900 °C. | Between 750 and 900 °C. |
Tar production | Lower tar content, especially in dual-stage designs. | Significant tar reduction due to moderate temperatures. |
Produced gas quality | Higher calorific value, especially with secondary air in dual-stage designs. | Low-quality gas with lower calorific value compared to biogas or other gases. |
System efficiency | High efficiency in electricity generation using low-cost raw materials. | High efficiency in heat transfer and particle mixing during the process. |
Structural design | Simple design; classified as updraft and downdraft systems. | More complex design, with additional systems such as cyclones to retain fly ash. |
Recommended use | Ideal for small and medium-scale applications due to simplicity. | Recommended for large-scale generation, especially over 100 kW. |
Biomass | HHV (MJ/kg) |
---|---|
Coking coal | 25 to 32 |
Wood | 10 to 20 |
Coconut shell | 18 to 19 |
Straw | 14 to 16 |
Coffee husk | 16 |
Cotton stalks | 16 |
Cocoa husks | 13 to 16 |
Oil palm kernel shell | 15 |
Rice husk | 13 to 14 |
Maize stalks | 13 to 15 |
Sawdust | 11 |
Sawdust pellet | 20.5 |
Wood pellet | 20.3 |
Biomass Source | Conversion Technology | Fuel Product |
---|---|---|
Organic waste (manure, food scraps, biosolids) | Anaerobic Biogas Digester | Biogas (methane and CO2) |
Starch- and sugar-rich plant material (sugarcane, maize) | Ethanol Bioreactor | Ethanol |
Agricultural and forestry residues | Fixed-Bed and Fluidized-Bed Gasifier | Syngas |
Agricultural and forestry residues | Fixed-Bed and Fluidized-Bed Pyrolysis Reactor | Bio-oil, gas, and char |
Wood residues, agricultural residues | Pellet Press and Briquette Machine | Pellets and briquettes |
Vegetable oils (soybean, palm, coconut) and animal fats | Biodiesel Processing Plants | Biodiesel |
Type of Residue | Tons/Year |
---|---|
Cattle | 96,591,078 |
Banana | 23,099,048 |
Plantain | 19,919,844 |
Sugarcane | 15,534,591 |
Panela cane | 9,361,367 |
Rice | 6,283,490 |
Coffee | 5,056,536 |
Poultry | 3,483,154 |
Swine | 2,754,789 |
Maize | 1,941,969 |
Oil palm | 1,638,139 |
Total | 185,664,005 |
Anaerobic Biogas Digester | Ethanol Bioreactor | Gasifier | Pyrolysis Reactor | Pellets and Briquette Press | Biodiesel Processing Plants | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Residue | Residue | ||||||||||||||
Primary [Pri] | Secundary [Sec] | Pri | Sec | Pri | Sec | Pri | Sec | Pri | Sec | Pri | Sec | Pri | Sec | ||
1 | Amazonas | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
2 | Antioquia | Cattle | Banana | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
3 | Arauca | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
4 | Atlántico | Cattle | Poultry | ✓ | ✓ | × | × | ✓ | ✓ | ✓ | ✓ | × | × | × | × |
5 | Bolivar | Cattle | Rice | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
6 | Boyacá | Panela cane | Cattle | ✓ | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | × | × |
7 | Caldas | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
8 | Caquetá | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
9 | Casanare | Cattle | Rice | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
10 | Cauca | Sugarcane | Cattle | ✓ | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | × | × |
11 | Cesar | Cattle | Rice | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
12 | Chocó | Plantain | Cattle | ✓ | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | × | × |
13 | Cundinamarca | Cattle | Panela cane | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
14 | Córdoba | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
15 | Guainia | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
16 | Guaviare | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
17 | Huila | Cattle | Panela cane | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
18 | La Guajira | Cattle | Swine | ✓ | ✓ | × | × | ✓ | ✓ | ✓ | ✓ | × | × | × | × |
19 | Magdalena | Cattle | Banana | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
20 | Mete | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
21 | Nariño | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
22 | Norte de Santander | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
23 | Putumayo | Banana | Cattle | ✓ | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | × | × |
24 | Quindio | Plantain | Cattle | ✓ | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | × | × |
25 | Risaralda | Plantain | Cattle | ✓ | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | × | × |
26 | Santander | Cattle | Panela cane | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
27 | Sucre | Cattle | Rice | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
28 | Tolima | Cattle | Rice | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
29 | Valle del Cauca | Sugarcane | Cattle | ✓ | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | × | × |
30 | Vaupés | Maize | Plantain | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | × | × |
31 | Vichada | Cattle | Plantain | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | × |
32 | San Andrés | Cattle | ✓ | × | ✓ | ✓ | × | × |
Resource Name | Generation [GWh] | Default Fuel | Department | Operator |
---|---|---|---|---|
Mayaguez 1 | 739.18 | Bagasse | Valle del Cauca | Celsia Colombia S.A. E.S.P. |
Incauca 1 | 665.62 | Bagasse | Cauca | Nitro Energy Colombia S.A.S. E.S.P. |
Ingenio Risaralda 1 | 613.49 | Bagasse | Risaralda | Erco Generación S.A.S. E.S.P. |
Ingenio Providencia 2 | 585.09 | Bagasse | Valle del Cauca | Nitro Energy Colombia S.A.S. E.S.P. |
Bioenergy | 377.51 | Bagasse | Meta | AES Colombia and Cía. S.C.A. E.S.P. |
Proenca Cogenerator 1 | 371.27 | Bagasse | Cauca | Proyectos Energéticos del Cauca S.A. E.S.P. |
Ingenio Riopaila 1 | 324.93 | Bagasse | Valle del Cauca | Riopaila Energía S.A.S. E.S.P. |
Manuelita Cogenerator 2 | 240.29 | Bagasse | Valle del Cauca | Empresa de Energía de Pereira S.A. E.S.P. |
Proenca Cogenerator | 237.52 | Bagasse | Cauca | Proyectos Energéticos del Cauca S.A. E.S.P. |
Autog. Ingenio Carmelita | 60.53 | Bagasse | Valle del Cauca | Depi Energy S.A.S. E.S.P. |
Ingenio San Carlos 1 | 51.57 | Bagasse | Valle del Cauca | Celsia Colombia S.A. E.S.P. |
Central Castilla 1 | 45.29 | Bagasse | Valle del Cauca | Riopaila Energía S.A.S. E.S.P. |
AGPE Ingenio de Occidente | 25.76 | Bagasse | Cauca | Empresa Municipal de Energía Eléctrica S.A. E.S.P. |
Ingenio Pichichi 1 | 16.60 | Bagasse | Valle del Cauca | Empresa de Energía de Pereira S.A. E.S.P. |
Autog. PTAR Bello | 11.45 | Biogas | Antioquia | Empresas Públicas de Medellín E.S.P. |
Doña Juana 1 | 11.20 | Biogas | Bogotá D.C. | Biogás Colombia S.A.S. E.S.P. |
Ingenio La Carmelita | 10.48 | Bagasse | Valle del Cauca | Depi Energy S.A.S. E.S.P. |
Autog. Biodiana 1 | 9.81 | Biomass | Casanare | Nitro Energy Colombia S.A.S. E.S.P. |
Autog. Los Pocitos 1 | 3.50 | Biogas | Atlántico | BCCY Córdoba S.A.S. E.S.P. |
Autog. Yaguarito | 3.28 | Biogas | Meta | Electrificadora del Meta S.A. E.S.P. |
Autog. Ingenio María Luisa | 2.62 | Bagasse | Valle del Cauca | Depi Energy S.A.S. E.S.P. |
AGPE Entrepalmas | 0.79 | Biogas | Meta | Celsia Colombia S.A. E.S.P. |
Autog. Ingenio María Luisa 1 | 0.66 | Bagasse | Valle del Cauca | Depi Energy S.A.S. E.S.P. |
Tequendama Biogas 1 | 0.56 | Biogas | Magdalena | Voltaje Empresarial S.A.S. E.S.P. |
Ingenio María Luisa | 0.43 | Bagasse | Valle del Cauca | Depi Energy S.A.S. E.S.P. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echavarria-Sarmiento, R.; Gómez-Luna, E.; Franco-Manrique, R.; Vasquez, J.C. A Methodological Framework for Technology Selection and Regional Implementation of Residual Bioenergy in Colombia. Sustainability 2025, 17, 8767. https://doi.org/10.3390/su17198767
Echavarria-Sarmiento R, Gómez-Luna E, Franco-Manrique R, Vasquez JC. A Methodological Framework for Technology Selection and Regional Implementation of Residual Bioenergy in Colombia. Sustainability. 2025; 17(19):8767. https://doi.org/10.3390/su17198767
Chicago/Turabian StyleEchavarria-Sarmiento, Robinson, Eduardo Gómez-Luna, Rafael Franco-Manrique, and Juan C. Vasquez. 2025. "A Methodological Framework for Technology Selection and Regional Implementation of Residual Bioenergy in Colombia" Sustainability 17, no. 19: 8767. https://doi.org/10.3390/su17198767
APA StyleEchavarria-Sarmiento, R., Gómez-Luna, E., Franco-Manrique, R., & Vasquez, J. C. (2025). A Methodological Framework for Technology Selection and Regional Implementation of Residual Bioenergy in Colombia. Sustainability, 17(19), 8767. https://doi.org/10.3390/su17198767