The Impact of Environmental Governance on Energy Transitions: Evidence from a Global Perspective
Abstract
1. Introduction
2. Theoretical Background and Prior Empirical Studies
2.1. Theoretical Background
2.2. Empirical Studies on Environmental Governance and Energy Transition
2.3. Additional Drivers of Energy Transition
2.4. Mediating Effects of Government Regulation and Technological Innovation in the Environmental Governance–Energy Transition Nexus
3. Data and Empirical Model
3.1. Preliminary Diagnostics
3.2. Empirical Model Specification
- ▪
- High-technology exports: R&D-intensive sectors like aerospace and electronics, whose growth correlates with pollution intensification and subsequent regulatory tightening;
- ▪
- Rule of law and corruption control: Institutional quality amplifies policy efficacy, as strong governance enables effective environmental implementation.
3.3. Data Description
4. Empirical Results
4.1. Preliminary Analysis of the Data
4.2. Main Results
4.3. Mechanism Analysis
4.3.1. Government Regulation Channel
4.3.2. Technological Innovation Channel
5. Conclusions, Policy Implications, and Future Research Directions
5.1. Main Conclusions and Discussion of Findings
5.2. Policy Implications
5.3. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
1 | Australia | 9 | Finland | 17 | Ireland | 25 | Russia |
2 | Austria | 10 | France | 18 | Italy | 26 | Sweden |
3 | Belgium | 11 | Germany | 19 | Japan | 27 | Switzerland |
4 | Canada | 12 | Greece | 20 | Mexico | 28 | Turkey |
5 | Chile | 13 | Hungary | 21 | Netherlands | 29 | United Kingdom |
6 | Czech Republic | 14 | Iceland | 22 | New Zealand | 30 | United States |
7 | Denmark | 15 | India | 23 | Norway | ||
8 | Estonia | 16 | Indonesia | 24 | Poland |
Appendix B
References
- Hansen, J.E.; Kharecha, P.; Sato, M.; Tselioudis, G.; Kelly, J.; Bauer, S.E.; Ruedy, R.; Jeong, E.; Jin, Q.; Rignot, E.; et al. Global Warming Has Accelerated: Are the United Nations and the Public Well-Informed? Environ. Sci. Policy Sustain. Dev. 2025, 67, 6–44. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S. Weather and Climate Extreme Events in a Changing Climate; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Scales, S.E.; Massi, J.; Horney, J.A. Climate Adaptation and Public Health. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2022. [Google Scholar] [CrossRef]
- Baars, C.; Barbir, J.; Eustachio, J.H.P.P. How Can Climate Change Impact Human Health via Food Security? A Bibliometric Analysis. Environments 2023, 10, 196. [Google Scholar] [CrossRef]
- Farooq, M.S.; Uzair, M.; Raza, A.; Habib, M.; Xu, Y.; Yousuf, M.; Yang, S.H.; Khan, M.R. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. Front. Plant Sci. 2022, 13, 927535. [Google Scholar] [CrossRef] [PubMed]
- Rounce, D.R.; Hock, R.; Maussion, F.; Hugonnet, R.; Kochtitzky, W.; Huss, M.; Berthier, E.; Brinkerhoff, D.; Compagno, L.; Copland, L.; et al. Global Glacier Change in the 21st Century: Every Increase in Temperature Matters. Science 2023, 379, 78–83. [Google Scholar] [CrossRef]
- Smith, B.; Fricker, H.A.; Gardner, A.S.; Medley, B.; Nilsson, J.; Paolo, F.S.; Holschuh, N.; Adusumilli, S.; Brunt, K.; Csatho, B.; et al. Pervasive Ice Sheet Mass Loss Reflects Competing Ocean and Atmosphere Processes. Science 2020, 368, 1239–1242. [Google Scholar] [CrossRef]
- Tripathy, K.P.; Mukherjee, S.; Mishra, A.K.; Mann, M.E.; Williams, A.P. Climate Change Will Accelerate the High-End Risk of Compound Drought and Heatwave Events. Proc. Natl. Acad. Sci. USA 2023, 120, e2219825120. [Google Scholar] [CrossRef]
- Yin, J.; Gentine, P.; Slater, L.; Gu, L.; Pokhrel, Y.; Hanasaki, N.; Guo, S.; Xiong, L.; Schlenker, W. Future Socio-Ecosystem Productivity Threatened by Compound Drought–Heatwave Events. Nat. Sustain. 2023, 6, 259–272. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J.; et al. A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Kang, J.N.; Wei, Y.M.; Liu, L.C.; Han, R.; Yu, B.Y.; Wang, J.W. Energy Systems for Climate Change Mitigation: A Systematic Review. Appl. Energy 2020, 263, 114602. [Google Scholar] [CrossRef]
- Wolfram, P.; Wiedmann, T.; Diesendorf, M. Carbon Footprint Scenarios for Renewable Electricity in Australia. J. Clean. Prod. 2016, 124, 236–245. [Google Scholar] [CrossRef]
- Voumik, L.C.; Islam, M.A.; Ray, S.; Yusop, N.Y.M.; Ridzuan, A.R. CO2 Emissions from Renewable and Non-Renewable Electricity Generation Sources in the G7 Countries: Static and Dynamic Panel Assessment. Energies 2023, 16, 1044. [Google Scholar] [CrossRef]
- Bergougui, B. Algeria’s Pathway to COP28 and SDGs: Asymmetric Impact of Environmental Technology, Energy Productivity, and Material Resource Efficiency on Environmental Sustainability. Energy Strateg. Rev. 2024, 55, 101541. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.E.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Rahman, A.; Murad, S.M.W.; Mohsin, A.K.M.; Wang, X. Does Renewable Energy Proactively Contribute to Mitigating Carbon Emissions in Major Fossil Fuels Consuming Countries? J. Clean. Prod. 2024, 452, 142113. [Google Scholar] [CrossRef]
- Nachtigall, D.; Lutz, L.; Rodríguez, M.C.; D’Arcangelo, F.M.; Haščič, I.; Kruse, T.; Pizarro, R. The Climate Actions and Policies Measurement Framework: A Database to Monitor and Assess Countries’ Mitigation Action. Environ. Resour. Econ. 2024, 87, 191–217. [Google Scholar] [CrossRef]
- Shahbaz, M.; Wang, J.; Dong, K.; Zhao, J. The Impact of Digital Economy on Energy Transition across the Globe: The Mediating Role of Government Governance. Renew. Sustain. Energy Rev. 2022, 166, 112620. [Google Scholar] [CrossRef]
- Caetano, R.V.; Marques, A.C.; Afonso, T.L. How Can Foreign Direct Investment Trigger Green Growth? The Mediating and Moderating Role of the Energy Transition. Economies 2022, 10, 199. [Google Scholar] [CrossRef]
- Safdar, S.; Khan, A.; Andlib, Z. Impact of Good Governance and Natural Resource Rent on Economic and Environmental Sustainability: An Empirical Analysis for South Asian Economies. Environ. Sci. Pollut. Res. 2022, 29, 82948–82965. [Google Scholar] [CrossRef] [PubMed]
- Dawo, K.A.A.; Khalifa, W.M.S. Do Green Innovation, Environmental Governance, and Renewable Energy Transition Drive Trade-Adjusted Resource Footprints in Top Sub-Saharan African Countries? Sustainability 2025, 17, 4907. [Google Scholar] [CrossRef]
- Hassan, M.; Rousselière, D. Does Increasing Environmental Policy Stringency Lead to Accelerated Environmental Innovation? A Research Note. Appl. Econ. 2022, 54, 1989–1998. [Google Scholar] [CrossRef]
- Hassan, M.; Kouzez, M.; Lee, J.Y.; Msolli, B.; Rjiba, H. Does Increasing Environmental Policy Stringency Enhance Renewable Energy Consumption in OECD Countries? Energy Econ. 2024, 129, 107198. [Google Scholar] [CrossRef]
- Bergh, J.C.J.M.v.D. A Third Option for Climate Policy within Potential Limits to Growth. Nat. Clim. Change 2017, 7, 107–112. [Google Scholar] [CrossRef]
- Botta, E.; Koźluk, T. Measuring Environmental Policy Stringency in OECD Countries; OECD Economics Department Working Papers, No.1703; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- Afshan, S.; Ozturk, I.; Yaqoob, T. Facilitating Renewable Energy Transition, Ecological Innovations and Stringent Environmental Policies to Improve Ecological Sustainability: Evidence from MM-QR Method. Renew. Energy 2022, 196, 151–160. [Google Scholar] [CrossRef]
- Khan, I.; Zakari, A.; Ahmad, M.; Irfan, M.; Hou, F. Linking Energy Transitions, Energy Consumption, and Environmental Sustainability in OECD Countries. Gondwana Res. 2022, 103, 445–457. [Google Scholar] [CrossRef]
- Child, M.; Koskinen, O.; Linnanen, L.; Breyer, C. Sustainability Guardrails for Energy Scenarios of the Global Energy Transition. Renew. Sustain. Energy Rev. 2018, 91, 321–334. [Google Scholar] [CrossRef]
- Månberger, A.; Stenqvist, B. Global Metal Flows in the Renewable Energy Transition: Exploring the Effects of Substitutes, Technological Mix and Development. Energy Policy 2018, 119, 226–241. [Google Scholar] [CrossRef]
- Bashir, M.F.; Rao, A.; Sharif, A.; Ghosh, S.; Pan, Y. How Do Fiscal Policies, Energy Consumption and Environmental Stringency Impact Energy Transition in the G7 Economies: Policy Implications for the COP28. J. Clean. Prod. 2024, 434, 140367. [Google Scholar] [CrossRef]
- Shahzad, U.; Doğan, B.; Sinha, A.; Fareed, Z. Does Export Product Diversification Help to Reduce Energy Demand: Exploring the Contextual Evidences from the Newly Industrialized Countries. Energy 2021, 214, 118881. [Google Scholar] [CrossRef]
- Pierson, P. When Effect Becomes Cause: Policy Feedback and Political Change. World Polit. 1993, 45, 595–628. [Google Scholar] [CrossRef]
- Geels, F.W. Technological Transitions as Evolutionary Reconfiguration Processes: A Multi-Level Perspective and a Case-Study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef]
- Markard, J.; Raven, R.; Truffer, B. Sustainability Transitions: An Emerging Field of Research and Its Prospects. Res. Policy 2012, 41, 955–967. [Google Scholar] [CrossRef]
- Meadowcroft, J. What about the Politics? Sustainable Development, Transition Management, and Long Term Energy Transitions. Policy Sci. 2009, 42, 323–340. [Google Scholar] [CrossRef]
- Bakhsh, S.; Zhang, W.; Ali, K.; Oláh, J. Strategy towards Sustainable Energy Transition: The Effect of Environmental Governance, Economic Complexity and Geopolitics. Energy Strateg. Rev. 2024, 52, 101330. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, M. Does Environmental Regulation Improve Energy Transition Performance in China? Environ. Impact Assess. Rev. 2024, 104, 107335. [Google Scholar] [CrossRef]
- Bersalli, G.; Menanteau, P.; El-Methni, J. Renewable Energy Policy Effectiveness: A Panel Data Analysis across Europe and Latin America. Renew. Sustain. Energy Rev. 2020, 133, 110351. [Google Scholar] [CrossRef]
- Galeotti, M.; Salini, S.; Verdolini, E. Measuring Environmental Policy Stringency: Approaches, Validity, and Impact on Environmental Innovation and Energy Efficiency. Energy Policy 2020, 136, 111052. [Google Scholar] [CrossRef]
- Athari, S.A. Global Economic Policy Uncertainty and Renewable Energy Demand: Does Environmental Policy Stringency Matter? Evidence from OECD Economies. J. Clean. Prod. 2024, 450, 141865. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, Y.; Chen, L.; Leong, L.W.; Muda, I.; Ali, A. How Fintech and Effective Governance Derive the Greener Energy Transition: Evidence from Panel-Corrected Standard Errors Approach. Energy Econ. 2023, 125, 106881. [Google Scholar] [CrossRef]
- Fang, X.; Yang, Z.; Zhang, Y.; Miao, X. Foreign Direct Investment and the Structural Transition of Energy Consumption: Impact and Mechanisms. Humanit. Soc. Sci. Commun. 2024, 11, 1759. [Google Scholar] [CrossRef]
- Hou, H.; Wu, D.; Wang, X.; Kong, D. Foreign Direct Investment, Environmental Regulation, and Energy Transition—An Empirical Study Based on Data from 38 OECD Countries Worldwide. Manag. Decis. Econ. 2025, 46, 573–589. [Google Scholar] [CrossRef]
- Murshed, M. Are Trade Liberalization Policies Aligned with Renewable Energy Transition in Low and Middle Income Countries? An Instrumental Variable Approach. Renew. Energy 2020, 151, 1110–1123. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, S.; Lee, C.C.; Zhou, D. Effects of Trade Openness on Renewable Energy Consumption in OECD Countries: New Insights from Panel Smooth Transition Regression Modelling. Energy Econ. 2021, 104, 105649. [Google Scholar] [CrossRef]
- Feng, C.; Liu, Y.-Q.; Yang, J. Do Energy Trade Patterns Affect Renewable Energy Development? The Threshold Role of Digital Economy and Economic Freedom. Technol. Forecast. Soc. Change 2024, 203, 123371. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Rasoulinezhad, E. Analyzing Energy Transition Patterns in Asia: Evidence from Countries with Different Income Levels. Front. Energy Res. 2020, 8, 162. [Google Scholar] [CrossRef]
- Bergougui, B.; Murshed, S.M.; Shahbaz, M.; Zambrano-Monserrate, M.A.; Samour, A.; Aldawsari, M.I. Towards Secure Energy Systems: Examining Asymmetric Impact of Energy Transition, Environmental Technology and Digitalization on Chinese City-Level Energy Security. Renew. Energy 2025, 238, 121883. [Google Scholar] [CrossRef]
- Doğan, B.; Khalfaoui, R.; Bergougui, B.; Ghosh, S. Unveiling the Impact of the Digital Economy on the Interplay of Energy Transition, Environmental Transformation, and Renewable Energy Adoption. Res. Int. Bus. Financ. 2025, 76, 102837. [Google Scholar] [CrossRef]
- Padhan, H.; Padhang, P.C.; Tiwari, A.K.; Ahmed, R.; Hammoudeh, S. Renewable Energy Consumption and Robust Globalization(s) in OECD Countries: Do Oil, Carbon Emissions and Economic Activity Matter? Energy Strateg. Rev. 2020, 32, 100535. [Google Scholar] [CrossRef]
- Bergougui, B. Can Artificial Intelligence Mitigate Environmental Inequality? Evidence from Leading Robotic-Driven Economies Using Quantile-Based Methods. Borsa Istanb. Rev. 2025. [Google Scholar] [CrossRef]
- Pesaran, M.H. A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Ma, R.; Lin, Y.; Lin, B. Does Digitalization Support Green Transition in Chinese Cities? Perspective from Metcalfe’s Law. J. Clean. Prod. 2023, 425, 138769. [Google Scholar] [CrossRef]
- Baum, C.F.; Schaffer, M.E.; Stillman, S. Instrumental Variables and GMM: Estimation and Testing. Stata J. 2003, 3, 1–31. [Google Scholar] [CrossRef]
- Coakley, J.; Fuertes, A.-M.; Smith, R. Unobserved Heterogeneity in Panel Time Series Models. Comput. Stat. Data Anal. 2006, 50, 2361–2380. [Google Scholar] [CrossRef]
- Wintoki, M.B.; Linck, J.S.; Netter, J.M. Endogeneity and the Dynamics of Internal Corporate Governance. J. Financ. Econ. 2012, 105, 581–606. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another Look at the Instrumental Variable Estimation of Error-Components Models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial Conditions and Moment Restrictions in Dynamic Panel Data Models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Bergougui, B. Institutional Adaptability, Skill-Bias Technological Shifts, and Energy Efficiency in Global Decarbonization Pathways: Exploring the Role of Artificial Intelligence Patents. Technol. Soc. 2025, 83, 103029. [Google Scholar] [CrossRef]
- Bai, J.; Choi, S.H.; Liao, Y. Feasible Generalized Least Squares for Panel Data with Cross-Sectional and Serial Correlations. Empir. Econ. 2021, 60, 309–326. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis; Prentice Hall: New York, NY, USA, 2003. [Google Scholar]
- Hoechle, D. Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. Stata J. 2007, 7, 281–312. [Google Scholar] [CrossRef]
- Bergougui, B. Moving toward Environmental Mitigation in Algeria: Asymmetric Impact of Fossil Fuel Energy, Renewable Energy and Technological Innovation on CO2 Emissions. Energy Strateg. Rev. 2024, 51, 101281. [Google Scholar] [CrossRef]
- Bergougui, B.; Meziane, S. Assessing the Impact of Green Energy Transition, Technological Innovation, and Natural Resources on Load Capacity Factor in Algeria: Evidence from Dynamic Autoregressive Distributed Lag Simulations and Machine Learning Validation. Sustainability 2025, 17, 1815. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Alola, A.A. Drivers of Natural Gas and Renewable Energy Utilization in the USA: How about Household Energy Efficiency-Energy Expenditure and Retail Electricity Prices? Energy 2023, 283, 129022. [Google Scholar] [CrossRef]
Variable | Code | Definition | Source |
---|---|---|---|
Energy Transition | ET | Proportion of total primary energy supplied by renewable sources (%) | Our World in Data |
Environmental Policy Stringency | EPS | Composite index reflecting the strictness of environmental policies (0 = least, 6 = most) | OECD statistics |
Gross Domestic Product per Capita | GDP | GDP per capita in constant 2015 US$ | World Bank |
Foreign Direct Investment | FDI | Net inflows as a percentage of GDP | World Bank |
Trade | TRADE | Sum of exports and imports as a percentage of GDP | World Bank |
Government regulation | GOV | Index capturing the quality and effectiveness of regulatory governance | World Bank |
Technological innovation | TECH | Resident patent application | World Bank |
Variable | Observations | Mean | Standard Deviation | Minimum | Maximum | VIF |
---|---|---|---|---|---|---|
LN_ET | 435 | 2.5892 | 0.7702 | 1.1431 | 4.2749 | |
LN_EPS | 435 | 0.9996 | 0.4461 | −0.5390 | 1.5870 | 2.14 |
LN_GDP | 435 | 10.1702 | 0.9147 | 7.1213 | 11.3751 | 1.87 |
FDI | 435 | 3.6982 | 13.2870 | −40.0864 | 106.5942 | 1.23 |
LN_TRADE | 435 | 4.3262 | 0.5177 | 3.1520 | 5.5304 | 1.45 |
Variable | CD-Test | p-Value |
---|---|---|
LN_ET | 62.749 *** | 0.000 |
LN_EPS | 16.409 *** | 0.000 |
LN_GDP | 49.570 *** | 0.000 |
FDI | −0.623 | 0.534 |
LN_TRADE | 19.048 *** | 0.000 |
Variables | Maddala–Wu [53] | Pesaran [52] CIPS | ||
---|---|---|---|---|
At levels | Intercept | Intercept and Trend | Intercept | Intercept and Trend |
LN_ET | 130.071 *** | 60.538 | −7.342 *** | −4.350 *** |
LN_EPS | 109.017 *** | 113.428 *** | −3.928 *** | −1.440 * |
LN_GDP | 166.454 *** | 30.805 | −8.758 *** | 0.286 |
FDI | 226.436 *** | 237.159 *** | −4.071 *** | −4.576 *** |
LN_TRADE | 132.352 *** | 95.713 *** | −0.068 | 2.670 |
First Differences | ||||
ΔLN_ET | 376.025 *** | 326.841 *** | −12.784 *** | −10.651 *** |
ΔLN_EPS | 423.898 *** | 346.401 *** | −10.978 *** | −8.740 *** |
ΔLN_GDP | 188.713 *** | 175.152 *** | −4.368 *** | −4.386 *** |
ΔFDI | 831.729 *** | 634.018 *** | −15.271 *** | −12.053 *** |
ΔLN_TRADE | 317.726 *** | 206.776 *** | −6.077 *** | −4.112 *** |
Dependent Variable: LN_ET | IV 2-Step GMM | IV-2SLS | Feasible GLS | Driscoll-Kraay | Lagged Effect |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
LN_EPS | 0.9592 *** | 0.6248 *** | 0.3616 *** | 0.3423 *** | 0.360 *** |
(0.175) | (0.188) | (0.030) | (0.106) | (5.052) | |
LN_GDP | 1.1860 *** | 1.3953 *** | 1.5642 *** | 1.5851 *** | 1.500 *** |
(0.185) | (0.174) | (0.035) | (0.154) | (11.556) | |
FDI | −4.86 × 10−7 | −0.0008 | −0.0009 *** | −0.0013 | −0.001 * |
(0.001) | (0.001) | (0.0002) | (0.001) | (−1.677) | |
LN_TRADE | 0.0318 | 0.1114 | 0.2925 *** | 0.2934 | 0.382 *** |
(0.193) | (0.205) | (0.048) | (0.342) | (2.885) | |
Constant | - | - | −16.600 *** | −15.138 *** | −14.645 *** |
(0.439) | (2.564) | (−10.646) | |||
Diagnostics | |||||
Observations | 377 | 406 | 435 | 435 | 406 |
Number of Groups | 29 | 29 | 29 | 29 | 29 |
R-squared | 0.321 | 0.313 | - | 0.324 | 0.38 |
F-statistic | 47.13 *** | 52.58 *** | - | 169.32 *** | |
Kleibergen–Paap χ2 p-value | 0.000 | 0.000 | - | - | |
Cragg–Donald F-statistic | 44.347 | 107.087 | - | - | |
Hansen J-statistic p-value | 0.602 | 0.110 | - | - | |
Endogeneity test p-value | 0.810 | 0.512 | - | - |
Variables | Government Regulation | Energy Transition | Technological Innovation | Energy Transition |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
LN_EPS | 0.206 *** | 1.350 *** | ||
(6.014) | (8.169) | |||
Government regulation | 0.401 *** | |||
(6.275) | ||||
Technological innovation | 0.057 * | |||
(1.659) | ||||
LN_GDP | 0.328 *** | 0.346 *** | 0.101 | 0.419 *** |
(20.023) | (6.477) | (1.433) | (3.111) | |
FDI | 0.000 | −0.008 *** | −0.001 | −0.001 |
(0.258) | (−3.904) | (−0.416) | (−1.485) | |
LN_TRADE | 0.011 | −0.161 ** | −3.013 *** | 0.268 ** |
(0.405) | (−2.172) | (−21.884) | (2.452) | |
Constant | −2.924 *** | −0.324 | 18.548 *** | −3.277 ** |
(−16.680) | (−0.634) | (27.781) | (−2.260) | |
Country FE | ✓ | ✓ | ✓ | ✓ |
Time FE | ✓ | ✓ | ✓ | ✓ |
Observations | 435 | 435 | 435 | 435 |
R-squared | 0.651 | 0.350 | 0.556 | 0.967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergougui, B.; Ben-Salha, O. The Impact of Environmental Governance on Energy Transitions: Evidence from a Global Perspective. Sustainability 2025, 17, 8759. https://doi.org/10.3390/su17198759
Bergougui B, Ben-Salha O. The Impact of Environmental Governance on Energy Transitions: Evidence from a Global Perspective. Sustainability. 2025; 17(19):8759. https://doi.org/10.3390/su17198759
Chicago/Turabian StyleBergougui, Brahim, and Ousama Ben-Salha. 2025. "The Impact of Environmental Governance on Energy Transitions: Evidence from a Global Perspective" Sustainability 17, no. 19: 8759. https://doi.org/10.3390/su17198759
APA StyleBergougui, B., & Ben-Salha, O. (2025). The Impact of Environmental Governance on Energy Transitions: Evidence from a Global Perspective. Sustainability, 17(19), 8759. https://doi.org/10.3390/su17198759