Revealing Nonlinear Relationships and Thresholds of Human Activities and Climate Change on Ecosystem Services in Anhui Province Based on the XGBoost–SHAP Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Data Sources and Processing
2.3. Ecosystem Service Assessment
2.3.1. Carbon Storage, CS
2.3.2. Water Yield, WY
2.3.3. Soil Retention, SR
2.3.4. Biodiversity Maintenance, BM
2.3.5. Crop Production, CP
2.3.6. Net Primary Productivity, NPP
2.4. Nonlinear Relationship Assessment
3. Results
3.1. Spatial Patterns of Ecosystem Services
3.2. Trends in Ecosystem Service Changes
3.2.1. Spatial Heterogeneity Analysis
3.2.2. Proportional Change Statistics
3.2.3. Mean Trend Analysis
3.3. Influencing Factors of Ecosystem Services
4. Discussion
5. Conclusions
- From 2000 to 2020, ecosystem services (ESs) in Anhui Province exhibited an overall trend of improvement, with a distinct “high in the south, low in the north” spatial gradient. Regulating services like biodiversity maintenance (BM), net primary productivity (NPP), soil retention (SR), and water yield (WY) were enhanced in southern mountainous areas, while provisioning services such as crop production (CP) improved in northern plains. NPP and CP showed the most significant gains (50.12% and 64.08% of areas, respectively), with mean values rising by 36% and 39%; carbon fixation (CF) remained stable across 98.31% of the region, indicating associations with vegetation and land-use dynamics.
- Precipitation (PRE) emerged as the dominant driver for most services, with optimal effects in the 1100–1250 mm range, while elevation (DEM) was key for CF and NPP. Temperature (TEM) showed nonlinear responses around 15 °C, and the human footprint index (HFI) exerted negative influences, particularly where HFI > 0.5, highlighting potential suppressive effects of human activity on ES functionality.
- Regulating services like SR and WY proved sensitive to natural variables, with improvement in 51.36% and 70.21% of areas, though degradation persisted in marginal zones. These findings underscore the need for spatially differentiated management strategies based on identified thresholds, such as prioritizing conservation in high-PRE southern areas and sustainable practices in northern plains to foster ecosystem resilience.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, X.; Long, A.; Liu, G.; Yu, J.; Wang, H.; Yang, Y.; Zhang, P. Changes in Ecosystem Service Value in the 1 Km Lakeshore Zone of Poyang Lake from 1980 to 2020. Land 2021, 10, 951. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Reyers, B.; Selig, E.R. Global Targets That Reveal the Social–Ecological Interdependencies of Sustainable Development. Nat. Ecol. Evol. 2020, 4, 1011–1019. [Google Scholar] [CrossRef]
- Saichao, W.; Zhao, Z.; Wanlai, X.; Wu, Q.; Li, W.; Zhi, X.; Li, L.; Yu, Y. Study on Ecosystem Services Evaluation and Ecological Security Pattern Construction of Beijing. Water Resour. Hydropower Eng. 2024. Available online: https://link.cnki.net/urlid/10.1746.TV.20241218.1025.002 (accessed on 25 April 2024).
- Daily, G.R. Nature’s Services: Societal Dependence on Natural Ecosystems. Environ. Values 1998, 7. Available online: http://www.publish.csiro.au/?act=view_file&file_id=PC000274.pdf (accessed on 25 April 2024).
- Wu, N.; Yang, Y.; Liu, D. Elevant Practices for Evaluating the Value of Overseas Water Ecosystem Services. Water Resour. Dev. Res. 2023, 23, 14–18. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Peng, L.; Wu, H.; Li, Z. Spatial–Temporal Evolutions of Ecological Environment Quality and Ecological Resilience Pattern in the Middle and Lower Reaches of the Yangtze River Economic Belt. Remote Sens. 2023, 15, 430. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Shu, Q.; Yao, Z.; Wu, H.; Gao, S. Effects of Urbanization-Induced Land Use Changes on Ecosystem Services: A Case Study of the Anhui Province, China. Land 2025, 14, 1238. [Google Scholar] [CrossRef]
- Mei, Z.; Li, C.; Zhao, J.; Li, Z.; Chen, K.; Huang, X.; Zhao, Z. The Temporal and Spatial Evolution Characteristics and Driving Factors of Ecosystem Service Bundles in Anhui Province, China. Land 2024, 13, 736. [Google Scholar] [CrossRef]
- Assessment, M.E. Ecosystems and Human Well-Being: Wetlands and Water; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Li, G.; Wu, Z.; He, Y.; Chen, C.; Long, Y. The Promotion of Sustainable Land Use Planning for the Enhancement of Ecosystem Service Capacity: Based on the FLUS-INVEST-RUSLE-CASA Model. PLoS ONE 2024, 19, e0305400. [Google Scholar] [CrossRef]
- De Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote Sensing of Ecosystem Services: A Systematic Review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Willcock, S.; Martínez-López, J.; Hooftman, D.A.P.; Bagstad, K.J.; Balbi, S.; Marzo, A.; Prato, C.; Sciandrello, S.; Signorello, G.; Voigt, B.; et al. Machine Learning for Ecosystem Services. Ecosyst. Serv. 2018, 33, 165–174. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem Service Bundles for Analyzing Tradeoffs in Diverse Landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production, and Tradeoffs at Landscape Scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Yu, H.; Jiang, J.; Gu, X.; Cao, C.; Shen, C. Using Dynamic Bayesian Belief Networks to Infer the Effects of Climate Change and Human Activities on Changes in Regional Ecosystem Services. Ecol. Indic. 2025, 170, 113023. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Z.; Zheng, C.; Fang, J. Biodiversity in China’s Mountains. Front. Ecol. Environ. 2006, 4, 347–352. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land Use Transitions and the Associated Impacts on Ecosystem Services in the Middle Reaches of the Yangtze River Economic Belt in China Based on the Geo-Informatic Tupu Method. Sci. Total Environ. 2020, 701, 134690. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Sasaki, N.; Jourdain, D.; Kim, S.M.; Shivakoti, P.G. Local Livelihood under Different Governances of Tourism Development in China—A Case Study of Huangshan Mountain Area. Tour. Manag. 2017, 61, 221–233. [Google Scholar] [CrossRef]
- Peng, L.; Deng, X.; Li, Z. An Extended Input-Output Analysis of Links between Industrial Production and Water Pollutant Discharge in the Yangtze River Economic Belt. J. Clean. Prod. 2023, 390, 136115. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1—km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, Y.; Yu, H.; Gu, X. Quantitative Analysis of Drivers of Ecosystem Service Evolution. Pol. J. Environ. Stud. 2025, 1–18. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W. InVEST 3.6. 0 User’s Guide. Collaborative Publication by The Natural Capital Project, Stanford University, the University of Minnesota, The Nature Conservancy, and the World Wildlife Fund. In The Nature Conservancy, and the World Wildlife Fund; Stanford University: Stanford, CA, USA, 2018. [Google Scholar]
- Lai, X.; Yu, H.; Liu, G.; Zhang, X.; Feng, Y.; Ji, Y.; Zhao, Q.; Jiang, J.; Gu, X. Construction and Analysis of Ecological Security Patterns in the Southern Anhui Region of China from a Circuit Theory Perspective. Remote Sens. 2023, 15, 1385. [Google Scholar] [CrossRef]
- Li, A.; Ye, C.; Zhu, L.; Wang, Y.; Liang, X.; Zhou, Y. Impact from Land Use / Land Cover Change on Function of Water Yield Service: A Case Study on National Park of Hainan Tropical Rainforest. Water Resour. Hydropower Eng. 2022, 53, 36–45. [Google Scholar] [CrossRef]
- Wencong, Z. Exploration and Thought on Realizing the Value of Ecological Products in Soil and Water Conservation. Water Resour. Dev. Res. 2025. Available online: https://link.cnki.net/urlid/11.4655.TV.20250609.1711.024 (accessed on 25 April 2024).
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical Validation of the InVEST Water Yield Ecosystem Service Model at a National Scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef]
- Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture, Agricultural Research Service: Beltsville, MD, USA, 1997.
- Liu, X.; Xu, X.; Zhang, H.; Li, C.; Shao, X.; Ye, Q.; Li, Z. Bioavailability and Release of Nonextractable (Bound) Residues of Chiral Cycloxaprid Using Geophagous Earthworm Metaphire Guillelmi in Rice Paddy Soil. Sci. Total Environ. 2015, 526, 243–250. [Google Scholar] [CrossRef]
- Labus, M.P.; Nielsen, G.A.; Lawrence, R.L.; Engel, R.; Long, D.S. Wheat Yield Estimates Using Multi-Temporal NDVI Satellite Imagery. Int. J. Remote Sens. 2002, 23, 4169–4180. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Liu, C.; Li, S.; Cui, X.; Cai, L.; Zhang, J. Prediction and Analysis of Concrete Compressive Strength Based on XGBoost and SHAP. Water Resour. Hydropower Eng. 2025, 56, 246–258. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html (accessed on 25 April 2024).
- Yu, H.; Gu, X.; Liu, G.; Fan, X.; Zhao, Q.; Zhang, Q. Construction of Regional Ecological Security Patterns Based on Multi-Criteria Decision Making and Circuit Theory. Remote Sens. 2022, 14, 527. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Pachauri, R.; Meyer, L.; Groups, I.; Wgiii; IPCC. Climate Change: Synthesis Report; IPCC: Geneva, Switzerland, 2016. [Google Scholar]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M. Sixteen Years of Change in the Global Terrestrial Human Footprint and Implications for Biodiversity Conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors–Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Assembly, U.G. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 25 April 2024).
- IPCC. The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change, (IPCC), Ed.; Cambridge University Press: Cambridge, UK, 2023; pp. 923–1054. ISBN 978-1-009-15788-9. [Google Scholar]
Data Type | Source/Platform | Spatial Resolution/Precision |
---|---|---|
Land use data | https://zenodo.org/record/5210928#.YcZ_nWBByUk (accessed on 25 April 2024) | 30 m |
NDVI index | The National Tibetan Plateau Data Center (https://data.tpdc.ac.cn, accessed on 25 April 2024) | 250 m |
DEM data | Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 25 April 2024) | 90 m |
Meteorological data | China Meteorological Data Center (http://data.cma.cn/, accessed on 25 April 2024) | Interpolated to 100 m |
Soil data | China Soil Database [http://data.casnw.net/portal/, accessed on 25 April 2024] | 100 m |
Human footprint index | https://doi.org/10.6084/m9.figshare.16571064, accessed on 25 April 2024 | 500 m |
Administrative boundaries, roads, and other basic geographic data | RESDC, Chinese Academy of Sciences [https://www.resdc.cn/, accessed on 25 April 2024] | - |
Type | Agriculture | Forests | Grass/Shrub | Water | Constructed | Bared |
---|---|---|---|---|---|---|
P | 0.29 | 0.7 | 0.5 | 0.2 | 0.16 | 0.27 |
C | 0.27 | 0.01 | 0.06 | 0 | 0.2 | 0.35 |
Type | BM | NPP | CP | CF | WY | SR |
---|---|---|---|---|---|---|
Significantly degraded | 1% | 1% | 5% | 1% | 0% | 0% |
Slightly degraded | 41% | 4% | 11% | 0% | 30% | 25% |
Stable | 7% | 6% | 0% | 98% | 0% | 12% |
Slightly improvement | 35% | 38% | 20% | 0% | 66% | 51% |
Significantly improvement | 16% | 50% | 64% | 0% | 4% | 13% |
Time | BM | NPP | CP | CF | WY | SR |
---|---|---|---|---|---|---|
2000 | 69.02 | 66.87 | 203.18 | 395.83 | 150.02 | 794.94 |
2001 | 78.46 | 67.08 | 402.70 | 451.42 | 122.10 | 429.74 |
2002 | 111.67 | 67.15 | 181.23 | 504.85 | 202.03 | 762.43 |
2003 | 135.13 | 67.25 | 196.93 | 467.67 | 203.89 | 940.59 |
2004 | 96.27 | 67.40 | 136.76 | 500.96 | 137.77 | 510.93 |
2005 | 102.24 | 67.44 | 225.65 | 454.63 | 159.67 | 708.18 |
2006 | 90.20 | 67.51 | 213.59 | 469.05 | 139.89 | 598.70 |
2007 | 124.92 | 67.54 | 246.13 | 516.30 | 145.07 | 657.14 |
2008 | 116.80 | 67.50 | 235.87 | 513.07 | 149.22 | 609.42 |
2009 | 110.26 | 67.47 | 263.02 | 487.29 | 161.37 | 662.03 |
2010 | 87.85 | 67.47 | 272.25 | 499.57 | 234.76 | 813.46 |
2011 | 85.97 | 67.50 | 276.93 | 499.21 | 129.07 | 496.23 |
2012 | 79.26 | 67.39 | 282.88 | 501.33 | 150.60 | 472.58 |
2013 | 111.66 | 66.98 | 268.10 | 494.92 | 142.56 | 510.94 |
2014 | 132.16 | 66.85 | 267.69 | 568.39 | 193.54 | 736.67 |
2015 | 121.28 | 66.73 | 279.27 | 557.17 | 263.73 | 948.60 |
2016 | 103.29 | 66.66 | 291.24 | 506.19 | 238.83 | 917.21 |
2017 | 112.76 | 66.67 | 281.84 | 505.60 | 173.60 | 654.46 |
2018 | 118.48 | 66.67 | 286.42 | 537.23 | 170.16 | 694.28 |
2019 | 82.24 | 66.58 | 287.68 | 484.99 | 157.50 | 539.11 |
2020 | 107.48 | 66.408 | 283.788 | 537.598 | 243.288 | 935.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, X.; Gao, S.; Gu, X. Revealing Nonlinear Relationships and Thresholds of Human Activities and Climate Change on Ecosystem Services in Anhui Province Based on the XGBoost–SHAP Model. Sustainability 2025, 17, 8728. https://doi.org/10.3390/su17198728
Zhang L, Zhang X, Gao S, Gu X. Revealing Nonlinear Relationships and Thresholds of Human Activities and Climate Change on Ecosystem Services in Anhui Province Based on the XGBoost–SHAP Model. Sustainability. 2025; 17(19):8728. https://doi.org/10.3390/su17198728
Chicago/Turabian StyleZhang, Lei, Xinmu Zhang, Shengwei Gao, and Xinchen Gu. 2025. "Revealing Nonlinear Relationships and Thresholds of Human Activities and Climate Change on Ecosystem Services in Anhui Province Based on the XGBoost–SHAP Model" Sustainability 17, no. 19: 8728. https://doi.org/10.3390/su17198728
APA StyleZhang, L., Zhang, X., Gao, S., & Gu, X. (2025). Revealing Nonlinear Relationships and Thresholds of Human Activities and Climate Change on Ecosystem Services in Anhui Province Based on the XGBoost–SHAP Model. Sustainability, 17(19), 8728. https://doi.org/10.3390/su17198728