Nitrogen Transformation Survival Strategies of Ammonia-Oxidizing Bacterium N.eA1 Under High Nitrite Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain and Culture Medium
2.2. Nitrogen Transformation Experiment
2.3. Extraction and Determination of EPS and SMP
2.4. Measurement of Cellular Respiration Rate and Key Enzyme Activities
2.4.1. Respiration Rate Measurement
2.4.2. Preparation of Enzyme Activity Extracts
2.4.3. Enzyme Activity Assays
2.5. Protein Extraction and Proteomics Analysis
3. Results and Discussions
3.1. Nitrogen Transformation at Different NO2−-N Concentrations
3.2. Effect of NO2−-N on EPS and SMP
3.2.1. EPS Analysis
3.2.2. SMP Analysis
3.2.3. Proportion Analysis in EEM Spectra
3.3. Cellular Respiration Rate and Key Enzyme Activity
3.4. Proteomics of N.eA1
3.4.1. Protein Identification and Quantification
3.4.2. Major Protein Expression and Functions
3.4.3. Key Enzymes in Nitrification and Denitrification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Eldyasti, A. Ammonia-Oxidizing Bacteria (AOB): Opportunities and applications—A review. Rev. Environ. Sci. Bio./Technol. 2018, 17, 285–321. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Y.; Dong, S.; Lan, S.; Zhou, H.; Tan, Z.; Li, X. Mixed nitrifying bacteria culture under different temperature dropping strategies: Nitrification performance, activity, and community. Chemosphere 2018, 195, 800–809. [Google Scholar] [CrossRef]
- Bi, R.; Xu, X.; Zhan, L.; Chen, A.; Zhang, Q.; Xiong, Z. Proper organic substitution attenuated both N2O and NO emissions derived from AOB in vegetable soils by enhancing the proportion of Nitrosomonas. Sci. Total Environ. 2023, 866, 161231. [Google Scholar] [CrossRef]
- Yuan, D.; Fu, C.; Zheng, L.; Tan, Q.; Wang, X.; Xing, Y.; Wu, H.; Tian, Q. Abundance, community and driving factor of nitrifiers in western China plateau. Environ. Res. 2023, 234, 116565. [Google Scholar] [CrossRef]
- Peng, L.; Ni, B.J.; Ye, L.; Yuan, Z. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge. Water Res. 2015, 73, 29–36. [Google Scholar] [CrossRef]
- Castro-Barros, C.M.; Rodríguez-Caballero, A.; Volcke, E.I.P.; Pijuan, M. Effect of nitrite on the N2O and NO production on the nitrification of low-strength ammonium wastewater. Chem. Eng. J. 2016, 287, 269–276. [Google Scholar] [CrossRef]
- Chandran, K.; Stein, L.Y.; Klotz, M.G.; van Loosdrecht, M.C. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochem. Soc. Trans. 2011, 39, 1832–1837. [Google Scholar] [CrossRef]
- Ridnour, L.A.; Thomas, D.D.; Mancardi, D.; Espey, M.G.; Miranda, K.M.; Paolocci, N.; Paolocci, N.; Feelisch, M.; Wink, D.A. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem. 2004, 385, 1–10. [Google Scholar] [CrossRef]
- Su, Q.; Schittich, A.R.; Jensen, M.M.; Ng, H.; Smets, B.F. Role of ammonia oxidation in organic micropollutant transformation during wastewater treatment: Insights from molecular, cellular, and community level observations. Environ. Sci. Technol. 2021, 55, 2173–2188. [Google Scholar] [CrossRef]
- Zhao, L.; Xue, L.; Wang, L.; Liu, C.; Li, Y. Simultaneous heterotrophic and FeS2-based ferrous autotrophic denitrification process for low-C/N ratio wastewater treatment: Nitrate removal performance and microbial community analysis. Sci. Total Environ. 2022, 829, 154682. [Google Scholar] [CrossRef] [PubMed]
- Brotto, A.C.; Annavajhala, M.K.; Chandran, K. Metatranscriptomic Investigation of Adaptation in NO and N2O Production from a Lab-Scale Nitrification Process Upon Repeated Exposure to Anoxic–Aerobic Cycling. Front. Microbiol. 2018, 9, 3012. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Datta, S.; Narayanan, K.B.; Rajnish, K.N. Bacterial exo-polysaccharides in biofilms: Role in antimicrobial resistance and treatments. J. Genet. Eng. Biotechnol. 2021, 19, 140. [Google Scholar] [CrossRef]
- Arp, D.J.; Chain, P.S.; Klotz, M.G. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu. Rev. Microbiol. 2007, 61, 503–528. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Gaurav, A.K.; Srivastava, S.; Verma, J.P. Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Front. Microbiol. 2020, 11, 1216. [Google Scholar] [CrossRef]
- Ren, Y.; Ngo, H.H.; Guo, W.; Wang, D.; Peng, L.; Ni, B.J.; Wei, W.; Liu, Y. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems. Bioresour. Technol. 2020, 297, 122491. [Google Scholar] [CrossRef]
- Salama, Y.; Chennaoui, M.; Sylla, A.; Mountadar, M.; Rihani, M.; Assobhei, O. Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: A review. Desalination Water Treat. 2016, 57, 16220–16237. [Google Scholar] [CrossRef]
- Kunacheva, C.; Stuckey, D.C. Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: A review. Water Res. 2014, 61, 1–18. [Google Scholar] [CrossRef]
- Liu, Y.; Li, K.; Yan, Z.; Ren, Z.; Li, X.; Yang, H. Isolation and Characterization of Ammonia-Oxidizing Bacterium N. eA1: Insights into Nitrogen Conversion and N2O Emissions in Varied Environmental Conditions. Water 2025, 17, 1027. [Google Scholar] [CrossRef]
- Bahram, M.; Bro, R.; Stedmon, C.; Afkhami, A. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. J. Chemom. A J. Chemom. Soc. 2006, 20, 99–105. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, M.; Ofiţeru, I.D.; Graham, D.W.; Head, I.M.; Curtis, T.P. Low-dissolved-oxygen nitrifying systems exploit ammonia-oxidizing bacteria with unusually high yields. Appl. Environ. Microbiol. 2011, 77, 7787–7796. [Google Scholar] [CrossRef] [PubMed]
- Bennett, K.; Sadler, N.C.; Wright, A.T.; Yeager, C.; Hyman, M.R. Activity-based protein profiling of ammonia monooxygenase in Nitrosomonas europaea. Appl. Environ. Microbiol. 2016, 82, 2270–2279. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, M.A.; Boas, D.A. Noninvasive measurement of neuronal activity with near-infrared optical imaging. Neuroimage 2004, 21, 372–386. [Google Scholar] [CrossRef]
- Zhao, W.; Bi, X.; Bai, M.; Wang, Y. Research advances of ammonia oxidation microorganisms in wastewater: Metabolic characteristics, microbial community, influencing factors and process applications. Bioprocess Biosyst. Eng. 2023, 46, 621–633. [Google Scholar] [CrossRef]
- Zhao, Y.; Duan, H.; Erler, D.; Yuan, Z.; Ye, L. Decoupling the simultaneous effects of NO2−, pH and free nitrous acid on N2O and NO production from enriched nitrifying activated sludge. Water Res. 2023, 245, 120609. [Google Scholar] [CrossRef]
- Fux, C.; Siegrist, H. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: Environmental and economical considerations. Water Sci. Technol. 2004, 50, 19–26. [Google Scholar] [CrossRef]
- Kampschreur, M.J.; van der Star, W.R.; Wielders, H.A.; Mulder, J.W.; Jetten, M.S.; van Loosdrecht, M.C. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res. 2008, 42, 812–826. [Google Scholar] [CrossRef]
- Fang, F.; Li, H.; Jiang, X.; Deng, X.; Yan, P.; Guo, J.; Chen, Y.; Yang, J. Significant N2O emission from a high rate granular reactor for completely autotrophic nitrogen removal over nitrite. J. Environ. Manag. 2020, 266, 110586. [Google Scholar] [CrossRef]
- Zhao, L.; She, Z.; Jin, C.; Yang, S.; Guo, L.; Zhao, Y.; Gao, M. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress. Bioprocess Biosyst. Eng. 2016, 39, 1375–1389. [Google Scholar] [CrossRef]
- Schreiber, F.; Wunderlin, P.; Udert, K.M.; Wells, G.F. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Front. Microbiol. 2012, 3, 372. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; van Hullebusch, E.D.; Neu, T.R.; Nielsen, P.H.; Seviour, T.; Stoodley, P.; Wingender, J.; Wuertz, S. The biofilm matrix: Multitasking in a shared space. Nat. Rev. Microbiol. 2023, 21, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ye, W.; Wei, D.; Ngo, H.H.; Guo, W.; Qiao, Y.; Du, B.; Wei, Q. System performance and microbial community succession in a partial nitrification biofilm reactor in response to salinity stress. Bioresour. Technol. 2018, 270, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Isaka, K.; Kazama, F.; Sumino, T. Effects of nitrite inhibition on anaerobic ammonium oxidation. Appl. Microbiol. Biotechnol. 2010, 86, 359–365. [Google Scholar] [CrossRef]
- Maia, L.B.; Moura, J.J. How biology handles nitrite. Chem. Rev. 2014, 114, 97. [Google Scholar]
- Zorz, J.K.; Kozlowski, J.A.; Stein, L.Y.; Strous, M.; Kleiner, M. Comparative proteomics of three species of ammonia-oxidizing bacteria. Front. Microbiol. 2018, 9, 938. [Google Scholar] [CrossRef]
- Zhang, J.; Han, X.; Zhang, L.; Yi, H.; Chen, S.; Gong, P. Effects of fructose and overexpression of shock-related gene grol on plantaricin Q7 production. Probiotics Antimicrob. Proteins 2020, 12, 32–38. [Google Scholar] [CrossRef]
- Martin, W.; Russell, M.J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1887–1926. [Google Scholar] [CrossRef]
- Xiao, K.Q.; Bao, P.; Bao, Q.L.; Jia, Y.; Huang, F.Y.; Su, J.Q.; Zhu, Y.G. Quantitative analyses of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils. FEMS Microbiol. Ecol. 2014, 87, 89–101. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Toyoda, K.; Arai, H.; Ishii, M.; Igarashi, Y. CO2-responsive expression and gene organization of three ribulose-1, 5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110. J. Bacteriol. 2004, 186, 5685–5691. [Google Scholar] [CrossRef]
- Law, Y.; Lant, P.; Yuan, Z. The confounding effect of nitrite on N2O production by an enriched ammonia-oxidizing culture. Environ. Sci. Technol. 2013, 47, 7186–7194. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wang, Y.; Liu, S.; Pan, M.; Yang, J.; Chen, S. Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors. Chem. Eng. J. 2013, 215, 252–260. [Google Scholar] [CrossRef]
- Wang, Y.; Hekimi, S. Understanding ubiquinone. Trends Cell Biol. 2016, 26, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Pathania, D.; Millard, M.; Neamati, N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Deliv. Rev. 2009, 61, 1250–1275. [Google Scholar] [CrossRef]
- Richardson, D.J.; Berks, B.C.; Russell, D.A.; Spiro, S.; Taylor, C.J. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell. Mol. Life Sci. CMLS 2001, 58, 165–178. [Google Scholar] [CrossRef]
- Zeng, D.; Miao, J.; Wu, G.; Zhan, X. Nitrogen removal, microbial community and electron transport in an integrated nitrification and denitrification system for ammonium-rich wastewater treatment. Int. Biodeterior. Biodegrad. 2018, 133, 202–209. [Google Scholar] [CrossRef]
- Gille, L.; Gregor, W.; Staniek, K.; Nohl, H. Redox-interaction of α-tocopheryl quinone with isolated mitochondrial cytochrome bc1 complex. Biochem. Pharmacol. 2004, 68, 373–381. [Google Scholar] [CrossRef]
- Gnaiger, E. Complex II ambiguities—FADH2 in the electron transfer system. J. Biol. Chem. 2024, 300, 105470. [Google Scholar] [CrossRef]
- Wan, C.; Yang, X.; Lee, D.; Du, M.; Wan, F.; Chen, C. Aerobic denitrification by novel isolated strain using NO2−-N as nitrogen source. Bioresour. Technol. 2011, 102, 7244–7248. [Google Scholar] [CrossRef]
- Ahmad, S.R.; Reynolds, D.M. Monitoring of water quality using fluorescence technique: Prospect of on-line process control. Water Res. 1999, 33, 2069–2074. [Google Scholar] [CrossRef]
- Guo, L.; Lu, M.; Li, Q.; Zhang, J.; Zong, Y.; She, Z. Three-dimensional fluorescence excitation–emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria. Bioresour. Technol. 2014, 171, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Wang, Q.; Huang, Q.; Fu, Q.; Liu, Y.; Wang, J.; Hu, S.; Ondřej, M.; Wang, L.; Zhang, J. Effect of pyrolysis temperature on the characterisation of dissolved organic matter from pyroligneous acid. Molecules 2021, 26, 3416. [Google Scholar] [CrossRef] [PubMed]
- Mounier, S.; Braucher, R.; Benaım, J.Y. Differentiation of organic matter’s properties of the Rio Negro basin by cross-flow ultra-filtration and UV-spectrofluorescence. Water Res. 1999, 33, 2363–2373. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Li, K.; Liu, Y.; Ren, Z.; Li, X.; Yang, H. Nitrogen Transformation Survival Strategies of Ammonia-Oxidizing Bacterium N.eA1 Under High Nitrite Stress. Sustainability 2025, 17, 8708. https://doi.org/10.3390/su17198708
Yan Z, Li K, Liu Y, Ren Z, Li X, Yang H. Nitrogen Transformation Survival Strategies of Ammonia-Oxidizing Bacterium N.eA1 Under High Nitrite Stress. Sustainability. 2025; 17(19):8708. https://doi.org/10.3390/su17198708
Chicago/Turabian StyleYan, Zhiyao, Kai Li, Yuhang Liu, Zhijun Ren, Xueying Li, and Haobin Yang. 2025. "Nitrogen Transformation Survival Strategies of Ammonia-Oxidizing Bacterium N.eA1 Under High Nitrite Stress" Sustainability 17, no. 19: 8708. https://doi.org/10.3390/su17198708
APA StyleYan, Z., Li, K., Liu, Y., Ren, Z., Li, X., & Yang, H. (2025). Nitrogen Transformation Survival Strategies of Ammonia-Oxidizing Bacterium N.eA1 Under High Nitrite Stress. Sustainability, 17(19), 8708. https://doi.org/10.3390/su17198708